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Abstract

Cervical auscultation is the recording of sounds and vibrations caused by the human body from the 

throat during swallowing. While traditionally done by a trained clinician with a stethoscope, much 

work has been put towards developing more sensitive and clinically useful methods to characterize 

the data obtained with this technique. The eventual goal of the field is to improve the effectiveness 

of screening algorithms designed to predict the risk that swallowing disorders pose to individual 

patients’ health and safety. This paper provides an overview of these signal processing techniques 

and summarizes recent advances made with digital transducers in hopes of organizing the highly 

varied research on cervical auscultation. It investigates where on the body these transducers are 

placed in order to record a signal as well as the collection of analog and digital filtering techniques 

used to further improve the signal quality. It also presents the wide array of methods and features 

used to characterize these signals, ranging from simply counting the number of swallows that 

occur over a period of time to calculating various descriptive features in the time, frequency, and 

phase space domains. Finally, this paper presents the algorithms that have been used to classify 

this data into ‘normal’ and ‘abnormal’ categories. Both linear as well as non-linear techniques are 

presented in this regard.
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I. Introduction

DYSPHAGIA is a term used to describe swallowing impairments [1]. A common comorbid 

disorder, it is estimated that ten million Americans are diagnosed with dysphagia every year 

[2]. Nervous disorders, particularly stroke, are some of the most common causes of 

dysphagia as they can directly affect the strength and coordination of muscle activity [2], 

[3]. If these disorders affect the cranial nerves of a patient, which control the muscles 

involved during swallowing activity among other things, then the patient’s airway may not 

be sufficiently protected during a swallow [2], [4]. On its own, dysphagia is a minor to 

moderate inconvenience that can cause discomfort when eating. However, this greatly 

increases the risk of aspiration, where swallowed material is allowed to enter the airway, and 

can lead to much more serious health complications including pneumonia, malnutrition, 

dehydration, and even death [3], [5].

Assessment of swallowing function typically begins with screening, where a test is 

administered to determine if a patient likely has a swallowing disorder and requires a more 

detailed examination. Several methods, including a water swallow screen [6], pulse 

oximetry [7], and electromyography [8], have been proposed over the last two decades as 

less invasive methods to determine the presence of aspiration during swallowing. However 

with the exception of the water swallow screen, which has exhibited an acceptable 

predictive value for aspiration in some studies, these methods have exhibited unacceptable 

sensitivity and specificity and are not yet proven to be reliable tests. Another method, 

cervical auscultation, has received a significant amount of attention in recent years. Many 

researchers have attempted to implement this method to screen for dysphagia, as it is just as 

non-invasive and inexpensive to use as these other proposed methods. However, research on 

the subject has been somewhat disorganized and uncoordinated. In the following manuscript 

we hope to introduce the idea of using cervical auscultation to screen for swallowing 

disorders and to present the current efforts of the field in an organized manner.

II. Swallowing Physiology

Physiologically, swallowing is divided into three separate phases. The first stage, the oral 

phase, consists entirely of voluntary activity [9]. It begins when the mouth is opened to 

allow material to enter the oral cavity and end when the tongue is pressed against the hard 

palette and the bolus is propelled in the posterior direction [9]. The pharyngeal phase, whose 

activity is involuntary but may be initiated consciously, is the second stage of deglutition 

[9]. It begins once the bolus has passed the palatoglossal arch and entered the oropharynx 

and ends as the bolus reaches the upper esophageal sphincter [10]. This phase involves 

temporarily sealing all unwanted bolus pathways including the nasopharynx by the soft 

palate, the oral cavity by the tongue, and the larynx by the epiglottis [10]. Because of these 

valves, all actions such as breathing, coughing, and mastication are inhibited during the 

pharyngeal phase [11]. The oropharynx and laryngopharynx, larynx, and hyoid structures 
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are all then pulled in the superior and anterior directions so as to accept the bolus and to 

further seal the larynx and nasopharynx [10]. Peristalsis of the oropharynx and 

layngopharynx muscles then moves the bolus down towards the upper esophageal sphincter 

[10]. The third stage is the esophageal phase and is completely involuntary [9]. As the bolus 

is travelling through the pharynx, the upper esophageal sphincter relaxes to allow the bolus 

to enter the esophagus [9]. Peristalsis of the muscles surrounding the pharynx and esophagus 

push the bolus downward until it passes through the lower esophageal sphincter and into the 

stomach [11]. The pharynx, larynx, and hyoid all relax and return to their initial positions 

after the bolus has passed into the esophagus [11]. The tongue, vocal cords, epiglottis, and 

soft palate likewise return to their resting positions and non-swallowing activities can 

resume [11].

In simplest terms, dysphagia occurs when this process does not work as intended. As stated 

previously, the greatest concern for the patient’s health is the risk of aspiration. Should the 

airway not be protected sufficiently during a swallow, such as the epiglottis not closing fully 

or too slowly for example, then the swallowed material would be able to enter the larynx and 

cause complications for the patient. The goal of the various non-invasive screening 

techniques is to be able to identify when such an abnormal event occurs without the direct 

aid of videofluoroscopy. Specifically for cervical auscultation, it is proposed that the events 

which cause an abnormal swallow will also change the acoustic and vibratory pattern of the 

swallow. Given the large number of muscles and structures involved in a swallow, 

differentiating normal swallowing sounds and vibrations from all possible abnormal 

situations is a task that could be possible, but has not yet been solved.

