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Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased
survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (ie.,
bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major
long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-
utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk
for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years,
lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species
leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment,
including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for
both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm
infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems
plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury.
We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore,
promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for
BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the
mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development
of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
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1. Introduction

Premature birth < 37 weeks of gestation affects approxi-
mately 11.1% of all newborn infants worldwide and is one
of the leading causes of infant mortality and long-term
morbidity [1, 2]. Over the last decades, significant advances
in perinatal, obstetric, and neonatal care increased survival
of very premature born infants, e.g., <29 weeks of gestation
[3]. However, improved survival was not associated with a
reduction of long-term sequelae including encephalopathy
of prematurity (EoP), retinopathy of prematurity (RoP),
and chronic lung diseases such as bronchopulmonary
dysplasia (BPD), all associated with life-long individual,
familial, financial, and socioeconomic burden [4-7]. With
preterm birth, the extra-uterine fetus is exposed to rela-
tive hyperoxia with a partial oxygen tension of approx.
70 mmHg compared to 25mmHg in utero. Additionally,
the most common treatment for premature infants with
an immature lung is the use of supplemental oxygen
and/or mechanical ventilation, further exacerbating the
hyperoxic effect [8, 9]. Though improved guidelines and
associated changes in clinical routine led to a reduction
of invasive ventilation, the frequency of chronic lung dis-
ease remained high [10].

Elevated oxygen exposure is associated with develop-
mental disturbances of both, the immature lung and brain,
characterized by simplification of alveolar and vascular
growth in the lung and white matter injury in the brain,
major characteristics of BPD and EoP, respectively
[11-13]. Although oxidative stress and inflammatory reac-
tions following neonatal hyperoxia were identified as key
contributors to the pathogenesis of BPD and EoP, the cel-
lular and molecular mechanisms are not fully understood
[14, 15]. BPD is a multifactorial chronic disease associated
with several comorbidities like cardiovascular diseases and
RoP [16, 17]. Furthermore, BPD seems to be a predictor
of poor neurodevelopmental outcome following EoP.
However, possible pathways linking prematurity associated
brain and lung damage are only poorly understood
[18-20]. It still remains unclear whether EoP and BPD
are symptoms of a common pathway induced by a unique
injury or whether brain injury develops secondary to pri-
mary injury of the lung via lung-brain axis.

Even though experimental and clinical studies suggested
several pharmacological interventions for the separate
treatment of BPD and EoP, there are no common therapies
for prevention or treatment of both interrelated preterm
birth associated complications in standard care [21, 22].
Recently, regenerative stem cell-based therapies gained
much interest as therapeutic approaches to treat immature
lung and brain injury. However, their potential to improve
both organ injuries with the same treatment regime
remains unclear [23, 24]. In this review, we provide an
overview about current knowledge of pathophysiological
mechanisms of lung and brain injury, associated with pre-
maturity. Further, we will discuss differences, similarities,
and the gap of knowledge regarding cellular and molecular
pathways. Therapeutic approaches, potentially applicable to
treat both, neonatal lung, and brain injury, will be outlined.
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2. Experimental Models of BPD and EoP

The multifactorial origins of BPD and EoP have been inten-
sively investigated in a large number of animal models
including rodents [25-27], rabbits [28, 29], baboons [30,
31], and sheep [32, 33]. In rodent models, the developmen-
tal stage of the lung and the brain in newborn pups is com-
parable with preterm humans (Figure 1). The period of
rapid brain growth in humans takes place in the last tri-
mester of pregnancy proceeding until two years of age
whereas the growth spurt in neonatal rodents is delayed
to postnatal day 2 (P2) to P10 [34, 35]. Similarly, human
premature infants are usually born in the saccular phase
of lung development, which takes place in rodents from
E17/E18 to P4/P5 [27, 36] (Figure 1). The impact of hyper-
oxia on brain and lung injury was analyzed in several pre-
clinical and clinical studies [22, 37-44], but only very few
preclinical studies demonstrated effects on both organs in
the same experimental model [45-48]. This may be par-
tially explained by huge variations in hyperoxia onset, dura-
tion, and oxygen concentrations between experimental
models (Table 1). In most models of EoP, an oxygen con-
centration of 80% is used whereas >85% oxygen is used
in the majority of BPD studies. Even more striking is the
difference in the duration of hyperoxia with mainly 10 to
14 days for lung injury compared to a short period of 6h
to 48h in brain injury models (Table 1). Furthermore,
onset of short-term hyperoxia to assess brain injury was
between P3 and P6 [49-57], while the majority of studies
analyzing oxygen-induced lung injury exposed newborn
rodents from the day of birth onwards [58-67]. Neverthe-
less, some studies also examined the brain after longer oxy-
gen exposure [44-48, 68-71], demonstrating an impaired
white matter development due to increased inflammatory
reactions and cell death of developing oligodendrocytes,
similarly as observed in short-term hyperoxia-studies
[55-57, 72-75]. Notably, hyperoxia was started at time-
points around birth to P2 in these long-term hyperoxia
studies, which closely corresponds to experimental BPD
studies (Table 1) [27, 48]. Therefore, recent rodent models
of EoP and BPD may be combined for simultaneous anal-
yses of hyperoxia-induced lung and brain injury to entan-
gle potential interrelated pathways linking both organ
pathologies and to screen for possible common therapeu-
tic approaches. Nevertheless, several factors have to be
taken into account when interpreting data and comparing
studies. For example, experimental models demonstrated
that the severity and phenotype of lung injury depend
on the concentration and duration of oxygen exposure
[76]. Furthermore, characteristic pathological features and
molecular mechanisms vary between mouse strains. There-
fore, strain-dependent effects and genetic susceptibility
need to be considered for reproducibility and reliability
of results in experimental models of hyperoxia-induced
injury [77, 78].

