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Preface

The past two decades have seen extraordinary advances in our understanding of the role of
the pulmonary epithelium in airway health and disease. The traditional view of the epithelium
as predominantly a physical barrier that also plays a role in ion and water transport has
been supplanted by one in which the epithelium is now also considered to be a central
regulator of airway inflammation, structure and function. In light of the dramatic changes
in our awareness of the complexity of epithelial cell functions, it seemed particularly timely
to produce a book to comprehensively address our current understanding of epithelial cell
biology. In particular, I wished to focus not only on the epithelium as a regulator of normal
airway function, but also to highlight the important roles of the epithelium in host defense,
and the contributions of aberrant epithelial biology to the pathogenesis of inflammatory
airway diseases.

The first two chapters of this volume are designed to provide an update on the basic
structure of the epithelium, including information on the cell types that comprise the epithe-
lium at different levels of the airway, and on the capacity of specific cell types to serve as
progenitor cells for new growth. In addition, the remarkable recent increases in our under-
standing of the molecular components of the structures that are critical for the cell-cell, and
cell-matrix, adhesion necessary to maintain epithelial structure are discussed, along with the
complex roles of epithelial adhesion molecules in regulating not only epithelial function but
also the interactions of the epithelium with other cell types and pathogens. The subsequent
two chapters focus on the role of the epithelium as a target for damage by a variety of
agents, and on the process of epithelial repair. Fragility of the epithelium is a hallmark of
asthma, and there is growing recognition that a chronic damage/repair cycle may play a
role in the pathogenesis of this disease. Although ion transport has long been recognized
as a major function of the epithelium, our understanding of the complexity and regulation
of epithelial ion transport, and of the consequences of dysregulation of these events, has
improved considerably in recent years, and our current knowledge is detailed in Chapter 5.

Perhaps no facet of our awareness of epithelial cell function has grown as rapidly as our
understanding of the role of the epithelium in host defense, the focus of the next block
of chapters. As may be expected from its location at the airway surface, the epithelium
plays a critical role in protection of the host from inspired pathogens and irritants. In the
larger airways, the tightly regulated process of mucociliary clearance provides the initial
defense to prevent pathogens from contacting the epithelial surface, and defects in ciliary
beat, or abnormal mucus composition, underlie several airway diseases that are characterized
by increased susceptibility to repeated infection. In the distal airways, where mucociliary
clearance is absent, surfactant plays a critical role in reducing surface tension at the airway
surface. Of equal importance, however, is the role of surfactant in host defense. Not only
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does it coat particulates and microbes, facilitating clearance via cough, but it is now clear
that several of the protein components of surfactant have broad ranging direct antimicrobial
actions. If microbes can evade these initial defenses and come into contact with the epithe-
lium, they are detected by a range of recognition molecules. These include specific receptors
as well as broad-ranging “pattern recognition molecules”. Depending upon the specific nature
of the ligand to be recognized, these molecules can be intracellular or expressed on the cell
surface. Once microbial pattern recognition or specific receptor engagement occurs, epithe-
lial cells respond by generating a wide range of defense molecules. These include direct
antimicrobials, as well as molecules that serve to recruit and activate inflammatory cells that
contribute to host defense. Finally, in this section, a major area of new investigation is the
ability of the epithelium to play a major role in immunoregulation, in particular to provide
an important link between innate and specific immunity.

The past decade or so also has seen marked improvements in our understanding both
of the interactions of specific inhaled stimuli with the epithelium, and of the consequences
of such interactions on airway function. The next set of chapters, therefore, deal with the
interaction of four major classes of inhaled stimuli that affect epithelial function. Respiratory
viruses not only cause upper airway diseases but also play a major role in triggering
exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Such effects
are initiated via interactions with the epithelium. Similarly, epithelial responses to bacteria
play a major pathogenic role in diseases from pneumonia, to cystic fibrosis to COPD. In
our modern environment, pollutants are major exacerbators of a range of airway diseases.
Finally, while the interactions of allergens with cells such as mast cells, basophils and
lymphocytes obviously play a major role in allergic diseases, a growing body of literature
demonstrates that interactions of allergens, particularly those with endogenous proteolytic
activity, with the epithelium not only contribute to direct inflammatory effects but also play
a critical role in permitting access of allergens to target cells in the underlying airway tissue.