III. Cervical Auscultation

In the simplest terms, auscultation is the observation of the internal workings of the human 

body by use of sounds. Cervical auscultation then, applies this concept to the neck and throat 

in order to monitor swallowing. Obviously, the stethoscope is the most commonly referred 

to device in the field since it has been used for centuries and is still the most widely used in 

the clinical setting. Microphones are becoming more common as of late, however, as more 

research is put towards analysing the subtler characteristics of recorded auscultation data. 

Several groups have attempted to correlate these sounds with physiologic events typically 

only observable with imaging methods such as videofluoroscopy. Additionally, research in 

this area has been spawned by trends to optimize and add electronic automation to some 

medical diagnostic techniques. A microphone can, in theory, record the same signal as a 

stethoscope, but the former device more commonly has a flat frequency response while the 

later is designed to match the non-linear human auditory system [12]. Though both methods 

produce data that can be digitized and analysed, microphones are more often capable of 

recording a wider range of unfiltered signals. Cervical auscultation has also, at times, been 

used to refer to swallowing accelerometry [13]–[15]. Although accelerometers detect 

vibrations caused by the spatial displacement of physical objects rather than sounds 

produced by the propagating pressure waves generated by moving objects, the two signals 

provide complementary information. This is due to the fact that these two types of signals 

are generated by the same phenomena during swallowing: movements of oropharyngeal 
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structures and the flow of swallowed material through the aerodigestive tract. Because they 

are so closely related, it is logical to include swallowing accelerometry in this field of study.

It is important to note, that the definition of cervical auscultation has not been clearly 

defined in an official capacity, and that the line between swallowing accelerometry and 

swallowing sounds is rather blurred. Several well-cited experiments, in fact, explicitly refer 

to swallowing accelerometry signals as acoustic signals [16]–[19]. Despite their physical 

similarities, research has demonstrated that swallowing accelerometry and sounds are not 

interchangeable [16], [20]–[22]. For this paper, “cervical ausculation” will collectively refer 

to the recording of both types of data (acoustic and vibratory) signals on or near the neck 

during swallowing while specific signal types will be indicated for clarity.

Cervical auscultation has been a key research topic for a few reasons. First, its accuracy in 

detecting physiological events is still up for debate. To date, few studies have shown the 

ability of a human observer to reliably interpret the observed pharyngeal sounds produced 

during swallowing and correlate them to actual physiologic events observed with accepted 

imaging techniques. Second, little research has been published indicating whether the use of 

non-human objective methods of analysing these signals might be promising toward 

increasing the accuracy and objectivity of cervical auscultation. In the clinical setting, the 

Speech-Language Pathologist evaluating a patient’s swallowing function may use a 

stethoscope to listen for “notable clicks and pops” while a patient swallows and base some 

of their impressions on that information [13]. By observing these sounds and linking them to 

their causative physiological events, we can gain a better understanding of whether 

auscultation offers increased screening or diagnostic value for swallowing disorders. 

Furthermore, success of this technology would also open the door to increasing the 

objectivity of interpretations of acoustic and vibratory data emanating from the aerodigestive 

tract during swallowing. This could reduce the subjectivity of auscultation techniques and is 

arguably inherent in all clinical, human-interpreted, diagnostic procedures. Second, the 

process of screening for swallowing-related aspiration or foreign matter in the airway, has 

become ubiquitous in hospitals and other health care facilities. Because of the negative 

impact of aspiration in conditions like stroke, neurodegenerative diseases, and many other 

conditions, these screening procedures have been universally recognized as essential [23]–

[26]. Significant reductions of health care associated pneumonia rates have been 

demonstrated in facilities instituting formal screening protocols [25]. Additionally, using 

more objective screening tactics provides the potential to greatly reduce public health cost 

and human morbidity and mortality associated with swallowing disorders. Since cervical 

auscultation is extremely accessible, inexpensive, and easy to implement in the screening 

process, it has the potential to add needed objective data that could increase screening 

accuracy and early detection of risk. This outcome could provide significant savings to the 

health care industry if widely adopted by increasing the precision of dysphagia screening 

and by identifying at-risk patients before complications arise.

This paper aims to provide an overview of signal analysis techniques used in cervical 

auscultation research. It begins by explaining the methods of transduction, what devices are 

used and where they are located during recording, before detailing what techniques are used 

to condition and filter those signals. It then continues on to explain how researchers have 
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attempted to characterize cervical auscultation signals and how they have attempted to use 

that information to differentiate abnormal from healthy swallows. As the field is still in its 

early stages this paper will hopefully serve as a reference guide for what has been 

accomplished while demonstrating the shortcomings of previous work. From that 

foundation, this paper should be able to provide guidance on future areas of research in the 

field.

