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Abstract
Approximately 800,000 newborns die annually due to birth 
asphyxia. The resuscitation of asphyxiated term newly born 
infants often occurs unexpected and is challenging for 
healthcare providers as it demands experience and knowl-
edge in neonatal resuscitation. Current neonatal resuscita-
tion guidelines often focus on resuscitation of extremely 
and/or very preterm infants; however, the recommenda-
tions for asphyxiated term newborn infants differ in some 
aspects to those for preterm infants (i.e., respiratory support, 
supplemental oxygen, and temperature management). 
Since the update of the neonatal resuscitation guidelines in 
2015, several studies examining various resuscitation ap-
proaches to improve the outcome of asphyxiated infants 
have been published. In this review, we discuss current rec-
ommendations and recent findings and provide an overview 
of delivery room management of asphyxiated term newborn 
infants. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

All newborn infants require basic interventions (i.e., 
drying and stimulation and keeping them warm) during 
their transition from fetal to neonatal life [1, 2]. Approx-
imately 5% of newborns (6–7 million worldwide per year) 
need breathing support [1, 2], and 0.1% of term infants 
and 10–15% of preterm infants (1.5–2.5 million world-
wide) need cardiopulmonary resuscitation (CPR) [3–6], 
defined as chest compressions, 100% oxygen, and/or epi-
nephrine (adrenaline) in the delivery room (DR). Despite 
receiving CPR, about 800,000 newborns die annually 
worldwide due to birth asphyxia or intrapartum events. 
There are a number of causes of birth asphyxia or intra-
partum events including poor antenatal healthcare as well 
as maternal, placental/umbilical, and neonatal issues [7–
13] (Table 1).

Birth asphyxia is a condition of impaired gas exchange 
and lack of perfusion of various organs, which leads to 
progressive hypoxia, hypercarbia, and metabolic acidosis 
[9]. Asphyxia is a leading cause of neonatal death and dis-
ability. By introducing air instead of 100% oxygen of term 
or near-term newborns in need of positive pressure ven-
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tilation (PPV) a decade ago, a 30% reduction in mortality 
was demonstrated [14]. However, still a substantial num-
ber of deaths may be preventable by improvements in 
neonatal resuscitation. Prompt resuscitative measures are 
needed to prevent cerebral injury by avoiding further hy-
poxia and ischemia and reversing respiratory and meta-
bolic acidosis [13, 15–17]. The aim of this review is to give 
an overview of DR management in asphyxiated term and 
near-term newborn infants.

Umbilical Cord Management

Neonatal resuscitation guidelines state that infants, 
who require resuscitation measures, should have imme-
diate cord clamping [18]. The European Resuscitation 
Council Guidelines state that where delayed cord clamp-
ing is not possible, cord milking should be considered in 
infants >28 weeks’ gestation [19]. However, the optimal 
umbilical cord management strategy, which improves 
outcomes for asphyxiated term newborns, remains un-
known [20]. A recent systematic review compared vari-
ous umbilical cord management strategies including a to-
tal of 9,159 women and infant pairs in late preterm (34+0–
36+6 weeks’ gestational age) and term (≥37 weeks’ 
gestational age) infants. Unfortunately, none of the in-
cluded trials reported on the primary outcome of surviv-
al without moderate to severe neurodevelopmental im-
pairment in early childhood. By randomizing vigorous 
term infants to immediate cord clamping versus umbili-
cal cord milking or to delayed versus immediate umbilical 
cord clamping, no significant differences in neonatal out-
comes (including Apgar scores, need for resuscitation, or 
admissions to the neonatal intensive care unit) were 
found [21]. Recently, updated SpO2 and HR percentiles 
in term infants with delayed cord clamping were pub-
lished [22]. They reported on higher SpO2 and HR values 
and earlier stabilization compared to term infants with 
immediate cord clamping [22].

Umbilical Cord Milking
Erickson-Owens et al. [23] randomized 24 vigorous 

term infants to immediate cord clamping or umbilical 
cord milking and reported comparable Apgar scores and 
need for resuscitation, with no admissions. While studies 
suggest that umbilical cord milking is an alternative to im-
mediate cord clamping in vigorous infants, there is a lack 
of data in nonvigorous infants. A retrospective analysis of 
157 late preterm and term infants (35–42 weeks) with ab-
normal umbilical cord blood gases (cord arterial or ve-Ta
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nous pH of ≤7.1 or base deficit <−12 mmol/L) reported 
fewer infants needing resuscitation (38 vs. 56%,  
p = 0.07) and ongoing respiratory support (19 vs. 31%,  
p = 0.16) with umbilical cord milking compared to imme-
diate cord clamping [24]. Girish et al. [25] compared um-
bilical cord milking with immediate cord clamping in 101 
depressed term neonates at birth in a quasirandomized 
(alternating months) trial and reported no differences in 
resuscitation delay, resuscitation efforts, and short-term 
outcomes. There is a multicenter trial examining immedi-
ate cord clamping with umbilical cord milking in nonvig-
orous newborn infants, 35+0–41+6 weeks’ gestation, cur-
rently ongoing (ClinicalTrials.gov NCT03631940).