There is now no doubt that the epithelial cell plays a major role in regulating the inflam-
matory and structural status of the airway. The epithelium has wide ranging synthetic and
metabolic capacities. It can maintain normal airway status via its ability to inhibit or degrade
a range of proinflammatory molecules but, upon repeated exposure to stimuli, can also
generate a wide range of mediators that can contribute to, and exacerbate, chronic airway
inflammation. Recurrent epithelial damage and repair can also cause repeated interactions
between the epithelium and other structural cells, such as fibroblasts/myofibroblasts, leading
to chronic reactivation of the so-called “epithelial mesenchymal trophic unit”. This can
lead to marked structural changes in the airway, such as the hallmark changes in asthma
collectively referred to as airway remodeling.

The final set of chapters deals with the interactions of inhaled medications with the
epithelium. Given the wide ranging properties discussed above, and the alterations of epithe-
lial function in airway diseases, several of the beneficial actions of inhaled medications,
including glucocorticoids, �2-adrenergic agonists and muscarinic receptor antagonists, in
diseases such as asthma and COPD may well be mediated via alterations of epithelial cell
function. Last, but not least, there is growing interest in inhaled delivery of drugs, not only
as a means to exert local effects in the lung, but also as a means of systemic delivery
for drugs, particularly those that cannot survive oral delivery. Preserving the molecular
integrity of a formulation and delivering it to the appropriate target in the lung are critical for
effective therapy, and some of the recent advances in this regard are discussed in the final
chapter.
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1
Pulmonary Epithelium: Cell Types
and Functions
Mary Mann-Jong Chang, Laura Shih and Reen Wu
Center for Comparative Respiratory Biology and Medicine,
University of California at Davis,
California, USA

1.1 Introduction

The pulmonary airway tree branches in a dichotomous fashion, with repeated bifurcation
stemming from the trachea. The conducting airway include the regions that do not undergo
gas exchange, beginning with the trachea, which divides into two bronchi. These primary
airway then branch into a series of intra-pulmonary bronchial and bronchiolar airway. Both
the diameter and the length of each airway branch decrease progressively from the trachea to
the periphery, where the terminal bronchioles are the most distal conducting airway (Magno
and Fishman, 1982). In rodents, these bronchioles lead directly to alveolar ducts, whereas
in humans and monkeys, a region of transitional respiratory bronchioles with characteristics
of both bronchioles and alveoli exists between the bronchioles and the alveoli of the gas
exchange area (Tyler, 1983).

The entire pulmonary tree is lined by a continuous layer of epithelial cells. The relative
distribution and abundance of the epithelial cell types vary significantly, not only between
species, but also within the various airway regions of each species. The pulmonary epithelium
is important for maintaining the normal functions of the respiratory system, which include
acting as a barrier to various insults (Widdicombe, 1987b); facilitating mucociliary clearance
(Sleigh et al., 1988); secreting substances such as surfactant proteins, mucus, and antimicro-
bial peptides for airway surface protection (Widdicombe, 1987a); repairing and regenerating
epithelial cells to restore normal airway function (Evans et al., 1976); and modulating the
response of other airway components, such as airway smooth muscle cells and inflammatory
cells (Flavahan et al., 1985; Holtzman et al., 1983, Breeze and Wheeldon, 1977). As many
as 49 cell types have been recognized (Breeze and Wheeldon, 1977). While many of these
are intermediate or differentiating cells, at least 10 to 12 morphologically and functionally
unique epithelial cell types can be identified throughout the pulmonary structure (Breeze and
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2 CH01 PULMONARY EPITHELIUM: CELL TYPES AND FUNCTIONS

Wheeldon, 1977). They are: long and small ciliated, basal, non-ciliated secretory (goblet,
Clara, surface serous, submucosal serous, and submucosal mucous), pulmonary neuroen-
docrine (PNE), brush, and alveolar type I and type II cell types (Figure 1.1). It is important
to differentiate between these cell types, as well as to highlight the often significant species
differences that may limit the experimental comparisons between various animal models
and human subjects. In this chapter, we will attempt to address both of these issues while
focusing on a few main mammalian systems – human, monkey, rabbit, rat, and mouse.