Despite of the advantages of rodent models (e.g., short
life span enabling large sample sizes within a short time
period, inbred strains with less variability, and large litter
sizes), the clinical relevance of the results has to be
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FiGure 1: Comparison of lung and brain development in humans and rodents. The time course of lung (upper panel, blue) and brain (lower
panel, green) development of humans (filled bars) and rodents (shaded overlays) is shown during gestation and the neonatal period (bars
with arrowheads indicate continued development after birth). This summary was created based on previous reports for lung [27, 36] and

brain [35, 184] development.

interpreted with caution. Whereas developmental stage of
the lung and the brain in newborn rodents is comparable
with preterm humans, alveolarisation and brain develop-
ment take place ex-utero, e.g., under room-air conditions
with 21% of oxygen. In contrast, in humans, these processes
are programmed to take place in utero, i.e., under “hypoxic”
conditions. Thus, even at room-air (21% oxygen), the
human preterm should be considered as an extra-uterine
fetus that is exposed to relative hyperoxia with a deleterious
effect. This very specific situation is better simulated in large
animal models of prematurity, which are of utmost impor-
tance for clinical translation. These models, inducing pre-
term birth either by hysterotomy or caesarean section,
enable assessment of the impact of invasive ventilation and
other hits like chorioamnionitis, maternal, or fetal inflam-
mation, all of them supposed to contribute to detrimental
development of the immature lung and brain [79-81]. Fur-
thermore, physiological parameters like oxygen saturation,
blood pressure, exhaled gas levels (e.g., NO), tidal volume,
airway pressure, and blood gas analysis [82, 83] are easier
to analyze in large animal models. In order to increase our
understanding of the effect of prematurity on fetal organ
development and to improve translation of experimental
findings to neonatal intensive care, data from large animal
models like nonhuman primates, piglets, or lambs are
urgently needed [30, 84, 85].

3. Hyperoxia-Induced Oxidative Stress in the
Immature Lung and Brain

Under physiological conditions, the excess of reactive oxy-
gen species (ROS) leading to oxidative stress is counterba-
lanced by a tightly regulated system of antioxidative
enzymes and radical scavengers. Oxidative stress is one
major factor contributing to hyperoxia-induced injury in
both, the developing lung and brain (Figure 2). Preterm
infants are very susceptible to oxidative stress due to their
immature antioxidant defense, leading to increased produc-
tion of ROS like superoxide (O,°), hydrogen radicals (HO®),
and hydrogen peroxide (H,0,). Under hyperoxic condi-
tions, increased ROS triggers DNA damage, protein, and
lipid oxidation resulting in altered physiological properties
and function of specific cell types and developing organs
[14, 86]. Antioxidant enzymes preserving the cell against
oxidative damage include glutathione peroxidase (GPx), cat-
alase, and superoxide dismutase (SOD). SODs, localized in
the cytoplasm (SOD1), mitochondria (SOD2) or secreted
into the extracellular space (SOD3), convert O, into
H,0,, which is less reactive than the free oxygen radical
[87]. In neonatal rats, hyperoxia induces a decrease of
SOD1 and 3 in the brain [51]. Similarly, in hyperoxia-
injured lungs, SOD1-3 expression is significantly reduced
after 3 and 5 days of hyperoxia, which persists until 10 days
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TaBLE 1: Experimental models of hyperoxia-induced brain and lung injury.

O, concentration HO HO

(%) onset duration Species Reference
40-80 P7 2h-3d Wistar rats/ synRAS mice and wt mice [43]

80 Birth 6d Sprague-Dawley rats (44]

80 P1 7d Sprague-Dawley rats [69]

80 P3 48h Wistar rats [50]

80 P3, P6, P10 24h Wistar rats [75]

80 P6 2h-48h Wistar rats [53, 73, 101]

80 P6 2h-48h C57BL/6™A41 and C57BL/6 mice [53]

80 P6 12h, 48h Wistar rats [72]

. 49, 54, 74, 108,
Brain 80 P6 24h Wistar rats 13[4?1;, 152, (1)39]

80 P6 24h SynRas mice and C57BL/6 [57]

80 P6 6h-48h Wistar rats [52]

80 P6 24h, 48h Wistar rats [51]

80 P6 48h C57B/6] mice [55, 56]

>80 P7 24h Wistar rats [98]
85 P2 12d C57BL/6 mice [70]
95 PO 7d C57BL/6 mice and C57BL/6MECSOP) mice (71]

>95 P5 7d Sprague-Dawley rats [42]

100 PO 4d C57BL/6J mice and Sftpc<EC*SOD) mice [68]

60 P1 14d Sprague-Dawley rats [180]

65 P3 4 weeks C57BL/6] mice [91]

70 PO 14d C57BL/6] mice (male) [62]

75 P1 7d FVB mice [165]

80 PO 3d,5d Wistar rats [59, 102]

80 P1 10d C57BL/6] mice [99]

80 P6 6h-48h Wistar rats [100]
40-80 PO 3d-28d C57BL/6 mice and B6.12952-1L6" ™) [60]
40-85 P1, P4 24h-14d C57BL/6 mice [76]

85 PO 14d C57BL/6] mice [61]

C57BL/6], BALB/c], FVB/N]J, C3H/He]J,
8 P1 14d DBZX/IZI, 129S/2£SvPas/Or{Rj mic/e ] [77]
85 PO 10d C57BL/6 mice [129, 181]
Lung 85 PO 28d C57BL/6], C57BL/6N mice [78]

85 P1 14d C57BL/6 mice [182]

85 P1 28d C57BL/6 mice [119]

85 P3 12d Nlrp3™~ and WT mice [106]

90 Birth 7d SCID-mice [128]

90 Birth 14d Sprague-Dawley rats [169]

90 P1 10d Sprague-Dawley rats [183]

>90 P3 10d Wistar rats [148]

95 Birth 14d Sprague-Dawley rats [66]

95 Birth 14d Sprague-Dawley rats [65]

95 Birth 14d rats [64]

95 PO 7d C57BL/6 and SPC hEC-SOD TG mice [58]

95 P1 6d Sprague-Dawley rats [146]

>97 <P2 3d-15d Sprague-Dawley rats [92]
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TaBLE 1: Continued.