Physiological-Based Cord Clamping
During physiological-based cord clamping, the infants 

remain attached to the umbilical cord until gas exchange/
lung aeration has occurred, and this might be an alter
native to delayed cord clamping and umbilical cord milk-
ing; however, there are currently limited data available. 
Studies using asphyxiated near-term lambs reported  
that resuscitation with intact umbilical cord (i) marked- 
ly improved cardiovascular function by increasing ve-
nous return to right atrium and pulmonary blood flow, 
(ii) mitigated rebound hypertension, and (iii) reduced ce-
rebral vascular leakage compared with immediate or de-
layed cord clamping [20, 26, 27]. A recent randomized 
controlled trial in 231 nonbreathing newborn infants 
compared resuscitation with intact umbilical cord or im-
mediate cord clamping [28]. Peripheral arterial oxygen 
saturation (SpO2) was significantly higher in the resusci-
tation with intact umbilical cord group with a mean (SD) 
of 90.4 (8.1) versus 85.4 (2.7)% in the immediate cord 
clamping group. Apgar scores were higher as well in the 
intact umbilical cord group compared to immediate cord 
clamping, while heart rate (HR) was lower in the intact 
umbilical cord group at 1 and 5 min compared to imme-
diate cord clamping [28]. Whether physiological-based 
cord clamping or resuscitation on the intact umbilical 
cord will improve the outcome of asphyxiated newborn 
infants remains unclear.

Heart Rate Assessment

Current neonatal resuscitation guidelines recommend 
to asses HR immediately after birth using pulse oximetry 
or electrocardiography (ECG) for ongoing monitoring 
[18, 29]. Clinical studies reported that inter- and intra
observer variability with auscultation and palpation un-

derestimates HR about 21 and 14/min, respectively [30–
32]. Furthermore, neither palpation nor auscultation can 
provide continuous HR assessment during resuscitation. 
Hence, continuous, objective, and precise measures are 
required. Both pulse oximetry and ECG fulfill these crite-
ria with very good accuracy [33]. Due to the delay in ob-
taining a signal with the pulse oximeter, the ECG pro-
vides a more accurate HR in the first 3 min after birth 
[18]. In 2015, the neonatal resuscitation guidelines rec-
ommended routine use of ECG for continuous monitor-
ing of HR during DR resuscitation [34]. The American 
Heart Association/Neonatal Resuscitation Program 
(AHA/NRP), however, recommends that “auscultation 
of the precordium remains the preferred physical exami-
nation method for the initial assessment of the heart rate. 
Pulse oximetry and ECG remain important adjuncts to 
provide continuous heart rate assessment in babies need-
ing resuscitation” [2].

Pulseless Electrical Activity
The practice change following the ILCOR recommen-

dation of applying ECG primarily to detect HR led to sev-
eral case reports of pulseless electrical activity in the DR 
[35, 36]. Pulseless electrical activity is defined as the pres-
ence of electrical activity without any associated mechan-
ical activity [35, 36]. Similar animal studies reported 
pulseless electrical activity in ∼50% of asphyxiated neo-
natal piglets [35, 37–39]. Pulseless electrical activity is 
caused by hypoxia, hyper-/hypokalemia, hypovolemia, 
hypothermia, hydrogen ions (acidosis), tension pneumo-
thorax, cardiac tamponade, thrombosis (coronary and 
pulmonary), and toxins [40]. These reports raise con-
cerns about the use of ECG in the DR, and therefore 
healthcare providers should be aware of the potential pit-
falls with ECG during neonatal resuscitation [35]. A re-
cent case series stated that if a HR is displayed on the ECG 
but the infant is unresponsive, pulseless electrical activity 
should be suspected and chest compressions should be 
started [35]. We suggest to combine auscultation, palpa-
tion, pulse oximetry, and ECG in asphyxiated newborn 
infants, which might be more reliable compared to ECG 
or pulse oximetry alone [39, 41].

Respiratory Support

In the first 1–2 min after birth, ∼60 and 17% of spon-
taneously breathing term infants have a HR <100 and 
<60/min, respectively [42]. At 3 min after birth, 7% of 
these spontaneously breathing term infants still have a 
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HR <100/min [42]. In spontaneously breathing term in-
fants, it took 1–10 breaths to the first expired CO2 (ECO2) 
and 21–258 s until peak CO2, suggesting complete lung 
aeration [43, 44]. Similarly, during PPV, ECO2 levels are 
closely related to lung volumes at end inflation, and ECO2 
is first detected when ∼7% of the distal lung regions are 
aerated, and ECO2 levels increase ∼30 s before HR in-
creased >100/min [45, 46].