Trachea/
Bronchus

Bronchioles

Alveolus

MGC

SGC

SMGs

Alveolar sac

AII

Proximal

Distal

Ciliated

AI

GC

Clara

Basal

PNE

Brush

Figure 1.1 Three regions of pulmonary epithelia: cartilaginous proximal airway (trachea/bronchi
and submucosal glands), non-cartilaginous distal bronchioles, and gas exchange alveoli. MGC: mucous
gland cells; SGC: serous gland cells; SMGs: submucosal glands; GC: goblet cells; PNE: pulmonary
neuroendocrine; AI: alveolar type I cells; AII: alveolar type II cells

The mature mammalian airway can be divided by function and structure into three regions:
(1) the cartilaginous proximal airway, comprising the trachea, bronchi and submucosal glands;
(2) the non-cartilaginous distal bronchioles, comprising the bronchioles, terminal bronchi-
oles, transitional bronchioles, and respiratory bronchioles; and (3) the gas exchange region,
comprising the alveolar ducts and alveolar sacs. For each region, we will discuss its epithelial
makeup, the characteristic features and physiological functions of each cell type present, any
known variations between species, and the role of stem and progenitor cell populations.

1.2 Epithelial cell types and functions in the cartilaginous
proximal airway region

The epithelial cells of the proximal airway can be broadly separated into the surface epithelial
cells of the tracheal and bronchial regions and the cells of the submucosal glands. We will
first address the cell types of the tracheal and bronchial epithelium.
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The epithelial cells lining the luminal surface of the proximal airway can be further
grouped into ciliated cells, non-ciliated secretory cells, and basal cells. A characteristic
pseudostratified two-layered epithelium persists throughout the major bronchi, while a multi-
layered structure is seen in the more distal, narrow bronchi, which have fewer cartilage rings
and more submucosal glands. Ciliated cells and secretory cells attach to the basal lamina
via desmosome adhesions and to one another via tight junctions at the luminal surface. The
underlying basal cells lie in contact with most of the basal membrane (Breeze and Wheeldon,
1977; Jeffery, 1983). Pulmonary neuroendocrine cells (PNECs) are found as single cells or
in clusters throughout the proximal airway. In small animals, they are more prominent at
the laryngotracheal junction and the bifurcations of intrapulmonary bronchi (Tateishi, 1973),
while in humans, the PNECs are more frequently found in the smaller conducting airway
(Johnson et al., 1982). Tracheas and bronchi from various animals reveal species-specific
epithelial cell linings (Jeffery, 1983; Plopper et al., 1983c), with the most striking variations
in the distribution of secretory cells (Plopper et al., 1983d).

Unique to the proximal cartilaginous airway is the existence of submucosal glands (SMGs).
These glands are contiguous with the surface epithelium and are characterized by a variable
proportion of ciliated cells, mucous cells and serous cells (De Poitiers et al., 1980). In
contrast to human and monkey airway, where submucosal glands are the major secretory
structure of the trachea and bronchi, SMGs in rats and mice are very scarce and limited to
the upper trachea (Plopper et al., 1986; Widdicombe et al., 2001).