O, concentration HO HO

(%) onset duration Species Reference
96-100 PO 8d Sprague-Dawley rats (male) [63]
Sftpc-EGFP mice, Rat Scgblal-rtTA and
100 PO 4d (otet)7CMV-cre bitransgenic mice x mT/mG mice [67]
100 P2 9-10d Wistar rats [122]
80 Birth 7d Sprague-Dawley rats (48]
, 85 P1 10d C57BL/6] mice [47]
Brain and lung
85 P1 14d Sprague-Dawley rats (46]
90 PO 14d Sprague-Dawley rats [45]
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FiGure 2: Hyperoxia-induced morphological changes and inflammatory responses in the developing brain and lung. Hyperoxia disrupts
alveolar and vascular development in the immature lung resulting in fewer and larger alveoli and decreased vessel density ((a) upper
panel). With regard to mechanisms underlying impaired lung development, enhanced ROS production stimulates alveolar epithelial cells
type II (AECII) to produce proinflammatory cytokines (IL6, IL-18, IL-1beta, TNF-alpha, etc.) resulting in infiltration of peripheral
leukocytes (macrophages, neutrophils, monocytes, etc.) ((a) lower panel). Detrimental effects of proinflammatory cytokines were ascribed
to activation and polarization of alveolar and peripheral macrophages into proinflammatory M1 macrophages, which not only accelerate
proinflammatory cytokine production but also lead to degeneration of AECII cells and reduced developmental transition from AECII
into AECI. These mechanisms may contribute to reduced formation of alveoli. In the developing brain, first evidences suggest that
hyperoxia impairs vascularization, though this needs to be proven in future studies ((b) upper panel). Similarly to the lung, hyperoxia
leads to increased oxidative stress through enhanced ROS production ((b) lower panel). Increased ROS have detrimental effects on
oligodendrocyte maturation, myelination, and neuronal survival, leading to ultrastructural abnormalities of myelin formation and grey
matter injury ((b) lower panel). Furthermore, increased ROS in the brain activate microglia cells, associated with proinflammatory
cytokine expression (IL-18, IL-1beta, TNF-alpha, etc.), thereby additionally enhancing both white and grey matter injury. In contrast to
hyperoxia-injured lungs, peripheral leukocytes do not infiltrate the brain, most likely due to protection by unique characteristics of the

blood-brain barrier.

of recovery under normoxic conditions [59]. These studies
indicate similar oxidative stress responses in the developing
brain and lung. In support of this, lung-specific overexpres-
sion of SOD3 did not only protect against the arrest of alve-
olar proliferation but also improved short-term memory in
female adult mice exposed to neonatal hyperoxia, supporting

the hypothesis of an inter-organ communication [58, 68].
With regard to the underlying molecular mechanisms,
SOD1 and 2 expression is regulated by the redox-sensitive
transcription factor Nrf2 (nuclear factor erythroid 2-related
factor 2), a key regulator of antioxidative and inflammatory
responses and a mediator of important cellular processes like



maturation and proliferation [88]. Under physiological
(normoxic) conditions, Nrf2 is inhibited by Kelch-like
ECH-associated protein-1 (Keapl). However, in case of
oxidative stress, Nrf2 is released from its inhibitor and
induces antioxidant gene expression including SOD1 and
2, hemeoxygenase-1 (HO-1), and GPx [89]. Recent work in
lung and brain injury showed that hyperoxia increases
Nrf2 in both lung and brain, whereas downregulation of
the counterpart Keapl is only detected in lung tissues [51,
59]. These data support previous work revealing that Nrf2
activity can be regulated in a Keapl-dependent and -inde-
pendent manner under oxidative stress [88]. Differences in
Keapl regulation also indicate a lung-intrinsic antioxidant
mechanism with increased availability of Nrf2 after hyper-
oxia. Furthermore, different levels of oxidative stress in lung
and brain tissues, organ-specific regulatory antioxidant
mechanisms, or time-dependent different dynamics in
response to hyperoxia may account for the observed differ-
ences, suggesting a possible lung to brain sequence of
injury. Nevertheless, it should be taken into account that
the onset and duration of oxygen exposure also differed
in the aforementioned studies (i.e., lung PO to P3/P5 vs.
brain P6 to P7) [51, 59].

Even though H,O, is less reactive than free oxygen
radicals, it is toxic to lung and brain cells. The oxidative
effect of H,0, is attenuated through reduction of H,O,
to O, and H,0 by GPx, which oxidizes glutathione
(GSH) to glutathione disulfide (GSSH). GSH is recovered
by glutathione reductase [86]. As a measure of hyperoxia-
induced oxidative stress in perinatal brain injury, we
reported decreased GSH levels and elevated GSSH levels
[43, 57], which were associated with increased acetylcho-
linesterase expression implicating stress-induced alterations
of cholinergic neurotransmission by these biochemical
pathways [73]. Disturbances in GSH/GSSH levels were
associated with oligodendrocyte maturation and long-
term myelination deficits, thereby most likely contributing
to impaired long-term neurodevelopmental outcome [43,
55, 75, 90]. Similar results were obtained in lung tissues,
shown by a significant increase of GSSH [91, 92], though
a correlation to lung-function was not evaluated in these
studies.