While these data suggest that an increase in HR might 
be delayed despite adequate ventilation, the Neonatal Re-
suscitation Program textbook states that once PPV is 
started, an increase in HR should be observed within 15 s 
[47]. However, in severe bradycardic asphyxiated new-
born piglets, HR increased only in 50% of piglets after 30 
s of adequate PPV [48]. Saugstad et al. [49] reported that 
the HR of asphyxiated newborn infants was mean (SD) 93 
(33) and 113 (30) at 60 and 90 s after birth, respectively. 
In another study, Saugstad et al. [14] reported that the HR 
was ≤100/min in approximately 2/3 and 1/6 of depressed 
newborn infants at 1 and 3 min after birth, respectively. 
Furthermore, a slow or no increase in HR in the first 3 
min of life seemed to represent a poor prognostic sign, 
giving a 9-fold risk for death within a week [14].

Mask Ventilation
The current neonatal resuscitation guidelines recom-

mend mask ventilation using an appropriate face mask 
connected to a manual ventilation device [1, 2]. The most 
commonly used devices to provide PPV in the DR are a 
self-inflating bag and T-piece resuscitator [50, 51]. A re-
cent systematic review included 3 randomized trials and 
1 observational study and reported no significant differ-
ences in survival at discharge, air leak, or short- and long-
term outcomes [52]. However, mask ventilation with a 
T-piece resuscitator might result in fewer intubations in 
the DR and higher rates of survival to discharge [52].

During ventilation, an initial peak inspiratory pressure 
(PIP) of 30 cm H2O in term newborn infants should be 
used [18, 19, 53]. However, the optimum pressure, infla-
tion time, and gas flow required to establish an effective 
functional residual capacity in depressed newborn in-
fants is unknown. Dawson et al. [50] reported that PIP is 
a poor proxy for tidal volume delivery and that the PIP 
must be adjusted during resuscitation as compliance and 
resistance of the lung is changing rapidly. However, a 
prompt increase of HR above 100/min can be an impor-
tant sign of adequate tidal volume generated by the cho-
sen PIP during resuscitation.

The 2-point top hold and the OK rim hold (thumb and 
index finger form a C-shape) are the most adequate face 

mask techniques for placing and holding a face mask and 
minimizing mask leak during PPV [54]. However, several 
DR studies reported that mask leak and airway obstruc-
tion are common during bag and mask PPV in particular 
in preterm infants [55, 56]. Mask leak and obstruction of-
ten remain unrecognized and might delay lung aeration, 
hence effective gas exchange and increase in HR. In a very 
recent meta-analysis comparing face mask with nasal can-
nulae for noninvasive PPV in the DR reported a nonsig-
nificant reduced risk for chest compressions (3 studies, RR 
0.37, 95% CI: 0.10–1.33, p = 0.13, I2 = 28%) and a nonsig-
nificant reduction in DR intubation rates (5 studies, RR 
0.63, 95% CI: 0.39–1.02, p = 0.06, I2 = 52%) when using 
nasal cannulae, suggesting to consider the use of nasal 
cannulae as an alternative to face mask PPV [57].

Intrauterine hypoxia suppresses fetal breathing move-
ments and causes apnea and glottis closure (=airway ob-
struction) after birth [58]. In preterm rabbits, Crawshaw 
et al. [58] reported that the glottis only opens during 
spontaneous breathing movements while it remains 
closed during apnea, which might result in ineffective 
PPV [59]. Glottis closure might also be present in term 
infants; however, this has not been investigated yet.

MR. SOPA
Current neonatal resuscitation guidelines recommend 

a face mask in combination with a manual ventilation de-
vice to provide respiratory support after birth [18, 19]. A 
tight seal between mask and face and appropriate posi-
tioning of the infant’s upper airway are important for ef-
fective mask ventilation. When infants do not respond to 
initial inflations, the neonatal resuscitation program 
(NRP, Houston, TX, USA) and the neonatal life support 
group (NLS, United Kingdom) suggest a structured ap-
proach for escalation of care. MR. SOPA is thought to be 
used as an acronym for M (mask adjustment), R (reposi-
tion airway), S (suction mouth and nose), O (open 
mouth), P (pressure increase), and A (alternate airway) 
as a laryngeal mask airway (LMA) or endotracheal tube.