1.2.1 Surface epithelial cell types and functions in tracheal
and bronchial regions

Ciliated cells

Ciliated cells are covered with cilia and are roughly columnar in shape, with little variation
in morphological appearance between species. Ciliated cells are attached to the basal lamina
via desmosomes and extend to the luminal surface, where they are interconnected via tight
junctions (Rhodin, 1966). The cytoplasm of these cells is relatively electron-lucent due
to their lack of secretory products or mucus granules. Many mitochondria are found in
the apical region of the cell, just below the row of basal bodies to which the cilia are
attached. Approximately 200–300 cilia are found on the luminal surface of each cell, with
approximately half as many microvilli and fine cytoplasmic processes interspersed among
them (Watson and Brinkman, 1964). In humans, the cilia are 0.25 micrometres in diameter
and range from 6 micrometres in length in the proximal airway to 3.6 micrometres in
seventh generation airway (Serafini and Michaelson, 1977). Their structure is comparable
to that of other ciliated epithelia in plants and animals. Each cilium is anchored to the
cell cytoplasm by a basal body through an axoneme. The axoneme is composed of nine
microtubule doublets that formed an outer ring around a central pair of microtubules, with
nexin links and radial spokes binding them together (see Chapter 6). Along each outer
microtubule there are extrusions referred to as outer dynein arms (odas) and inner dynein
arms (idas), both members of the dynein ATPase superfamily. Odas control the cilia beating
frequency through a cAMP-dependent phosphorylation mechanism (Satir, 1999), while idas
control the form of cilia beating (Brokaw and Kamiya, 1987; Friedmann and Bird, 1971).
Mucociliary clearance is the major function of ciliated cells. Cilia are bathed in the watery
sol phase of airway secretions and extend into the gel phase, where specialized barb-like
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structures on the tips of the cilia alternatively grab and release the mucus during the active
and relaxation strokes of cilia beating, thereby propelling the mucus with a rowing-like
action (Jeffery and Reid, 1975).

Proliferation potential Traditionally, ciliated epithelial cells were considered to be termi-
nally differentiated cells that did not divide, presumably originating from either basal or
secretory cells (Inayama et al., 1989; Johnson and Hubbs, 1990). Recent reports, however,
have suggested the involvement of ciliated cells in the restoration and regeneration of bron-
chiolar epithelium (Lawson et al., 2002; Park et al., 2006b). In the naphthalene injury model,
Park et al. (2006b) demonstrated that ciliated cells sequentially undergo morphological
transitions from squamous to cuboidal to columnar forms as the bronchiolar epithelium is
restored, showing remarkable plasticity and differentiation potential. Lawson et al. (2002)
also concluded that ciliated cells play a critical role in the repair of distal airway injury.
Tyner et al. (2006) recently demonstrated the transdifferentiation of ciliated cells to mucous
(goblet) cell metaplasia in allergic mouse airway. This transdifferentiation depends on IL-13
expression and a persistent EGFR signalling. This result further supports the theory of plas-
ticity of ciliated airway epithelial cells. Further study is needed with isolated ciliated cells
to reaffirm such a potential.

Basal cells

The ovoid basal cells form a monolayer along the basement membrane and are responsible
for the pseudostratified appearance of the epithelium. Basal cells have large, indented nuclei
that fill most of the cell. The cytoplasm contains many ribosomes, a small Golgi zone, a
few mitochondria glycogen granules, a short profile of rough surface endoplasmic reticulum,
and occasionally lysozymes. Basal cells are connected to the basement membrane through
hemidesmosomes and provide the foundation for the attachment of ciliated and non-ciliated
columnar cells to the basal lamina (Frasca et al., 1968; Breeze and Wheeldon, 1977; Rhodin,
1966). Due to their centrally located position, basal cells not only play a role in the attachment
of columnar epithelium to the basement membrane, but also have the potential to function as
a regulator of inflammatory response, transepithelial water movement, and oxidant defence
(Evans et al., 2001).