IV. Transducer Selection

As expected, the stethoscope was one of the earliest used transducers in this field and is still 

regularly utilized by researchers and clinicians [13], [14], [27], [28]. In general, stethoscopes 

have been used in studies that have compared the accuracy of subjective judgements made 

during clinical, non-instrumented evaluations of swallowing function to the actual 

physiological and kinematic events recorded using imaging technology. They have sought to 

determine whether auscultation sounds are correlated to the physiology of the patient’s 

swallowing events. The studies done by Borr, et al., Zenner, et al., and Marrara, et al. are 

prime examples. In these studies, clinical experts were asked to determine if several features 

of patents’ swallows were normal or abnormal based on a non-concurrent comparison of 

videofluoroscopic imaging data to observations made at the bedside using a stethoscope 

[14], [27], [29]. The feature assessments of the two methodologies were then compared in 

order to relate the findings of the stethoscope evaluation to an accepted standard [14], [27], 

[29]. In general, these studies found a high rate of agreement between the bedside evaluation 

and videofluoroscopic screening [14], [27], [29]. However, these studies suffered from 

design flaws including comparison of auscultation and imaging data that were not recorded 

concurrently during swallowing and by the use of judges who were not blinded to the results 

of the auscultation evaluation when interpreting the imaging data. While the sensitivity and 

specificity of the stethoscope evaluation in these studies was not high enough to support a 

stand-alone screening procedure, and despite the design flaws, all of the studies agreed that 

it is a beneficial supplement to the videofluoroscopic evaluation [14], [27], [29].

Utilizing additional hardware, such as microphones and accelerometers, has become more 

common in swallowing research in recent years. These devices are not particularly common 

in the clinical setting, but they offer clear advantages in the analysis of cervical auscultation 

compared to clinical data observed with stethoscopes. In particular, being able to digitize 

and record the signal opens many possibilities for processing and analysis of signal 

characteristics that are not available with a subjective, stethoscope-based analysis. Figure 1 

provides a visual example of the signals obtained in this manner from a single participant 

and demonstrates how the signal can noticeably vary between transducers. However, little 

has been done to elucidate differences between acoustic and vibratory signals in defining 

swallowing related events. The signal/transducer combination used in a given project is 

often chosen at the whim of the experimenter. Several studies have not systematically 

evaluated the variations of their instrumentation and falsely assume that swallowing 

vibrations and sounds are equivalent [16], [17], [19], [30], [31]. Four papers have been 

published in the last two decades that have investigated the differences between 

accelerometers and microphones in swallowing applications. The earliest and an often cited 

work by Takahashi. et al. found that, of the models tested, their accelerometer had a flatter 
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frequency response than their chosen microphone and so was superior in a signal analysis 

application [16]. Cichero, et al. and Murdoch, et al. later repeated this first experiment, but 

instead investigated the signal to noise ratio of the devices [20]. Their results were the exact 

opposite of Takahashi, et al.’s original work and concluded that a microphone produced a 

superior signal [20]. Only very recently were the final two studies published that attempted 

to address this contradiction. Rather than trying to judge the superior device, Dudik, et al. 

and Reynolds, et al. investigated a multitude of signal features and simply described how the 

devices differed when simultaneously recording swallowing events [21], [22]. The selection 

of which transducer was superior was left unanswered, as it seems to depend entirely on 

what signal processing and analysis techniques are used by the researcher as well as what 

signals are being analysed.

V. Transducer Location

There has also been some debate as to the best location to place the microphone or 

accelerometer when recording swallowing information. Only a few studies have focused 

their recordings on transducer placements superior to the thyroid cartilage. Experiments 

done by Selley, et al. as well as Klahn, et al., Perlman, et al., Pinnington, et al., Roubeau, et 

al., and Smith, et al. made use of the “Exeter Dysphagia Assessment Technique”, which 

records data from the vicinity of the jawline and hyoid bone [32]–[37], whereas Passler, et 

al., Shirazi, et al., Sazonov, et al., and Firmin, et al. gathered data from an even higher 

location with several bone-conduction microphones mounted in the ear canal [38]–[41]. 

Studies that record data from a location inferior to the thyroid cartilage are far more 

plentiful. Some experiments have placed their transducer at the suprasternal notch [31], 

[42]–[44], but the majority of researchers record from the skin overlying the cricoid 

cartilage or immediate area [17], [20], [21], [27], [40], [41], [45]–[52]. The cricoid cartilage 

is an intuitive and logical recording location given that the anatomical structures present at 

this level are active during swallowing. Takahashi, et al.’s work, which systematically 

calculated the maximum signal to noise ratio of a swallowing accelerometry signal at 

various locations on a patient’s neck, once again was one of the first to provide an 

authoritative answer [16]. Their results, which have been cited quite often since their 

publication and are summarized in Figure 2, suggested that the signal with the greatest peak 

signal-to-noise ratio could be recorded by a transducer placed either directly on, 

immediately inferior to, or immediately lateral to the cricoid cartilage [16].