Sustained Inflation
The current European neonatal resuscitation guide-

lines recommend 5 consecutive 2- to 3-s sustained infla-
tions to initiate PPV [19]. However, there is no clinical 
evidence that these 5 initial sustained inflations will sup-
port lung aeration. Studies in near-term intrauterine as-
phyxiated lambs demonstrated that a single sustained in-
flation of 30 s improves the speed of circulatory recovery, 
carotid blood flow, and cerebral oxygen delivery, and fur-
ther cardiac contractility increases more rapidly com-
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pared to PPV or 5 consecutive 3-s sustained inflations 
[60, 61]. However, cerebral plasma protein extravasation 
was increased after a single 30-s sustained inflation, indi-
cating a greater disruption in the blood-brain barrier, 
which might exacerbate brain injury in asphyxiated new-
borns [61]. These data suggest that one 30-s sustained 
inflation might improve lung aeration compared to 5 
consecutive 3-s sustained inflations. The 2020 ILCOR 
neonatal resuscitation guidelines state that for term or 
late preterm infants who receive PPV for bradycardia or 
ineffective respirations at birth, it is not possible to rec-
ommend any specific duration for initial inflations due to 
the very low confidence in effect estimates [1].

Oropharyngeal Airway
The oropharyngeal airway was designed to hold the 

tongue away from the back of the pharynx, thus providing 
a clear channel/airway for respired gases. The European 
Neonatal Resuscitation guidelines recommend an oro-
pharyngeal airway during their structured approach for 
escalation of care [19]. Kamlin et al. [62] randomized 137 
infants <34 weeks’ gestational age to either mask PPV 
alone or in combination with an appropriately sized oro-
pharyngeal airway. Overall, obstructed inflations and 
partial obstruction were more frequently observed in in-
fants stabilized with an oropharyngeal airway (81 vs. 64%, 
p = 0.03, and 70 vs. 54%, p = 0.04), respectively [62]. The 
trial included infants <34 weeks’ gestation only, which 
makes translation to term babies difficult. However, 
healthcare providers should be aware that an oropharyn-
geal airway might increase airway obstruction during 
mask ventilation.

Laryngeal Mask Airway
The current neonatal resuscitation guidelines recom-

mend an LMA as an alternative to tracheal intubation 
during resuscitation of newborn infants >34 weeks’ gesta-
tion [18, 19]. A recent Cochrane review with 794 newborn 
infants reported that PPV with an LMA resulted in less 
need for endotracheal intubation and shorter ventilation 
time compared to mask PPV (RR [95% CI]: 0.24 [0.12–
0.47], I2 = 34%, and mean difference [95% CI]: −18.0 s 
[−24.35 to −13.44 s], I2 = 95%), respectively [63]. Inser-
tion time or failure to correctly place either an LMA or an 
endotracheal tube was similar [63]. The current evidence 
suggests that an LMA might be an adequate alternative 
during resuscitation of a severe asphyxiated term infant. 
Pejovic et al. [64] compared LMA and face mask during 
neonatal resuscitation in a low-resource setting and dem-
onstrated that the total ventilation time and the mean 

time to spontaneous breathing were shorter in newborn 
infants who were initially resuscitated with LMA. It was 
suggested that this approach could be very useful espe-
cially in DR settings with resuscitation teams without ad-
equate skills in tracheal intubation and/or in low- and 
middle-resource settings [65]. Pejovic et al. [66] reported 
that an LMA is safe in the hands of midwives but is not 
superior over a face mask with respect to the composite 
of early neonatal death or moderate-to-severe hypoxic-
ischemic encephalopathy (HIE) (adjusted analysis for 
LMA vs. face mask: RR, 95% CI: 1.16 [0.90–1.51], p = 
0.26) in low-resource settings.

Oxygen

Oxygen during Respiratory Support
Already a decade ago, studies demonstrated that as-

phyxiated term infants resuscitated with room air gave 
their first cry earlier and attained a sustained pattern of 
spontaneous respiration more rapidly compared to those 
with 100% oxygen resuscitation [67, 68]. Vento et al. [69, 
70] showed that using pure oxygen for neonatal resuscita-
tion increases oxidative stress and causes more damage to 
organs including the heart and kidneys in severely asphyc-
tic term neonates. For term and near-term newly born in-
fants, the current neonatal resuscitation guidelines recom-
mend 21% oxygen initially during respiratory support and 
100% oxygen when chest compressions are started [18, 19, 
71, 72]. Supplemental oxygen should then be titrated ac-
cording to preductal oxygen saturation targets [18, 19, 72]. 
A systematic review and meta-analysis including 5 quasi
randomized controlled trials and 1,302 newborn infants 
(median 38 weeks’ gestation and most of them moderately 
asphyxiated) reported that outcomes as time to first breath 
>3, 5-min Apgar score <7, and survival were better for 
those resuscitated with room air rather than 100% oxygen 
[73]. Further, 1 death would be prevented for every 20 new-
born infants resuscitated with air rather than 100% oxygen 
[73]. Hence, room air instead of pure oxygen resuscitation 
may prevent 200,000 deaths, in addition to 300,000 fresh 
still births (out of approximately 1 million) who may be 
rescued by room air ventilation [74].