Proliferation and stem cell potential One important feature of basal cells is their capacity
to repopulate all the major epithelial cell types found in the trachea, including basal, ciliated,
goblet and granular secretory cells (Hong et al., 2004b, 2004a; Inayama et al., 1988). Many
studies have demonstrated the potential of basal cells to act in a stem cell or transient
amplifying cell capacity in the upper airway. A study of 50 human bronchial biopsies with
immunohistochemical staining against the proliferation agent Ki-67 revealed a population of
cells that were positive for Clara cell secretory protein (CCSP) but showed no other Clara cell-
specific features. This population turned out to be Ki-67 antibody-negative, but the CCSP-
negative basal cells were candidate stem cells of the bronchial specimen (Barth et al., 2000).
In another study of human trachea and bronchi using the same immunohistochemical staining,
basal cells and parabasal cells composed large percentages – 51 and 33 per cent, respectively –
of the proliferating compartment (Boers et al., 1998). Parabasal cells are located just above
the basal cells and considered to be intermediate cells. The high representation of basal and
parabasal cells within the proliferation compartment of normal human conducting-airway
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epithelium supports the theory that cells at or near the basement membrane are likely to be
the progenitor cells or transient amplifying cells of the airway surface (Hajj et al., 2007). In
the mouse trachea, a subset of cells with high keratin 5 (K5) promoter activity residing in the
submucosal gland were found to be bromodeoxyuridine label-retaining cells (LRC), which
are regarded as stem cells due to their long-lasting proliferation capacity (Borthwick et al.,
2001). Hong et al. (2004a) demonstrated that CCSP-expressing (CE) cells play a critical
role in the renewal of bronchiolar airway. They suggested, however, that in the absence
of Clara cells, basal cells may serve as secondary progenitor cells in the upper airway.
Using chemically-injured mice with Clara cell ablation, they found that the cytokeratin-14
expressing basal cells were capable of restoring normal bronchial epithelium and suggested
that basal cells may serve as an alternative multipotent progenitor cell in the bronchial airway
(Hong et al., 2004b). Debate about the role of basal cells as the primary progenitors in
the upper airway continues, especially since several animal injury models have shown that
secretory cells, rather than basal cells, exhibit hyperproliferation after mechanical or toxic
gas exposure (Johnson et al., 1990; Evans et al., 1989, Basbaum and Jany, 1990).

Non-ciliated secretory cells

The most striking interspecies difference in tracheobronchial epithelial cell types is in the
distribution of non-ciliated secretory cells. In humans, ciliated cells predominate and are
interspersed with mucus-secreting (goblet) cells, with approximately five ciliated cells for
every goblet cell (Rhodin, 1966; Frasca et al., 1968). The goblet cells become less frequent in
the bronchioles, as the airway becomes smaller and ciliated and Clara cells prevail (Lumsden
et al., 1984). The major secretory cell type in sheep, monkeys, and cats is either the mucous
goblet cell or the small mucous granule cell (Mariassy et al., 1988a; Plopper et al., 1989).
In rats, the predominant secretory cell is the serous cell, whereas in rabbits and mice, the
Clara cell is the only type of secretory cell in the entire conducting airway (Plopper et al.,
1983a). In addition to the secretory cells of the surface epithelia, many major secretory cell
types are found in the submucosal glands and will be discussed separately.

Goblet cells

Goblet cells have a relatively dense, electron-opaque cytoplasm due to the numerous mucous
granules located in the apical region of the cytoplasm. The nucleus is generally compressed
at the cell’s basal side. The mucous granules give the cell its typical goblet shape, with a
wide, enlarged apical portion and a narrow tapered basal cytoplasm. The granules in human
goblet cells are electron-lucent, approximately 800 nanometres in diameter, and usually
contain mucins that are acidic due to the presence of sulfate or sialic acid (Lamb and Reid,
1969; Spicer et al., 1971, Mariassy et al., 1988b).

Under healthy conditions, goblet cells, along with submucosal glands, secrete high molec-
ular weight mucous glycoproteins that allow the surface fluid to properly trap and remove
particles, thus protecting the epithelial surface. Proper regulation of mucin secretion at the
airway surface is crucial to normal functioning, as overproduction can clog the airway and
underproduction can impair mucociliary clearance.