VI. Signal Conditioning

Once the signals are recorded, it then becomes a question of what to do with the data. Table 

I summarizes the general categories of signal conditioning that has been applied to cervical 

auscultations signals as well as which studies use each technique. In general doing more 

than the most basic signal processing has been rare in the field. Many studies, in fact, utilize 

the raw transducer signal to draw their conclusions and many used the human ear in the 

analysis without any digital or mathematical analysis of the signal waveform’s 

characteristics [14]–[17], [19], [20], [22], [27], [32]–[37], [40], [48], [50], [52], [63], [76]–

[79], [91]–[112]. Those studies that have conditioned the signal between acquisition and 

analysis generally only applied a bandpass filter in order to eliminate sources of noise at 
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either end of the frequency spectrum [13], [28], [38], [39], [43]–[47], [49], [51], [53]–[62], 

[65], [68]–[73], [84]–[89]. Once again Takahashi, et al.’s work [16], which was later 

supported by Youmans, et al. [17], is cited often because their study characterized the 

frequency range of swallowing accelerometry signals. They found that the vast majority of 

the signal’s energy is found at or below 3.5 kHz [16], [17] and so many later studies place 

the upper notch of their filter at or near that point. Unfortunately, these studies have been 

unable to determine the lower bound on useful frequency components, resulting in much 

more variability of the placement of the lower notch. While some place it as low as 0.1 Hz 

in order to maintain a “pure” signal [21], [49], [51], [65], [66], [83], [86], [90], others place 

it as high as 30 Hz or more in order to eliminate motion artifacts and other low frequency 

noise [39], [42], [44], [60]–[62], [69]. Since similar bandlimits have yet to be identified for 

swallowing sounds, studies which use a microphone simply limit the recorded signal to 

either the human audible range [21], [32], [33], [37], [40], [46], [48], [67], [76]–[78], [86], 

[89], [95], [97]–[100], [102], [103], [110], [112]–[116] or the range of common stethoscopes 

used in bedside assessments [13], [22], [28], [39], [56], [69], [73], [88], [91], [92]. 

Typically, this bare minimum amount of signal processing has traditionally been done for 

one of two reasons. First, studies that make extensive use of subjective human judgements, 

whether to determine the start and end times of individual swallows or to match 

physiological events with the time domain signal, do not want to filter out important 

frequency components and alter the signal. Instead, they attempt to provide a signal that is 

identical to what these experts would observe when performing a bedside evaluation in a 

clinical environment [19], [22], [28], [46], [48], [84], [91], [92], [106], [110]. Second, many 

of these studies look at only the most basic of signal features, such as the sound composites 

representing the number of swallows over time, the timing of swallowing phases, or simply 

the onset/offset of a swallowing event [14]–[17], [20], [27], [32]–[34], [36]–[40], [50], [52], 

[55]–[57], [68]–[70], [93], [95], [100]–[105], [107], [108]. These features can be suitably 

estimated from noisy data, so applying complex filtering techniques is deemed unnecessary.

It is important to note that not all filtering of the swallowing signal is intentional. Ideally, the 

transducer used would have a flat frequency response and would not change the amplitude 

of a recorded signal based on the signal’s frequency. This is not always the case, however, 

and each specific transducer model has a unique frequency response curve. Depending on 

the researcher’s available funds, personal preference, or a legitimate design choice they may 

utilize a model that amplifies some frequency components more than others. The way a 

transducer is used can also alter the signal. For example, if an omni-directional microphone 

is placed too close to the source of the sound the “proximity effect” causes the lower 

frequency components of the signal to be amplified. It is possible to use filters to 

compensate for these imperfect frequency responses, but not all researchers do and so care 

must be taken when analysing the presented results.

Although only a few research groups have applied more advanced signal processing 

techniques they have approached the problem from multiple directions. First, several 

researchers have applied wavelet denoising techniques to swallowing signals with some 

success [21], [30], [47], [51], [65]–[67], [84]–[87]. Wavelet denoising involves performing 

the wavelet decomposition of a time domain signal and then eliminating any detail 

components with a magnitude below a specific threshold; the assumption being that these 
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components consist predominantly of noise data [117]. The denoised time domain signal can 

then be reconstructed from the remaining wavelet components [117]. Unlike common 

bandpass filtering techniques, which reduce noise only in specific frequency ranges, wavelet 

denoising is able to reduce the impact of both white and colored noise on a given signal 

[117]. In an application with a less than ideal signal-to-noise ratio and a wide bandwidth this 

method of filtering has clear advantages.

In addition to general denoising, there have also been attempts to remove specific unwanted 

signals found in cervical auscultation data. Head motion during swallowing is one such 

example, as it can cause unwanted biasing of an accelerometer’s output. Sejdić, et al., et al 

has demonstrated a method of eliminating this unwanted signal which uses splines. A signal 

can be written in terms of splines as

(1)

where c(k) is an L2 sequence of real numbers and bp(k) is the pth order indirect spline filter, 

also known as a B-spline. This filter is defined as

(2)

where u is a step function and m is a time scaling factor. It was found that, in order to 

minimize the mean square error of the noise approximation, c(k) must be equal to (3) [90].