In addition to antioxidative enzymes discussed above,
other important oxygen scavenger enzymes are nitric oxide
synthases, which produce nitric oxide (NO). NO is a
multifactorial signaling molecule that influences many
physiological and pathological processes including immu-
noregulation, neuronal transmission, platelet aggregation,
airway branching, and pulmonary vascularization [93-95].
However, endogenous NO, produced by nitric oxide
synthases (NOS), also reacts with oxygen radicals, which sub-
sequently enhances nitric stress due to production of reactive
nitric species [14]. Three isozymes of NOS have been
described: inducible NOS (iNOS), neuronal NOS (nNOS),
both are soluble and primarily located in cytoplasm, and
endothelial NOS (eNOS), which is membrane associated.
eNOS and nNOS are constitutively expressed and calcium-
dependent, while iNOS is calcium-independent and only
induced under certain proinflammatory conditions [96, 97].
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Interestingly, hyperoxia exposure triggers an increased
expression of iNOS in endothelial and perivascular cells in
the cortex and in microglial cells in the hippocampus in neo-
natal rats [98]. Furthermore, Sirinyan and colleagues noticed
eNOS and nNOS upregulation in cerebral capillaries, which
in combination with reduced SOD1 expression may contrib-
ute to cerebral microvasculature injury in the developing
brain [44]. In contrast, a significant reduction of all NOS iso-
forms was reported in lung tissues of ventilated premature
baboons [82]. Furthermore, eNOS was decreased in neonatal
rat and mouse lungs, indicating a different nitric stress
response to hyperoxia in lung and brain tissues [64, 99].
These data emphasize the need to delineate similarities and
differences between both organ pathologies in one and the
same experimental model system to improve our under-
standing of basic mechanisms.

4. Inflammatory Responses in Hyperoxia-
Induced Neonatal Lung and Brain Injury

Both organ injuries share significant similarities regarding
inflammatory mechanisms, which is reflected by upregula-
tion of a variety of proinflammatory cytokines, like TNF-
alpha, IL-1beta, IL-6, and IL-18 [14, 51, 53, 60, 73, 100,
101]. As underlying mechanisms, ROS-mediated activation
of transcription factors, such as nuclear factor kappa-light-
chain-enhancer of activated B-cells (NF-kappaB), a key
mediator in stimulation of inflammatory responses, is sup-
posed to induce proinflammatory cytokine expression in
both organs [51, 59, 102]. An additional mechanism might
be that proinflammatory cytokines produced in the lungs
enter the circulation and cross the blood-brain barrier
(BBB) to accelerate hyperoxia-induced inflammatory
responses. This is supported by our previous work, demon-
strating that the lung is a large source of systemic TNEF-
alpha production [103, 104]. A further cytokine-related
mechanism linking both organ systems might be IL-6 signal-
ing. Pharmacological inhibition of global IL-6 signaling and
IL-6 trans-signaling improved survival and alveolarization in
hyperoxia-induced lung injury [60]. It remains to be eluci-
dated whether this approach may have equal beneficial
effects in the brain. Nevertheless, it should also be taken into
account that a certain level of inflammation might be needed
for physiological organ development, as indicated at the
example of disruption of NF-kappaB signaling, which was
shown to contribute to the pathogenesis of BPD [105], high-
lighting that a balanced inflammatory signaling is important
for alveolarization.

In the neonatal brain, hyperoxia-induced cell death was
associated with an increased mRNA and protein expression
of caspase-1, IL-1beta, and IL-18, all of them involved in
inflammasome-associated signaling [53]. Of note, inhibition
of IL-18 with an intraperitoneal administration of human
IL-18-binding protein diminished hyperoxia-induced brain
injury [53]. Furthermore, inhibition of caspase-1, a major
component of the NOD-like receptor domain-containing
protein 1 (NLRP1) inflammasome, attenuated hyperoxia-
induced NLRP1 inflammasome activation, which was asso-
ciated with reduced cerebral atrophy and cell death as well
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as increased proliferation in the neurogenic subventricular
and subgranular zone [47]. With regard to lung injury,
induced by hyperoxia, inflammasome signaling seems to
play a similarly important role. Caspase-1 inhibition leads
to a decreased production of mature IL-1beta, which was
associated with reduced infiltration of macrophages,
improved alveolarization and vascular architecture, and a
reduced right ventricular hypertrophy [47]. In addition to
NLRP1, hyperoxia leads to activation of NLRP3 in both
organs [106, 107]. While this inflammasome was shown to
play a crucial role in the development of BPD [106], its func-
tional relevance in hyperoxia-induced brain injury remains
to be investigated.

Hyperoxia-induced inflammatory responses include
activation and modulation of resident immune cells in both
organs, i.e., microglia and alveolar macrophages (Figure 2).
In the developing brain, hyperoxia leads to increased
microglia activity, demonstrated by increased ionized
calcium-binding adapter molecule 1 (Iba-1) protein expres-
sion, which was associated with increased IL-1beta release
[57, 108]. Inhibition of these early inflammatory responses
by minocycline administration revealed protective effects
on proliferation of oligodendroglia precursor cells [108].
Concerning the lung, recent studies by Domingo-Gonzalez
and colleagues highlighted the diversity of the lung immune
system and identified a variety of specialized immune cells,
including dynamic regulation of macrophage subtypes
[109]. For instance, hyperoxia stimulates the transdifferen-
tiation of resident alveolar macrophages into activated
macrophages (CD45" CDI11c" SiglecF" CD11b" CD68*
MHCII"), which may contribute to impaired alveolar
growth in neonatal lungs [61]. Another recent study showed
hyperoxia-induced activation of proinflammatory M1 lung-
macrophages, which was related to a reduction of the tran-
scription factor Kriippel like factor 4 (Klf4) in vitro and a
decreased survival of type II alveolar epithelial cells (AECII)
in vivo [60]. This may lead to impaired lung development,
since AECII play a crucial role in alveolar recovery after lung
injury due to their high self-renewal properties [110].