Goblet (mucous) cell metaplasia in lung disease Goblet cell hyperplasia or metaplasia is
a common phenomenon associated with airway inflammatory diseases, including asthma,
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COPD (chronic obstructive pulmonary disease), and chronic bronchitis (Vestbo et al., 1996;
Aikawa et al., 1992; Fahy, 2002; Groneberg et al., 2002). Goblet (or mucous) cell hyper-
plasia usually refers to an increase in goblet cells in the airway regions where goblet cells
exist normally, such as the proximal airway of humans. Goblet (mucous) cell metaplasia,
on the other hand, refers to an increase in goblet (mucous) cells in airway regions that
normally contain few or no goblet cells, such as in mouse or rat airway. Both cases result
in increased mucin secretion at the airway surface, thus compromising airway functions.
Adler and colleagues revealed that myristoylated alanine-rich C kinase (MARCKS) is a
key molecule regulating mucin exocytosis, a process also involving cooperative interaction
between protein kinase C (PKC) and PKG (Park et al., 2006a; Singer et al., 2004). The use of
a therapeutic agent developed in conjunction with this study may be a means of controlling
mucus secretion. Using transgenic mice and an OVA-sensitized murine model, investigators
have linked Th2 cytokine-mediated inflammation to goblet cell metaplasia based on studies
involving IL-4, IL-9, and IL-13 (Temann et al., 1997; Kuperman et al., 2002; Vogel, 1998;
Wills-Karp et al., 1998). Among these Th2 cytokines, IL-13 was shown to be the most
potent. Studies of mice with intratracheal IL-13 instillation consistently showed increased
goblet cells in the mouse airway. Additionally, goblet cell metaplasia induced by CD4 T cells
and IL-9 was shown to be stimulated through a common IL-13 mediated pathway (Whittaker
et al., 2002). Despite these findings, evidence to support IL-13 as the direct mediator of the
expression of gel-forming mucin by goblet (mucous) cells is still lacking. In vivo studies
may be complicated by the presence of cytokine networks and the inflammatory response
upon the administration of cytokines, while in vitro studies may provide a more direct
measurement of the effects of cytokines on airway epithelial cell types. Chen et al. (2003)
have shown that IL-13 and various Th2 cytokines have no stimulatory effects on either
MUC5AC or MUC5B expression in well-differentiated human airway epithelial cultures,
while IL-6 and IL-17 can directly stimulate mucin gene expression. This data suggests that
the transformation of airway epithelial cells into goblet cells may be a multi-step process
that is controlled by different sets of cytokines.

Clara cells

For large animals such as sheep, monkeys and humans, Clara cells are concentrated in the
distal conducting airway and bronchioles, while in hamsters, rabbits, and mice, the predom-
inant non-ciliated cells throughout the entire conducting airway have the same ultrastructure
features as Clara cells (Plopper et al., 1987; Matulionis, 1972, Jeffery and Reid, 1975).
A detailed discussion of Clara cells will be presented in section 1.3, ‘Epithelial cell types
and functions of the non-cartilaginous distal bronchioles’.

Surface serous cells

Serous cells on the surface airway epithelium morphologically resemble the serous cell type
of the submucosal gland. They are the predominant secretory cells in rat surface epithelium
(Jeffery and Reid, 1975) and have also been found sporadically in human small bronchi
and bronchioles (Jeffery, 1983). In contrast to goblet and mucous cells, they have discrete
electron-dense granules in the apical cytoplasm that are approximately 600 nanometres in
diameter and contain neutral mucin. A detailed description of serous cell function is presented
in section 1.2.2 ‘Epithelial cell types and functions in the submucosal glands’.
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Pulmonary neuroendocrine cells (PNECs)