(3)

In less mathematical terms, this process fits a low frequency (< 2 Hz) trend to the time 

domain signal that results from head motion during recording [21], [51], [74], [85]–[87], 

[90]. It then subtracts that low frequency trend from the time domain recording in order to 

eliminate the effects of head motion without affecting the higher frequency signal [21], [51], 

[74], [85]–[87], [90]. The same group also investigated ways to eliminate vocalizations from 

swallowing accelerometry signals [51], [75], [85]. By employing the Robust Algorithm for 

Pitch Tracking (RAPT), which calculates the normalized correlation coefficient function of 

a signal and marks the local maxima as vocalizations [118], they were able to remove this 

source of noise from their analysis and greatly improved their ability to detect the onset and 

offset of individual swallows [75]. Finally, these researchers have also experimented with 

techniques to remove noise created by the recording device itself. By recording the 

transducer’s output in the absence of any input and fitting an autoregressive model to the 

data, they were able to generate an infinite impulse response filter to remove that device 

noise and improve their signal quality [21], [65], [66], [85]–[87]. As an example, Figure 3 

compares a raw transducer signal with one that has undergone all of the conditioning 

techniques included in [21], [86]. The improvement in the signal-to-noise ratio is visually 

apparent and should demonstrate how later analysis techniques can benefit from various 

forms of signal conditioning.
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Finally, there have been attempts to find a method of automatically and accurately 

determining the endpoints of a swallowing event within a generic signal. The simplest 

method, thresholding the time domain signal based on its magnitude or other simple statistic 

[65], [71], [76]–[79], [88], is of course the most crude but has clear advantages if one is 

willing to accept a reduction in precision. On the other end of the spectrum, several 

researchers, including Lee, et al., Das, et al., and Makeyev, et al., formed neural networks 

and trained them to segment swallowing signals from background noise and artifacts [60], 

[71], [76]. The time domain signal is windowed and the network classifies each segment as 

belonging to a swallow or some other designation based on the values of the chosen 

parameters of that window [60], [71], [76]. The parameters weighed by the networks vary 

greatly and have included time domain features such as root-mean-squared magnitude and 

number of zero crossings, frequency domain features such as average power, or time-

frequency features such as the energy in specific wavelet frequency bands [60], [71], [76]. 

The remaining methods researched take into account the non-stationarity of swallowing 

signals and observe the changes in the signal’s variance over time. Lazareck, et al. and 

Ramanna, et al. divided the swallowing signal into a number of equal length sections and 

then calculated, as shown in equation (4), the waveform fractal dimension of each [43], [61], 

[63].

(4)

Here, L is the length of a given window, a is the step size, and d is the diameter of the 

waveform [43], [61], [63]. Swallowing was assumed to occur during the periods of high 

signal variance, and therefore a large waveform fractal dimension value, so a threshold was 

set to determine the onset and offset of each swallow [43], [61], [63]. Moussavi, et al. and 

Aboofazeli, et al. also used this approach on multiple occasions. However instead of 

thresholding the waveform fractal dimension, this feature was used to create a hidden 

Markov model of swallowing and the model’s transitions between states was found to 

correspond to the transitions between the oral, pharyngeal, and esophageal stages of 

swallowing [64], [80]–[82]. Meanwhile, Sejdić, et al. used a different method of determining 

a signal’s variance over time. They utilized fuzzy means clustering in combination with the 

time-dependent variance of the signal in order to determine periods when a swallow 

occurred [21], [83], [85], [86]. Described in (5)–(7), their algorithm separates the signal into 

“swallowing” and “non-swallowing” clusters, indicated by ujk, based on the prototype vj and 

the inner product of the prototype with the signal variance, σ [83]. After providing the initial 

guesses for ujk, the centers of the two clusters, the values of vj and ujk are repeatedly updated 

until the change in the location of the cluster centres is sufficiently small [83]. In clearer 

terminology, their algorithm divides the signal into many short periods and calculates the 

variance of each segment. Based on that value, then algorithm groups together each segment 

with similarly large variances and labels them as belonging to swallowing events. The 

inverse occurs with segments of low variance.
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(5)

(6)

(7)

To summarize, researchers that utilize cervical auscultation can apply conditioning 

techniques to both filter and segment the recorded data. While simple bandpass filtering is 

the most common technique, there have still been many examples of wavelet denoising 

applied to these signals. There have also been a few more specific filtering strategies 

including using autoregressive modelling to remove device noise or spline modelling to 

remove low frequency artefacts. Likewise, simple thresholding of the time-domain signal is 

the most commonly applied segmentation technique. Those that use more computationally 

intensive methods characterize the signal’s time-dependent variance before applying 

thresholding or fuzzy means clustering strategies to the data. The specific instances of these 

techniques can be found in Table I.

VII. Signal Analysis

Similar to the signal processing divisions, there are a few common approaches to objectively 

analyze cervical auscultation signals. Table II lists the general feature categories explored in 

past research as well as which studies analyzed each. The first analysis method is the most 

simplistic and extracts the most basic features and conclusions from the time domain 

recordings. For example, researchers have matched certain visual landmarks of a raw 

cervical auscultation signal with some specific physiological events [19], [37], [48], [69], 

[103], determined the onset and duration of a swallow [34], [68], [69], [94], [95], [97], 

[101], [110], [113], [114], or simply counted the number of swallows that occurred over a 

certain period [40], [95], [102], [104], [107], [111]. The second analysis method also uses 

simple features of the signal, but uses the subjective opinion of a trained expert listening to 

the acoustic signal rather than the researcher’s visual analysis of the signal waveform. 