In addition to resident immune cells, peripheral immune
cells are involved in BPD pathogenesis. Hyperoxia-injured
lungs showed a dramatic infiltration of peripheral leukocytes
including neutrophils, monocytes, and macrophages, result-
ing in harmful effects on endothelial and epithelial cells and
increased ROS production, all of them supposed to contrib-
ute to cell death and arrest of lung growth (Figure 2(a)) [91,
100, 111]. In contrast to the lung, hyperoxia-induced brain
injury was not associated with an infiltration of peripheral
immune cells (Figure 2(b)) [57]. This is possibly due to the
unique properties of the blood-brain barrier (BBB), which
protects the brain against nonselective transmission of sol-
utes and cells. Despite the widespread assumption of an
immature and leaky BBB in preterm and term infants,
immunohistochemical analyses in E16 rat brains suggested
a functional and fully intact BBB [112]. Nevertheless, severe
perinatal insults in the developing brain such as hypoxia
ischemia, focal arterial stroke, or inflammation impair BBB
integrity resulting in higher traffic of small proteins, which
may disturb neurodevelopment [113]. Effects of hyperoxia

on neurovascular unit development still remain unclear
and need to be investigated in future studies.

5. Effect of Hyperoxia on Vascular Formation
and Structural Remodeling in the
Developing Lung and Brain

Oxidative stress and inflammation triggered by hyperoxia
have a detrimental effect on morphology of the developing
lung and brain. Lung vascular development and alveolar
growth are highly interrelated. BPD leads to a decrease of
lung microvasculature architecture, which persists into
adulthood [63, 114]. Reduced vessel densities, abnormal ves-
sel distribution, reduction of small arteries, and alveolar sim-
plification (Figure 2(a)) are frequently observed in infants
suffering from BPD and in experimental models [63,
115-117]. Different underlying signaling pathways have
been suggested to induce abnormal lung growth [118]. For
instance, transforming growth factor-beta (TGF-beta) sig-
naling, which is crucial in vascular and associated lung
development [62, 119], is altered under hyperoxic condi-
tions. S-endoglin, the short isoform of endoglin (TGF-beta
type III receptor), which regulates phosphorylation of
TGEF-beta type II and type I receptors, is upregulated by
hyperoxia, leading to stimulation of TGF-beta activin-like
kinase 5-SMAD?2/3 signaling, finally resulting in alveolar
simplification and decreased vessel density in the developing
lung [62]. In support of this, blocking TGF-beta signaling
protected from hyperoxia-induced injury and enabled lung
growth [120]. Hyperoxia-induced vascular abnormalities
noticed in experimental models and affected BPD-infants
is also accompanied by a reduction of proangiogenic factors
like vascular endothelial growth factor (VEGEF), its receptors
VEGFR1 and VEGFR2 as well as angiopoetin-1 receptor
(Tie2) [64, 114]. Inhibition of VEGF leads to BPD-like
impaired alveolar and vascular architecture in neonatal rats,
while gene therapy with a recombinant adenovirus, carrying
the VEGF-gene (gene treatment), improved lung develop-
ment [64]. Interestingly, the protective effect of VEGF can
be enhanced by a combination of VEGF and angiogenin-1
gene treatment, resulting in an improved vessel architecture
with less newly formed fenestrated vessels compared to
VEGF gene treatment alone [64]. VEGF is a major target
gene of hypoxia-inducible factor (HIF), which plays an
important role in fetal organ development. By exposing the
fetus to an extra-uterine environment, the associated relative
hyperoxia will cause a destabilization of HIF, which has anti-
angiogenic effects. This was recently demonstrated by Vadi-
vel et al, who showed that HIF-inhibition does not only
downregulate the expression of HIFl-alpha and HIF2-
alpha but also of VEGF, which was associated with reduced
vessel density and less alveolarization in the developing lung
[65]. The importance of HIF signaling in vascularization is
further shown in a study inhibiting HIF-activation by pro-
lyl-hydroxylases, which led to enhanced levels of proangio-
genic factors like VEGF and platelet endothelial cell
adhesion molecule and was associated with improved angio-
genesis [121]. In addition to VEGF, the proangiogenic factor



apelin was shown to promote alveolarization and to protect
from hyperoxia-induced lung injury [122].

While impaired vascularization in hyperoxia-induced
BPD models is well described, far less is known about the
impact of hyperoxia on vascular development in the brain.
Sirinyan et al. showed a reduction of cortical microvessels
in neonatal rats after 6 days of hyperoxia, which persisted
into adolescence [44]. Diminished vessel density was associ-
ated with an early increase of nitric stress, which may have
contributed to a downregulated expression of VEGFR2 and
impaired neurocognitive functional outcome [44]. Interest-
ingly, Morken and colleagues found an increased cortical
vascular network in rat pups in a model of neonatal inter-
mitted hyperoxia-hypoxia and speculated that hyperoxia-
induced vasoobliteration triggers hypoxic angiogenesis
[123]. Furthermore, vascular abnormalities were associated
with altered white matter development, demonstrated by
higher mean, axial and radial diffusivity, and a lower frac-
tional anisotropy (FA) at P14 in diffusion tensor imaging.
[123]. Of note, these alterations in white matter develop-
ment were not observed at P28, indicating a maturation
delay of the white matter. Similar effects were observed in
experimental models of pure hyperoxia for 24 hours, though
vascularization was not analyzed in these studies [49, 55, 57,
90]. Further research is needed to decipher the exact rela-
tionship between developmental vascularization and myeli-
nation. Furthermore, due to first evidences, that severe
BPD is associated with poor neurodevelopmental outcome
[18], further investigations are needed to analyze whether
and how hyperoxia-induced structural abnormality in the
lung is causally linked to brain injury, i.e., neurodevelop-
mental outcome [124].