Chest Compressions

Current neonatal resuscitation guidelines state that if 
the HR remains <60/min despite adequate ventilation, 
chest compression should be started [19, 29]. Chest com-
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pression should be delivered using a (i) coordinated 3:1 
compression:ventilation (C:V) ratio, (ii) at the lower 
third of the sternum, (iii) a depth of ∼1/3 of the anterior-
posterior diameter of the chest, (iv) using the 2-thumb 
encircling technique, and (v) allowing full chest recoil re-
laxation. However, these recommendations are based on 
extrapolations from mathematic modeling, animal data, 
and pediatric and adult studies as there is a lack of neona-
tal human data.

Chest Compression:Ventilation Ratio
Rationales for using 3:1 C:V include (i) a higher phys-

iological HR of 120–160/min and (ii) breathing rates of 
40–60/min in newborn infants compared to adults. Sev-
eral studies compared different C:V ratios (2:1, 3:1, 4:1, 
9:3, and 15:2) in asphyxiated newborn piglets showing 
that time to return of spontaneous circulation (ROSC) 
was similar, independently of C:V ratio [75–77]. Schmöl-
zer et al. [78] investigated the approach of chest compres-
sions with nonsynchronized ventilation and reported 
that tidal volume, time to ROSC, survival, and hemody-
namic recovery were similar compared to 3:1 C:V in as-
phyxiated neonatal piglets.

Chest Compression Rate
A mathematical model suggests that the chest com-

pression rate should be 180/min for term infants [79]. 
However, this might not be feasible due to methodological 
limitations and rescuers’ increased fatigue with higher 
chest compression rate. Furthermore, animal studies 
compared various chest compression rates and reported 
no difference in time to ROSC or survival [80, 81]. Neither 
different rates of chest compression superimposed by sus-
tained inflations (90 vs. 120/min) nor different rates of 
chest compression with asynchronized ventilation (90, 
100, and 120/min) showed a benefit regarding time to 
ROSC and survival in neonatal asphyxiated piglets, al-
though the hemodynamic recovery, cerebral inflamma-
tory, and brain injury markers were improved during 
chest compression with asynchronized ventilation with a 
rate of 120/min compared to 90 or 100/min [80, 81].

Depth of Chest Compression
The recommendation regarding chest compression 

depth is based on extrapolation from CT scans in 54 neo-
nates, which showed that a 1/3 anterior-posterior depth 
would result in a superior ejection fraction compared to 
1/4 or 1/2 AP depth [82]. The main difficulty for resusci-
tators is the inability to assess the chest compression 
depth during chest compression. A too shallow anterior-

posterior diameter could result in inadequate cardiac out-
put, and a too high anterior-posterior diameter could 
cause overcompression resulting in rib fractures, cardiac 
contusion, and thoracic injuries.

Chest Compression Technique
Several manikin studies demonstrated that the 

2-thumb encircling technique achieved (i) higher pro-
portion of correct placements of the fingers/thumbs,  
(ii) greater mean (SD) depth (27.2 [5.7] vs. 22.1 [4.6] mm;  
p = 0.0008), and (iii) less mean (SD) depth variability (6.7 
[3.2]% vs. 9.0 [2.8]%; p = 0.002) compared to the 2-finger 
technique during chest compression [83, 84]. There has 
been one animal study comparing the 2-thumb technique 
and the 2-finger technique in 9.4 (SD 0.8) kg infant swine, 
which reported significantly higher systolic, diastolic, and 
mean arterial blood pressure and coronary perfusion 
pressure [85]. More recently, newer techniques of how to 
position the thumbs and fingers during chest compres-
sion have been described in manikin studies; however, 
further studies investigating the optimal thumbs and fin-
gers position during chest compression are urgently 
needed to improve the newborn infants’ short- and long-
term outcome.

Oxygen during Chest Compression
Current neonatal resuscitation guidelines recommend 

increasing oxygen to 100% when chest compression is 
started [18]; however, the optimal/most effective oxygen 
concentration during chest compression remains un-
known/controversial. While there are no human data, 
animal studies reported that 21% O2 results in not sig-
nificantly different time to ROSC, survival, and neuro-
logic outcomes compared to 100% O2 [18]. A recent me-
ta-analysis of animal studies reported that the pooled 
analysis showed no significant difference in mortality 
rates for animals resuscitated with air versus 100% O2 
(risk ratio 1.04 [0.35, 3.08], I2 = 0%, p = 0.94) [86]. ROSC 
was also similar between groups with a mean difference 
of −3.8 (−29.7 to 22) s, I2 = 0%, p = 0.77 [86]. Most re-
cently, 2 further studies compared 21% with 100% O2 us-
ing a neonatal asphyxia piglet model. No difference in 
time to ROSC, survival, oxidative stress, and inflamma-
tion markers was found [87, 88]. While these studies sug-
gest that 21% is not different to 100% O2, no clinical stud-
ies have been reported and are urgently needed.