Again, features such as the duration of the swallow [27], [47] or the relation between 

physiological events and key landmarks of the swallowing signal [13], [14], [28], [58], [106] 

can be analysed, but with the authority of an expert clinician and a corresponding 

videofluoroscopy feed supporting the conclusions. It is important to note, however, that 

these landmarks are not distinct waveforms directly linked to the underlying physiology, but 

rather are weak correlations such as the duration of certain acoustic “bursts” in the 

swallowing signal [27] or a correlation between swallowing vibration magnitude and 

laryngeal elevation [58]. Figure 4 demonstrates this interaction between videofluoroscopic 

recordings and physiological changes in the patient. This technique has also been used to 

Dudik et al. Page 10

IEEE Trans Hum Mach Syst. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigate the sensitivity of a bedside dysphagia screen when compared to standard 

techniques such as videofluoroscopy [91], [92].

The third method of analysis involves characterizing the swallowing signal through a 

number of calculated statistical features. The exact features chosen are somewhat subjective 

and vary greatly depending on the background of the chosen researcher and what they are 

investigating, since no one has yet determined the “key features” of a swallow. In the time 

domain, it is common to investigate the overall duration of the swallow [17], [31], [43], 

[45], [46], [49], [61], [63], [65], [86], [111], [122], the timing of the different phases of 

deglutition such as the duration of a pharyngeal delay [14], [63], [109], the magnitude of the 

recorded signal [16], [18], [43], [45], [47], [51], [53], [60], [61], [63], [65], [67], [70], [84], 

[109], and the statistical moments of the signal such as variance or kurtosis [15], [43], [49], 

[51], [61], [65], [84], [86], [93], [119], [122]. Many experiments also looked at various 

frequency domain features of the signal, such as the peak frequency, average power, or other 

moments, by either visual inspection of the spectrogram or via the fast Fourier transform 

[13], [17], [18], [31], [35], [39], [43], [44], [46], [49], [51], [53], [54], [60], [61], [63], [79], 

[84], [86], [94], [96], [101], [106], [112], [114], [122]. Figure 5 shows both a swallowing 

and a breath sound as time domain and spectrogram representations. It demonstrates how 

swallowing sounds are constructed of many different underlying features and that 

swallowing sounds can be differentiated from other auscultation signals.

However, researchers have also investigated less commonly analyzed attributes with regards 

to cervical auscultation. Some have calculated the stationarity and normality of swallowing 

signals [51], [63], [65], [84], [119], [120], [123], while others have explored the various 

measures of complexity. For example, the Lempel-Ziv complexity, shown in equ. (8) 

estimates the randomness of a given signal and is a function of signal length n and number 

of unique sequences in the signal k [21], [49], [51], [65], [86], [122].

(8)

Alternatively the Shannon entropy, which is used as an estimate of the uncertainty of a 

random variable, can also be used to characterize a signal’s complexity and has been applied 

to cervical auscultation research [21], [49], [51], [65], [86], [122]. Shown in equation (9), 

Shannon entropy is a function of the probability mass function ρ of the given signal L.

(9)

The waveform fractal dimension, explained in equation (4), has also been used to estimate a 

signal’s complexity with some success [18], [31], [59], [63]. Once again, the chosen 

measure of complexity varies with the researcher as no one feature has been proven to be the 

most correct.
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Lastly, various studies have utilized transforms other than the standard Fourier transform. 

For example, a few studies have investigated mel-scale Fourier transforms as opposed to 

more traditional frequency representations [98], [99]. Using this method, the Fourier 

transform of the signal is calculated through the typical means. However, the log of the 

resulting data is then mapped onto a mel scale, a scale that plots data against its frequency in 

octaves rather than the raw frequency in Hertz, so as to better relate the data to human 

perception [98], [99]. There has also been some work done with wavelets in the time-

frequency domain, where the signal is decomposed into a sum of scaled and amplified 

pulses [21], [30], [39], [49], [51], [65], [77], [84], [86], [87], [89], [98], [99], [115], [122]. 

Similar to the Fourier transform, the signals are characterized by the amplitude of these 

components and the relative amount of energy in specific frequency bands can be calculated 

[30], [49], [122]. The hermite projection method, which decomposes the signal into hermite 

polynomials, shares clear similarities to the wavelet transform method, but does not have the 

same popularity in this field [79]. In addition, swallowing signals have been investigated 

using a phase space transformation [42], [62], [73], [121]. By applying the method of delays, 

it is possible to map the time domain swallowing signal onto a multi-dimensional phase 

portrait and generate a recurrence plot as shown in Figure 6 [42], [62], [73], [121]. This plot 

can be used to analyze the trends and periodic nature of a given signal as it tracks every time 

the phase portrait overlaps itself. Much like with Figure 5 it shows that swallowing signals 

consist of distinct features and can be distinguished from other auscultation signals even in 

this new domain. As with the other analysis methods it is then possible to extract a number 

of features to characterize the signal, such as the percent of the recurrence plot occupied by 

recurrence points, the percent of points that form lines parallel to the identity line, and the 

Shannon entropy, given by equation (9), of the length of those parallel lines [42], [73], 

[121]. These studies have also calculated the correlation dimension of the system, which 

estimates the minimum number of variables needed to model a process, by the following 

equation:

(10)

where C(r) is the number of pairs of points in the phase space that are no more than r 

distance apart [42], [73], [121]. The Lyapunov exponents, which characterize the 

convergence or divergence of trajectories in phase space, have also been investigated [62]. 