PNECs are found throughout the conducting airway of most species. They exist either indi-
vidually or in clusters as neuroendocrine bodies (NEBs). In the rabbit, the NEB is a large
intraepithelial organoid that is composed almost exclusively of PNECs. In other species,
such as the rat, PNECs in the NEB are interspersed with Clara-like cells (Scheuermann,
1987; Sorokin et al., 1989; Sorokin and Hoyt, 1982). The number of PNECs and NEBs
increase from the main bronchi to the terminal bronchioles, with denser populations found
around bifurcating regions, such as the bronchoalveolar portals and various airway branching
points (Hoyt et al., 1982a, 1982b). Mature PNECs are spindle-shaped, with their basal
surface facing the basement membrane and a thin apical process extending toward the
epithelial surface (Hage, 1980). The most prominent feature of these cells is the pres-
ence of abundant argyrophilic vesicles with granular cores concentrated at the base of the
cells (Hage, 1980; Capella et al., 1978). As a result, PNEC secretion is polarized and
directed toward adjacent cells or structures underlying the basement membrane (Hoyt et al.,
1982a). The secretory products of the granules vary between different species and have
been immunocytochemically identified as bioactive amines and peptides, including sero-
tonin, calcitonin, gastrin-releasing peptide (GRP), calcitonin gene-related peptide (CGRP),
chromogranin A, and cholecystokinin (Becker et al., 1980; Wharton et al., 1978; Sunday
et al., 1988; Cadieux et al., 1986; Sirois and Cadieux, 1986). The two best-characterized
peptides are GRP and the mammalian form of bombesin, CGRP. These peptides, which
exert direct mitogenic effects on epithelial cells and exhibit many growth factor-like prop-
erties, are thought to be involved in normal fetal lung development, including branching
morphogenesis (Li et al., 1994). Additionally, NEBs may play a role as hypoxia-sensitive
airway chemoreceptors (Lauweryns and Cokelaere, 1973; Lauweryns et al., 1983) and
are involved in regulating localized epithelial cell growth and regeneration (Reynolds
et al., 2000b).

Proliferation potential PNECs are generally believed to be terminally differentiated and
mitotically inert cells (Gosney, 1997). Sunday and his colleague (Sunday and Willett, 1992),
however, suggested that PNEC hyperplasia in the hamster model is a result of the differ-
entiation from proliferative stem cells or from immature PNECs. Others showed that repair
from airway injury is associated with PNEC hyperplasia and that proliferation contributes
to this hyperplastic response (Ito et al., 1994; Stevens et al., 1997). A study investigating
the role of PNEC-derived neuropeptides in lung development suggested that PNECs are
involved in the regulation of epithelial renewal (Pan et al., 2002). Further evidence for
this theory is found in the inverse relationship between the epithelial mitotic index at each
epithelial location and its distance from the closest NEB (Holt et al., 1990). Recently,
several studies have demonstrated that NEBs provide a microenvironment for progenitor
cells in the adult airway by showing that the NEB niche of normal and injured lungs
supports the maintenance of at least two epithelial cell variants – one with an interme-
diate phenotype between Clara and PNEC cells, and the other with a Clara cell variant
with little or no immuno-reactive CYP-2F2 protein (Reynolds et al., 2000b, 2000a). Further
studies using the same naphthalene injury model demonstrated that PNECs are not stem
or progenitor cells in the distal airway. Rather, they provide a niche that regulates the
expansion of the CCSP-expressing stem cell population in mouse distal airway (Hong
et al., 2001).
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Brush cells

Brush cells are named for the closely packed microvilli that protrude like a brush from
their luminal surface. Although they have been identified throughout the conducting airway
of many species, their presence is infrequent and has not been convincingly shown in
humans (Meyrick and Reid, 1968; Jeffery and Reid, 1975). While their function is not
well-defined, some speculated functions include roles in periciliary fluid absorption (Jeffery,
1987), chemoreception (Luciano et al., 1968) and ciliogenesis (Rhodin and Dalhamn, 1956).

1.2.2 Epithelial cell types and functions in the submucosal glands

Submucosal glands are found in the upper airway of higher mammals such as humans,
monkeys and sheep (Goco et al., 1963; Choi et al., 2000). They occur at a frequency of
approximately one gland per square millimetre in the trachea of healthy humans and are
abundant down to about the tenth generation bronchiole (Ballard et al., 1995). In small
animals such as hamsters, rats and mice, submucosal glands are infrequently expressed and
exist only in the uppermost portion of the trachea (Borthwick et al., 1999; Widdicombe
et al., 2001).