Chest Compression during Sustained Inflation
An alternative chest compression method is chest 

compression superimposed during sustained inflation 
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(CC + SI), which (i) reduced time to ROSC and (ii) im-
proved survival, (iii) improved hemodynamics (carotid 
artery blood flow and pulmonary artery blood flow), and 
(iv) resulted in passive ventilation during chest compres-
sion and thereby increasing minute ventilation compared 
with 3:1 C:V ratio in asphyxiated newborn piglets [89]. In 
a small human pilot trial in preterm infants <32 weeks, 
the time to ROSC was significantly shorter in the CC + SI 
group compared to the 3:1 C:V group with mean (SD) 31 
(9) versus 138 (72) s [90]. The SURV1VE trial currently 
compares whether CC + SI with 3:1 C:V improves short- 
and long-term outcomes in preterm >28 weeks and term 
newborns (ClinicalTrials.Gov Trial NCT02858583) [91].

Vascular Access

Current neonatal resuscitation guidelines recommend 
to establish an intravenous access as soon as possible to 
administer epinephrine (adrenaline), fluids, or blood if 
needed [18, 19, 29]. The most common approach is to 
place an umbilical venous catheter ∼5 cm into the um-
bilical vein [18, 19, 29]. This procedure could take sev-
eral minutes, especially when the equipment is not pre-
pared or performed by an inexperienced healthcare pro-
vider [92, 93]. Alternatively, a peripheral intravenous 
access or an intraosseous (IO) access could be established 
[1, 19, 94, 95]. Simulation studies reported that IO inser-
tion was faster compared to umbilical venous catheter in-
sertion [96]. Inserting a needle into the (tibial) bone al-
lows a quick drug administration to the IO blood vessel 
system even during compromised circulation and shock. 
Cadaveric studies reported that IO needle position (i.e., 
humerus and proximal tibia) is feasible with both a semi-
automatic battery-driven drill and manually inserted 
needles [97, 98]. A recent systematic review identified ob-
servational and simulation studies but no randomized tri-
als [96]. A total of 46 IO needle insertions in 41 neonates 
(mostly inserted in the proximal tibia), with a complica-
tion rate of 13–31% (e.g., malpositioned needles, dis-
placed needles, extravasation, local infection, osteomyeli-
tis, fracture, compartment syndrome, limb ischemia, and 
fat or air emboli), was described [96]. More recently, 
Mileder et al. [99] reported 12 additional cases of IO nee-
dle insertions using a battery-driven drill in newborn in-
fants with a 50% success rate for the first and second at-
tempt. No long-term complications were reported; how-
ever, minor short-term complications (i.e., paravasation 
and local soft tissue infection) in 33% of successful IO 
insertions were observed [99]. The 2020 ILCOR neonatal 

resuscitation guidelines stated that if umbilical venous ac-
cess is not feasible, the IO route is a reasonable alternative 
for vascular access during newborn resuscitation. How-
ever, adverse effects including tibial fractures and extrav-
asation of fluid and medications resulting in compart-
ment syndrome and amputation are emphasized [1].

Most recently, direct puncture of the umbilical vein 
through Wharton’s jelly using a 24-gauge cannula as an 
alternative method for drug administration was described 
[100]. A case series of 10 cases (n = 4 epinephrine during 
CPR and n = 6 premedication of intubation) was de-
scribed, and the whole procedure from puncture to drug 
administration took 15–20 s. There is a lack of data, and 
clinical trials are urgently needed.

Epinephrine (Adrenaline)
Current neonatal resuscitation guidelines recommend 

1:10,000 epinephrine given intravenously at a dose of 
0.01–0.03 mg/kg [1]. Alternatively, endotracheal admin-
istration at a dosage of 0.05–0.1 mg/kg might be consid-
ered while intravenous access is established [29]. Epi-
nephrine acts on α- and β-receptors resulting in (i) in-
creased coronary artery perfusion pressure via peripheral 
vasoconstriction, (ii) improved blood flow to the myocar-
dium, and (iii) restored depleted energy substrates, thus 
improving myocardial contractility and viability. How-
ever, epinephrine also increases myocardial oxygen de-
mand and respiratory and metabolic acidosis, a common 
occurrence during neonatal asphyxia [101]. A recent sys-
tematic review included 117 term and preterm infants re-
ceiving epinephrine in the DR and reported similar out-
comes for death at hospital discharge (RR [95% CI] 1.03 
[0.62–1.71]) or failure to achieve ROSC, time to ROSC, 
or proportion receiving additional epinephrine between 
intravenous and endotracheal epinephrine [102]. These 
data suggest that endotracheal and intravenous epineph-
rine results in similar survival and other outcomes. How-
ever, in animal studies, researchers continue to suggest 
benefit of intravenous administration using currently 
recommended doses. Human clinical trials are urgently 
needed.