These features can be found by solving for λ in (11), which gives the distance between 

points in phase space as a function of the Lyapunov exponent (λ), the sampling period (δ), 

the current point (k), and the distance between an origin point and its nearest neighbour (d0).

(11)

The ultimate goal of research with cervical auscultation is to characterize specific 

characteristics of both healthy and dysphagic swallows and be able to differentiate between 

them. In order to do that, we must first determine what signal characteristics are important. 

Though work began with only the most simple and obvious time domain features, 

researchers have since greatly expanded their attempts to find those most important 
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characteristics. Table II demonstrates the field’s pursuit of this goal. Despite this multitude 

of data, the research is still in the early stages and there is not yet a consensus on what 

features warrant further investigation, let alone what features properly characterize a 

swallow.

VIII. Automated Classification of Abnormal Swallowing

There has been noticeably less work invested towards automatically differentiating normal 

and abnormal swallowing activity compared to the multitude of analysis and conditioning 

techniques developed. Table III organizes the existing research on this topic. This should not 

be taken as a sign of its lack of importance, however, as adding this objective assessment to 

current screening methods could ensure that a patient’s condition is identified before it 

becomes a medical issue. Several screening methods have been developed and published, 

producing relatively good combinations of sensitivity and negative predictive value in 

predicting aspiration without the use of auscultation or other instruments [23]–[26], [124]–

[126]. However, adding an objective dimension to the somewhat subjective judgements 

produced in the traditional non-instrumented dysphagia screening still offers potential 

improvements.

As demonstrated, the techniques used to process and analyze specific swallowing-related 

signals are not well defined. No one group has conclusively determined the acoustic and 

vibratory signal correlates of a ‘normal’ swallow. Furthermore, it is only in the last decade 

that researchers have investigated dysphagia by way of cervical auscultation in any 

systematic fashion. Many researchers have relied on the testimony of clinical experts and 

then have drawn conclusions about their chosen analysis techniques rather than objectively 

comparing features to a known standard. One objective method of automatically identifying 

data in this field involves linear classifiers. The first subcategory of linear classifiers 

includes those that estimate the conditional density function of the classes. In summary, a 

linear classifier uses a training set of data that has already been classified as containing safe 

or unsafe swallows by a clinical expert in order to estimate the values of various statistical 

features, as described in the previous section, of the given class. New data is then 

categorized based on the probability of each feature belonging to each potential class. The 

exact method of calculating these probabilities varies and researchers have applied both 

linear discriminant analysis [31], [51], [61], [84], [87] and Bayesian classifier techniques 

[85], [89], [115] to cervical auscultation data. The second type of linear classifier is the 

discriminative model, which includes the support vector machine [51], [98], [99], k-nearest 

neighbours classification [84], and fuzzy means classification [44], [96], [111]. These 

methods attempt to identify clusters of features and use them to separate a given data set into 

distinct classes. For example, fuzzy means classification attempts to minimize the following 

cost function

(12)
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in order to maximize class separation. Here, Xj are the features of the given data point, k is 

the number of clusters, m is the fuzziness index, p(Xj) is the degree to which the data point 

belongs to a cluster, and Vi are the cluster centres. Data points with known labels are 

assigned to each class in order to minimize the number of data points that are classified 

incorrectly. The class boundaries are then defined and use to classify new, unlabelled data 

points. Other discriminant analysis techniques have different cost functions, but operate on 

similar concepts.

Finally, the chief non-linear method of classification used with cervical auscultation is the 

artificial neural network. Similar to the linear techniques, a number of features are calculated 

from the data. However, rather than minimizing a cost function or estimating probabilities 

manually, these features are fed into a web of “neurons” which weighs the inputs and sorts 

the signal into a class. The relationships between the inputs and outputs of each node was 

determined through iterative techniques using a training set of data of known classification 

while the number and arrangement of nodes is determined by the researcher. Several 

researchers have applied this method to cervical auscultation signals with varying levels of 

success [53], [60], [77], [84], [109], [121], [123].

In summary, the classification of normal and abnormal swallows with cervical auscultation 

is a very new area of research. Those few that have investigated the issue to any significant 

extent have focused on linear classification techniques such as linear discriminant analysis 

or k-means clustering. However, a few researchers have applied non-linear neural 

networking techniques to these signals and have shown their potential for this field. Table 

(III) categorizes the various contributions made in this regard.

IX. Conclusion and Future Work

As outlined, this paper summarized the signal processing techniques used in cervical 

auscultation research. It provided a brief summary of how the signals in question are 

obtained and then described the many different ways those signals are filtered, 

characterized, and analysed. Though much research in the past only used the most basic 

methods, such as applying a bandpass filter to the data then looking at simple time domain 

features, there have been a number advancements in the field. Recently more complex 

algorithms, such as wavelet denoising or cluster-based segmentation, have been used to 

condition these signals and improve analysis. Furthermore, researchers have investigated 

alternative signal features in the time domain as well as the frequency, time-frequency, and 

phase space domains in an attempt to better characterize normal and abnormal swallows. 