In addition to alterations of vascularization, hyperoxia
causes pronounced structural deficits leading to organ dys-
function in the developing lung and brain. Impaired vascu-
larization in the lung is associated with lung growth
restriction including arrest of alveolarization. In addition
to an overall reduced number of alveoli and alveolar surface,
larger mean linear intercept (mean distance between two
alveolar septae) and reduced radial alveolar count (fewer
but larger alveoli) have been frequently reported [76, 125],
even though the latter two parameters are still debated.
Therefore, it is of outstanding importance to analyze these
heterogeneous structural alterations in the lungs using
unbiased methods, for example, design-based stereology or
whole-organ imaging approaches [126, 127]. Further struc-
tural changes include an increased septal thickness,
enhanced collagen and smooth muscle actin content, and
diffuse distribution of elastin, all together impairing respira-
tory volume and function [11, 60, 119, 128, 129]. Although
the exact mechanisms underlying lung growth arrest after
hyperoxia are still not entirely clear, different cell types were
extensively studied. For instance, different fibroblast sub-
populations were identified contributing to alveolar forma-
tion, injury, and repair. Notable amongst those are
lipofibroblasts, a specialized fibroblast subtype that aligns
with AECII and support their homeostasis and differentia-
tion [130-132]. Even though hyperoxia stimulates an acute
increase of AECI], this is followed by depletion of these cells
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under normoxic recovery conditions, which lasts into adult-
hood. The secondary AECII loss may contribute to reduced
formation of alveoli, though the cause of AECII loss during
recovery is still unknown and needs further investigation
[67]. Further open questions include the impact of TGF-
beta signaling in fibroblasts on modulation of the extracellu-
lar matrix and subsequent alveolar growth arrest in
hyperoxic lungs [119]. Finally, the role of other lung cells,
e.g., alveolar epithelial cells type I in hyperoxia-induced lung
injury remains elusive.

In comparison to structural remodeling of the entire
immature lung, hyperoxia affects specific brain regions, i.e.,
hippocampus, cortex, white matter, striatum, caudate
nucleus, and cerebellum [43, 52, 53, 133-136]. The most
prominent feature of hyperoxia-induced brain injury is cell
death of precursor and immature oligodendrocytes associ-
ated with a reduction of mature oligodendrocytes [49, 57,
74, 75, 90, 134, 135, 137]. This leads to a decreased expres-
sion of myelin-related proteins like myelin basic protein
(MBP) resulting in subacute hypomyelination and long-
term ultrastructural myelin abnormalities, which were asso-
ciated with neurocognitive deficits [49, 55, 57, 90]. In
addition to myelination deficits, hyperoxia led to increased
neuronal cell loss and impaired hippocampal neurogenesis.
[43, 52, 53, 133, 136]. Therefore, both, white and grey matter
injury might contribute to hyperoxia-induced neurodegen-
eration [43, 53, 90], though cellular causes and consequences
remain to be delineated.

With regard to the lung-brain axis, Kim and colleagues
showed that hypoalveolarization was associated with hypo-
myelination and increased neuronal cell death [45]. Further-
more, increased proinflammatory cytokines and decreased
VEGF expression in lung tissues correlated with reduced
brain weight, supporting the hypothesis that lung injury
may aggravate adverse neurodevelopmental outcome [45].
A recent study revealed that extracellular vesicles/exosomes
released from AECII cells in hyperoxia-injured lungs
induced lung and brain injury when adoptively transferred
into naive neonatal rats [46]. The authors suggested that
these extracellular vesicles/exosomes may enter the circula-
tion, subsequently cross the BBB, and induce inflammatory
brain injury [46]. These studies support the hypothesis of a
detrimental interaction between lung and brain injury
caused by hyperoxia.

6. Potential Pharmaceutical Approaches for
Treatment of Neonatal BPD and EoP

Currently, there is no therapy for prevention and recovery
from hyperoxia-induced BPD and EoP. A large number of
preclinical studies analyzed the potential of pharmaceutical
interventions like caffeine, inhaled NO (iNO), and erythro-
poietin (Epo) [21, 48, 138-142]. Caffeine, currently one of
the most frequently used pharmaceutical treatment in neo-
natal care, is a nonspecific adenosine receptor antagonist
with anti-inflammatory and antiapoptotic properties in
brain and lung injury caused by hyperoxia [143]. In
hyperoxia-induced neonatal brain injury, caffeine reduces
oxidative stress associated with enhanced SOD1-3 mRNA
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and decreased iNOS expression. These antioxidative effects
were related to diminished pro-inflammatory cytokine
expression and reduced expression of apoptotic molecules,
like apoptosis-inducing factor, cleaved caspase-3, and poly
(ADP-ribose) polymerase-1 [51]. Similarly, to its neuropro-
tective effects, caffeine showed protective effects in
hyperoxia-induced lung injury, revealed by reduced oxida-
tive DNA damage and anti-inflammatory effects, e.g., down-
regulation of chemokine and inflammatory cytokine
expression and a decreased pulmonary recruitment of neu-
trophils and macrophages [59, 100, 102]. Even though the
promising agent caffeine has been proven to reduce rates
of BPD and intraventricular hemorrhage, the optimal treat-
ment design regarding dose and timing is still under debate
in the clinical setting [143].

NO plays a crucial role in pulmonary vascularization,
airway branching, and neuronal transmission [93-95]. Due
to its neuroprotective and proangiogenic properties [144,
145], it has been suggested that inhaled NO (iNO) may have
therapeutic properties. This is supported by experimental
studies showing that iNO applied directly after hyperoxia
ameliorated disrupted structural development of the lung
demonstrated by an increased radial alveolar count [146].
However, Pham and colleagues showed only a transient pro-
tective effect, not persisting until the age of P10 [48]. Both
studies used a similar low dose of iNO, but different timing
of administration (early during hyperoxia [48] vs. late after
hyperoxia [146]), which may explain the different outcomes
on lung injury. Nevertheless, simultaneous analysis of brain
injury in the setting of Pham et al. revealed a neuroprotective
effect of iNO, including enhanced density of mature oligo-
dendrocytes and myelination in the developing white matter
associated with improved learning scores [48]. Therefore,
iNO might represent a common therapeutic strategy to tar-
get both, neonatal lung and brain injury. Since iNO is sup-
posed to act locally in the lung instead of being directly
transported into the brain, systemic effects of iNO through
the circulation affecting the lung-brain axis seem a plausible
explanation for protective effects in both organs. Neverthe-
less, it is intriguing that additionally added NO does not
aggravate oxidative stress in the developing lung and brain,
which would be expected in hyperoxic conditions. This puz-
zling aspect is also supported by a cochrane review of 17 ran-
domized clinical controlled trials of iNO therapies in
premature born infants showing no or only poor improve-
ments of mortality, survival (without BPD), brain injury,
and neurological outcomes [147]. Therefore, further experi-
mental and clinical studies are required analyzing dose, tim-
ing, and subgroups of infants/animals with different disease
severity states to clearly identify the protective potential for
each pathology [147].