Nonvigorous Infants and Meconium-Stained 
Amniotic Fluid

Meconium-stained amniotic fluid occurs in up to 15% 
of deliveries, 10–20% of these infants are born nonvigor-
ous [103, 104], and 5–10% of these infants will develop 
meconium aspiration syndrome (MAS) [105, 106]. In 
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2015, the neonatal resuscitation guidelines changed their 
recommendation to emphasis not routinely suction in 
nonvigorous meconium-stained amniotic fluid infants 
[71]. Several studies compared outcomes before and after 
guideline changes and reported less neonatal intensive 
care unit admissions, less infants receiving tracheal suc-
tioning, and no increase in severity of MAS or severe re-
spiratory distress or other important neonatal outcomes 
[107–109]. Noteworthy, Kalra et al. [108] reported a sim-
ilar prevalence of HIE and pneumothorax while Edwards 
et al. [107] reported an increased incidence. While Chiru-
volu et al. [103] reported that a significantly higher pro-
portion of nonvigorous infants with meconium-stained 
amniotic fluid were admitted with respiratory distress 
and respiratory support.

Recent meta-analyses included 581 nonvigorous in-
fants with meconium-stained amniotic fluid and report-
ed no difference in neonatal mortality, incidence of MAS 
and HIE, need for DR interventions, respiratory support, 
or hospital stay between suctioning below the vocal cord 
and no suctioning [110, 111]. These data suggest that 
there is no clear evidence of benefits of initial endotra-
cheal intubation and tracheal suction in meconium-
stained amniotic fluid; however, if there is airway ob-
struction due to thick viscous, meconium suctioning is 
often a clinical decision [17].

Temperature Management

Current neonatal resuscitation guidelines recommend 
maintaining body temperature of nonasphyxiated new-
born infants between 36.5 and 37.5°C after delivery 
through admission and stabilization [19, 29, 72]. In in-
fants with HIE, therapeutic hypothermia should be initi-
ated within the first 6 h after birth [112]. Both active and 
passive cooling are feasible and safe to achieve a target 
body temperature of 33–34°C in asphyxiated term born 
infants >36 weeks’ gestational age [113]. Asphyxiated 
newborn infants have impaired thermoregulation due to 
reduced oxygen consumption and energy production, a 
high surface area, and a wet and thin skin and lose tem-
perature at a higher rate than nonasphyxiated infants. In-
fants with potentially higher degree of brain injury cool 
faster, as their natural protective mechanisms are inhib-
ited [114, 115]. Initiating cooling sooner might prevent 
worsening of brain tissue injury; therefore, passive cool-
ing should be started after the initial stabilization or dur-
ing neonatal transport [116]. Especially in community 
hospitals or remote/rural areas, passive cooling is a good 

alternative to initiate cooling as early as possible. Several 
studies reported that infants passively cooled during 
transport achieved target temperature significantly faster 
compared to infants who were not passively cooled [117, 
118]. However, passive cooling during transport resulted 
in ∼1/3 of infants in overcooling, in particular in infants 
with mostly severe HIE [118, 119]. Overcooling can be 
avoided by using a servo-regulated cooling device (cool-
ing blanket and rectal/esophageal temperature probe) 
during neonatal transport. A randomized controlled trial 
demonstrated that the mean time to reach target temper-
ature with using a servo-regulated cooling device com-
pared to either passively and/or actively (ice or gel packs) 
cooling was 44 min [120]. Thus, if servo-regulated cool-
ing is initiated soon after arrival of the transport team in 
the birth hospital, many infants will achieve target tem-
perature prior to departure from the birth hospital [120]. 
However, there is neither evidence nor clear recommen-
dation how to process with body temperature of asphyx-
iated newborn infants with suspected HIE during neona-
tal resuscitation. The 2020 ILCOR neonatal resuscitation 
guidelines suggest treatment should be consistent with 
the protocols used in the randomized clinical trials [1]. 
This includes active cooling with ice packs [121]; how-
ever, caution is required when using this approach as it 
increases the risk for overcooling.

Neonatal Resuscitation in Resource-Limited versus 
Resource-Replete Environments

Of the approximately 2.6 million newborn infants who 
die annually, 98% occur in resource-limited environ-
ments, and 50–70% of neonatal deaths occur on the first 
day after birth [122]. Neonatal mortality is about 50–55 
times higher in low- and middle-income countries com-
pared to high-income countries due to mother’s health 
(i.e., nutritional and infection status), limited resources, 
and lack of trained birth attendants or failure to provide 
adequate basic neonatal resuscitation at birth [123, 124].

Birth asphyxia is defined differentially in resource-
limited and resource-replete environments [125]. How-
ever, in resource-limited environments, it is usually de-
fined as a failure to initiate or sustain spontaneous breath-
ing at birth and in some circumstances includes a 1-min 
Apgar score <7; in resource-replete environments, it is a 
biochemical definition (pH <7.00 and base deficit ≤−12 
mmol/L), related to impaired gas exchange (leading to 
organ failure including HIE), due to interruption of pla-
cental blood flow, with progressive hypoxemia, hyper-
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capnia, and acidosis analyzing cord umbilical arterial 
blood after delivery of the newborn [125, 126].