Lastly, several different methods of linear and non-linear classification have been applied to 

swallowing signals in order to differentiate these two conditions. However, a consensus on 

what features are most important has not been reached and progress towards developing 

classification methods has slowed as a result. Nonetheless, the addition of objective methods 

of data analysis has enhanced the diagnostic process in many other domains and it remains 

an attractive goal in the screening of dysphagia. Given that patients admitted to a hospital 

with a stroke have a three-fold increase in the likelihood of dying to pneumonia [127], 

efforts to more accurately and quickly identify the risk of dysphagia-related pneumonia 

deserve ongoing research investment.
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There are a number of different avenues that this field could investigate in the future. First, 

and perhaps most obvious, would be to create a valid and definitive list of clinically 

important swallowing features and methods to differentiate between their characteristics in 

healthy and pathological states. While many features have been investigated, their abilities 

to differentiate normal and abnormal swallows have not always been made clear. Likewise, 

there is also much room for improvement of the classification schemes used for cervical 

auscultation. Rather than using exclusively 2-class classifiers, it may be viable and useful to 

investigate methods that utilize a greater number of classes. In addition to the standard 

“normal” and “abnormal” classes, it may be possible to distinguish the signals caused by 

non-swallowing events that co-occur with swallowing in the aerodigestive tract, such as 

breathing, vocalizations, and other sources of noise. By identifying these artifacts and other 

unwanted events it may be easier to differentiate normal and abnormal swallows. It would 

also be prudent to investigate non-linear classifiers in greater detail should the assumption of 

linear separator prove too inaccurate. Furthermore, past research has preferred to analyze the 

signal of an entire swallow with only some attempts to link specific physiological events 

with various signal characteristics. Designing filtering techniques to isolate signal 

components caused by the upper esophageal sphincter opening, the airway closing, or hyoid 

and laryngeal displacement, for example, could be of great benefit in the treatment of 

biomechanical swallowing impairments. Not only would it be possible to detect some 

abnormal deglutitive events, but it would also be possible describe the abnormalities. 

Finally, many past studies have focused on recording and analyzing frequency components 

within the range of human hearing, often times attempting to mimic the stethoscope bedside 

assessment. Microphones and accelerometers, however, do not have the same frequency 

sensitivities as the human ear. In the future it could be beneficial to concentrate research on 

the low end of the frequency spectrum (1–50 Hz) to determine if the components that lie 

outside the human audible range provide any useful information about swallowing activity. 

While this is not an exhaustive list, it does demonstrate several key areas in the field that 

should be addressed in the future.
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Fig. 1. 
A single swallow simultaneously recorded with both a microphone and dual axis 

accelerometer [21]. One can see obvious differences between sound and vibratory signals as 

well as different vibration directions.

(a) Time domain recording. Top figure: Microphone, Middle figure: Anterior-Posterior 

direction of the accelerometer, Bottom figure: Superior-Inferior direction of the 

accelerometer. This figure has been previously published by BioMed Central in [21].

(b) Corresponding power spectral density estimates of (1a)
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Fig. 2. 
Recording locations originally tested in [16]. Location 3 is directly over the thyroid 

cartilage, location 4 is directly over the cricoid cartilage, and location 6 is near the 

suprasternal notch. Locations 4, 5, 10, and 11 were declared to be ideal. The figure has been 

reproduced from the original work [16] with kind permission of Springer Science+Business 

Media.
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Fig. 3. 
Effects of applying signal processing techniques to swallowing accelerometry. Note the 

increased signal to noise ratio and elimination of low frequency artifacts.

(a) Raw output from the accelerometer recording system detailed in [21]. One saliva 

swallow is presented.

(b) Accelerometer recording in 3a after undergoing conditioning procedures detailed in [21].
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Fig. 4. 
Diagram depicting links between cervical auscultation and the underlying physiology that is 

used by some clinicians in bedside analysis [48]. The figure has been reproduced from the 

original work [48] with kind permission of Springer Science+Business Media.

Dudik et al. Page 27

IEEE Trans Hum Mach Syst. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The A) time domain and B) spectrogram representation of a swallowing sound (solid line) 

and subsequent breath (dashed line) [44]. Note the wide selection of frequency components 

that form the swallowing signal as well as how it compares to a non-swallowing signal. The 

figure has been reproduced from the original work [44] with kind permission of Springer 

Science+Business Media.
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Fig. 6. 
Typical recurrence plot for A) swallowing accelerometry signals recorded from the 

suprasternal notch with an identical plot of B) breath sounds for comparison. The figure has 

been reprinted with permission from the original Elsevier source [42].
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TABLE III

Summary of Feature Classification Methods

Linear Non-linear

Conditional Density Estimates Discriminative Model Neural Networks

pre-2000 [111] [53], [109]

2000–2010 [31], [61], [115] [98] [60], [77], [121], [123]

2011–2013 [51], [84], [85], [87], [89] [44], [51], [84], [96], [99] [84]
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