In addition to caffeine and iNO, erythropoietin (Epo)
also has antiapoptotic and proangiogenic properties [148,
149]. Endogenous Epo is produced by many cell types like
neurons, oligodendrocytes, microglia, and astrocytes and
its receptors are widely expressed in lung and brain tissues,
indicating potential targets for protection of hyperoxia-
mediated tissue damage in both organs [150, 151]. Single
and repetitive Epo treatment in short-term hyperoxia

models showed improved long-term memory deficits in ado-
lescent and adult rats associated with attenuation of hypo-
myelination and improved neurocognitive outcome [50,
152]. Similarly, in hyperoxia-induced lung injury, low-dose
(400 U/kg) Epo therapy resulted in improvements of alveo-
larization and a higher microvessel count [148]. However,
high dose (5000IU/kg) Epo exacerbated short-term lung
injury in ventilated premature lambs caused by increased
systemic inflammation, higher airway wall thickness, and
hemorrhage [83]. In spite of the high therapeutic potential
of Epo, further studies need to define the optimal dose and
timing of Epo administration to treat both preterm-
associated pathologies, i.e., severe lung injury and long-
term neurodevelopmental disorders. This is supported by
the randomized Preterm Erythropoietin Neuroprotection
Trial (PENUT) trial in preterm infants, revealing only a
trend towards a lower rate of death and improved neurode-
velopmental outcome at two years of corrected age. How-
ever, considering long-lasting ongoing neurodevelopmental
processes in childhood, long-term follow-up analyses of
neurodevelopment are needed [153].

7. Stem Cell-Based Therapeutic Approaches in
Neonatal Lung and Brain Injury

For more than a decade mesenchymal stromal/stem cells
(MSC) have shown promising therapeutic properties in
regenerative medicine [154, 155]. MSC are multipotent cells
with immunomodulatory properties [156, 157] and are
capable of self-renewal (to proliferate without losing their
differentiation potential) [155]. They can be easily isolated
from bone marrow (BM), adipose, and placental tissue. For
treating neonatal diseases such as BPD and EoP, MSC iso-
lated from the umbilical cord (Wharton jelly) or umbilical
cord blood (UCB) gained increasing interest for therapeutic
purposes, because their use is ethically acceptable, painless
for infant and mother, and the UCB is otherwise discarded
tissue [23, 24]. A roadmap for translating MSC therapy into
clinical practice has been recently summarized and discussed
[158]. Until now, 80% of ongoing clinical trials investigating
MSC administration in neonatal brain injury used UCBC
(stem and progenitor cell) and UCB-derived MSC, even
though data on outcome have not been published so far [159].

While only few experimental studies exist analyzing the
impact of MSC-administration in hyperoxia-induced brain
injury [45], several reports demonstrated beneficial effects
of MSC in models of hypoxic-ischemic (HI) brain injury.
For example, MSC-treatment restored myelination and
attenuated neurodegeneration in grey matter lesions
associated with an increased proliferation of neuronal and
oligodendrocyte precursor cells and an improved oligoden-
drocyte maturation [160, 161]. Furthermore, enhanced
white and grey matter structure was associated with
improved long-term cognitive and sensorimotor functions,
reduced microglial and astroglial activation after MSC-
treatment in HI-induced brain injury in neonatal mice
[162, 163]. Similar protective effects of MSC-treatment
were demonstrated in preclinical BPD models, revealing
that hyperoxia-induced alveolar simplification and vessel
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degeneration can be improved by an early MSC administra-
tion [66]. In addition to improved lung and brain structure,
MSC therapy reduces injury-associated inflammatory
responses in both tissues, e.g., decreased proinflammatory
cytokine expression [45, 161, 163, 164]. So far, only one
experimental study investigated the effects of MSC therapy
on hyperoxia-induced tissue injury in both organs in the
same experimental setting [45]. Although MSC could not
be detected in the brain, intratracheal administrated MSC
simultaneously attenuated impaired lung development
and restored myelination, as demonstrated by enhanced
alveolar growth and increased amounts of mature
(MBP") oligodendrocytes, respectively [45]. A recently
suggested mechanism that might be involved in these
remote protective processes is MSC-derived extracellular
vesicles (MSC-EV). MSC-EV have been shown to amelio-
rate experimental BPD and restore lung function through
macrophage immunomodulation [165]. Similarly, in models
of neonatal brain injury, MSC-EV revealed neuroprotection
involving immunomodulatory and anti-inflammatory mech-
anisms [166-168].

Promising experimental findings led to the initiation of
several clinical trials to evaluate stem-cell based regenerative
therapies in preterm-associated morbidities. To test, whether
intratracheally administrated MSC are safe and feasible for
preventing BPD, 9 preterm infants at high risk for develop-
ing BPD received a single dose of 1 * 107 or 2 * 107 alloge-
neic human UCB-derived MSC/kg in a phase I dose
escalation trial [169]. Compared to a historical control
group, a slight reduction of BPD severity in MSC-treated
infants was noticed up to two years corrected age without
serious adverse events including tumorigenicity [169, 170].
None of the treated infants developed cerebral palsy and
neurodevelopmental outcome was comparable to historical
controls. Therefore, the authors concluded that attenuation
of BPD severity by an early MSC treatment may ameliorate
neurodevelopmental morbidities such as cerebral palsy fre-
quently associated with BPD [170]. A long-term follow-up
study until the age of 5 years and a phase II clinical trial
are currently conducted (NCT02023788). Recently, results
of a phase II trial were published from the same group,
showing safety of the treatment but no significant beneficial
effect [171]. For neonatal brain injury, Cotten et al. showed
that repetitive intravenous infusions of autologous cord
blood cells were feasible and safe in a small group of
hypothermia-treated infants with hypoxic-ischemic enceph-
alopathy [172]. Another study demonstrated the safety and
feasibility of an intraventricular transplantation of a single
dose of 1 # 107 or 2 * 10" UCB-MSC/kg in preterm infants
with severe IVH [173]. Currently, further clinical trials
are ongoing for perinatal brain injury to prove clinical fea-
sibility of MSC therapy (NCT03635450, NCT02434965,
NCT02881970, NCT02612155, NCT02673788, and
NCT02890953). Nevertheless, the majority of trials focuses
on injury in term-born infants while only few studies
address preterm-birth-related neurological disorders.