To improve the outcome of newborn infants born in 
limited resource settings, the Global Implementation 
Task Force of the American Academy of Pediatrics devel-
oped together with other partners the “Helping Babies 
Breathe” training in 2010, a simulation-based training 
method designed to train healthcare providers in limited 
resource settings in neonatal resuscitation and care [127]. 
Implementing this training and resuscitation method is a 
simple and low-cost intervention that reduces intrapar-
tum-related stillbirths and early neonatal mortality [127]. 
This systematic review showed moderate evidence for a 
decrease in intrapartum-related stillbirth and 1-day neo-
natal mortality rate after implementing the “Helping Ba-
bies Breathe” training and resuscitation method [127]. 

Table 2 gives an overview about the differences of recom-
mendations regarding neonatal resuscitation in limited 
versus replete resource settings.

Discontinuation of Resuscitation

The current neonatal resuscitation guidelines [1] state 
that a reasonable timeframe to consider before ending re-
suscitation “is around” 20 min after birth. Recently, the 
Neonatal Life Support Task Force reported that 40% of 
infants with ongoing need for CPR at 10 min after birth 
survived with 11% surviving without moderate or severe 
impairment [128]. However, all included studies had high 
risk of bias, considering contextual factors such as gesta-
tional age, presence of congenital anomalies, or adequacy 

Table 2. Neonatal resuscitation of asphyxiated term infants in resource-limited versus resource-replete environments

Limited resources Replete resources

Cord clamping Delayed cord clamping [120] Immediate cord clamping to initiate resuscitation 
measures [18]

Basic steps of neonatal resuscitation Dry thoroughly, keep warm, clear airway if needed, 
stimulate [120]

Dry thoroughly, keep warm, clear airway if needed, 
stimulate [18]

HR assessment Auscultation if a stethoscope is available, if not cord 
palpation [121]

Pulse oximetry or ECG [18], stethoscope before PO, or 
ECG signals [2]

Meconium-stained amniotic fluid Drying and stimulation before suctioning, if needed 
[120]

Emphasize initiating ventilation in nonvigorous 
infants, suctioning if airways are obstructed [19]

Indication to provide respiratory support Apneic infants [120] Apneic infants or/and HR <100 beats/min [18]

Respiratory support Early continuous bag-mask ventilation [120] or using 
an LMA as alternative [63]

Mask ventilation using a manual ventilation device and 
escalate (intubation) if needed [18]

Supplemental oxygen Room air [122] Start with room air and titrate supplemental oxygen 
according to preductal oxygen saturation targets [18]

Cardiocirculatory support No CC, no drugs such as epinephrine [114] If the HR remains <60/min despite adequate 
ventilation, CC should be started and epinephrine 
administrated [18]

Temperature management Swaddle in clean clothes or if available use clean 
food-grade plastic bag and swaddle [18, 120]

No clear recommendations, ILCOR suggest active 
cooling consider passive cooling [104]

Therapeutic hypothermia Should only be considered, initiated, and conducted 
under clearly defined protocols with treatment  
in neonatal care facilities with the capabilities for 
multidisciplinary care [18]

Should be initiated according to strict criteria within  
6 h after birth targeting a body temperature of 33–34°C 
[18]

Discontinuation of resuscitation Stop assisted ventilation in babies with no 
spontaneous breathing despite presence of HR or 
Apgar score of 1–3 at 20 min or more [18]

Can be stopped if the neonate does not respond to 
continuous and adequate interventions around 20 min 
after birth. Consider individual decision-making [1]

Training strategies for healthcare 
providers

Low-dose, high-frequency practice, participation on 
programs such as “helping babies breathe” [120, 123]

Recurrent simulation and video-taping training, 
considered more frequently than once per year [18, 19]

ECG, electrocardiogram; HR, heart rate; CC, chest compressions; LMA, laryngeal mask airway.
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of resuscitative interventions performed. These data sug-
gest that a uniform time interval or duration of CPR after 
birth will not be applicable [128]. The most recent guide-
lines suggesting to end resuscitation “around 20 min after 
birth” is a good approach for the patient, the parents, and 
the providers [1, 41].

Conclusion

DR management must be steadily evaluated, investi-
gated, and trained to improve resuscitation of asphyxi-
ated newborn infants. Current neonatal resuscitation 
guidelines often focus on preterm infants, not recom-
mending different approaches for asphyxiated term born 
infants. Hence, strong efforts must be undertaken to per-
form studies of high quality in the DR to further improve 
neonatal resuscitation and outcome of one of the sickest 
groups of newborn infants.
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