In addition to safety and feasibility, major challenges
related to regenerative stem cell-based therapies include
the definition of the optimal source, dose, route, and time
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point of administration. MSC can easily be isolated from
various tissues with different properties [174]. In addition
to bone marrow-derived stem cells (BMSC), MSC derived
from the UC and the UCB are increasingly discussed for
autologous treatment of neonatal brain and lung injury
[159, 175]. However, MSC’s therapeutic capacities may be
negatively influenced by preterm-birth related complica-
tions. Recent studies in immunological disorders revealed
that MSC’s function depends on the (micro)environment.
For example, in Graft-versus-Host disease models, it was
shown that BM-MSC are less protective in the secondary
disease phase when resolution of inflammation is induced,
suggesting that MSC need to get activated by their environ-
ment to promote protection [176]. This is also supported by
recent work in neonatal brain injury, where hypothermia-
induced changes in the brain microenvironment in HI-
injured animals limited MSC’s protective capacity [161].
The complexity of MSC function depending on the condi-
tion they are exposed to is also reflected by previous work
about limited functionality of endogenous lung MSC in ani-
mals exposed to hyperoxia [177]. These data highlight plas-
ticity of MSC function in a context-dependent manner,
which needs to be considered in autologous transplantation
approaches of UC- and UCB-derived MSC in case of prema-
turely born infants. Due to the discussed potential limita-
tions of autologous MSC therapy in critically affected
preterm born infants, time-consuming ad hoc MSC-
isolation and expansion, allogeneic MSC from UC and
UCB of healthy (pre)term-born infants may be the preferred
therapeutic approach [23, 174], which needs to be proven in
future studies.

Besides optimal sources, the cell number, delivery routes,
and therapeutic windows for efficient treatment effects need
to be defined. Several experimental studies tested a single
dose with varying cell numbers between 5 10° and 1 *
10° cells/animal [45, 66, 160, 161, 164]. Currently, no guide-
lines are available to extrapolate the dose of cells used in
experimental studies to clinical trials [178]. In the clinical
setting, MSC doses between 1 * 107 and 2 * 107 cells/kg were
administered [169]. Chang and colleagues showed that the
respiratory severity score decreased three days after treat-
ment, but subsequently increased at day 7, indicating that
a second MSC administration is necessary [169]. Further-
more, the amount of MSC may depend on the route of
administration. Several experimental BPD studies prefer
local intratracheal (i.t.) MSC application [45, 66, 164], which
can be administrated similar to surfactant therapy. However,
with regard to brain injury intraperitoneal (i.p), intranasal
(i.n.) or intraventricular administration was mainly applied
in experimental studies [161-163]. Liu et al. revealed that
i.p. administration of MSC has a dose-depended effect (high-
est and most effective dose: 1% 10° MSC/animal) in
hyperoxia-induced lung injury whereas even the highest
dose of i.n. administrated MSC showed no protective effects
in the lung [128]. A major challenge is the definition of an
optimal therapeutic window for MSC therapy. Several pre-
clinical studies analyzed the effect of an early and late
administration for prevention and regenerative therapy,
respectively [66, 162, 163]. MSC administration was most
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effective when given at early time points, i.e., 3 days after
neonatal HI-induced brain injury and at P4 in models of
BPD. The therapeutic potential declined, when administered
at later time points (i.e., 7 or 10 days after HI-induced brain
injury and at P14 in BPD models) [66, 162, 163]. Taken
together, the optimal treatment regime needs to be defined,
ideally in combined analyses of both organs in the same
experimental setting of hyperoxia.

8. Conclusion and Perspectives

Improved neonatal care significantly increased survival of
premature born infants in the last decades. While severe
life-threatening diseases like IVH and CP declined, the inci-
dence of BPD and EoP remained high. A major contributing
factor linking both pathologies is the exposure of an extra-
uterine fetus to higher oxygen concentrations, leading to
impaired lung and brain development. In support of this, a
large number of experimental studies revealed pronounced
similarities in tissue-damaging pathways, e.g., oxidative
stress and inflammation. To date, only few studies focused
on analyses of both organs in the same experimental setting.
Even though these simultaneous analyses would provide fur-
ther important insight into pathology affecting the lung and
the brain in preterm-born children, cause and consequence
can hardly be distinguished. Further research to disentangle
the complex interrelationship between both organs is needed
to answer the question whether the lung-brain-axis exists in
preterm-related comorbidities. One approach will be the
inclusion of cell-specific in vitro analyses with brain and
lung-derived cells, which can reveal the direct impact of
hyperoxia on these cells. However, to investigate the connec-
tion between these two organ systems in a complex organ-
ism, aligned in vivo models are needed. These improved
models may allow the development of novel therapeutic
approaches. Even though a large body of preclinical studies
suggested different therapeutic options, a common therapy
to simultaneously treat both organ injuries is still missing.
Pharmaceutical (e.g., caffeine) but also stem cell-based mul-
timodal therapies seem promising to prevent both, lung and
brain injury. Therefore, intense clinical and preclinical
research, also including large animal models, is needed to
define the optimal treatment design (i.e., dose, timing, and
administration route) and to develop rational therapy
designs targeting both preterm birth-related diseases, i.e.,
BPD and EoP.
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