Each submucosal gland consists of multiple tubules that feed into a collecting duct, which
narrows into a ciliated duct that is continuous with the airway surface (Meyrick et al., 1969).
The tubules may be inter-connecting and are lined with mucous cells in their proximal regions
and serous cells in the distal acini (Meyrick et al., 1969). The secretory products of these
two cell types are essential for proper airway mucociliary clearance. In fact, malfunctioning
of serous and mucous cells may be the primary cause of many airway diseases, including
chronic bronchitis, asthma, and cystic fibrosis (Salinas et al., 2005; Rogers, 2004; Knowles
and Boucher, 2002).

Serous gland cells

Like surface serous cells, serous gland cells are pyramidal in shape, with electron-dense
secretory granules in the apical region and a basally-located nucleus. The mitochondria are
long and ovoid and are concentrated in the base of the cell, with a few found among the
secretory granules. While most of the rough endoplasmic reticulum is at the cell base, free
ribosomes are abundant throughout the cytoplasm. The Golgi apparatus is well-developed
and supranuclear, often with dilated lamellae and many associated vesicles. Multivesicular
bodies are also seen occasionally. Osmiophilic material is organized either into an irregularly
shaped body or an irregular dense region within an electron-dense secretory granule. A large
pale secretory granule containing focal condensations of osmiophilic material surrounded by
a membrane is found in the apical half of most serous cells (Meyrick and Reid, 1970). Serous
cells have been described as ‘immobilized neutrophils’ due to their role in the secretion
of water, electrolytes, and compounds with antimicrobial, anti-inflammatory, and antiox-
idant properties (Basbaum et al., 1990). Serous cells are the predominant sites of cystic
fibrosis transmembrane regulator (CFTR) expression in the human bronchus (Engelhardt
et al., 1992a). Located distal to mucous cells, they facilitate mucociliary transport by helping
remove the mucous glycoprotein produced by submucosal gland mucous cells and main-
taining the airway surface liquid (ASL) volume (Inglis et al., 1997). CFTR malfunction in
the serous cells can result in defective mucus clearance, which has been implicated as the
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primary cause of cystic fibrosis (CF) disease (Knowles and Boucher, 2002; Joo et al., 2002;
Yamaya et al., 1991).

Mucous gland cells

Like the surface goblet cells of the surface epithelium, mucous cells of the submucosal
gland are columnar in shape, with a basally-located nucleus. The rest of the cell is packed
with secretory granules of moderate electron density (Meyrick and Reid, 1970). The major
function of mucous cells is to secrete mucin in the form of the mucous glycoprotein MUC5B,
which is different from the MUC5AC produced by surface goblet cells (see Chapter 7).
Together, these glycoproteins make up the gel phase on the apical surface of airway epithe-
lial cells. As previously discussed in conjunction with the goblet cell, overproduction of
MUC5AC and MUC5B is a common phenomenon in asthma, COPD and chronic bronchitis
(Rogers, 2004, 2000; Rose et al., 2001).

Stem cell niche at or near submucosal glands Aside from playing a significant role in
airway diseases, the submucosal gland may also provide the microenvironment for a subset of
stem cells in the upper airway. Randel et al. discovered a high keratin-expressing subpopula-
tion of cells residing in the submucosal gland ducts of murine trachea that were co-localized
with label-retaining cells (LRCs). In mice 95 days post-injury, LRCs were localized to the
gland ducts in the upper trachea and to systematically arrayed foci in the lower trachea,
especially at the cartilage–intercartilage junction (Borthwick et al., 2001). This suggests
that the submucosal gland may provide a protective niche for stem cells (Engelhardt, 2001;
Borthwick et al., 2001).

1.3 Epithelial cell types and functions of the
non-cartilaginous distal bronchioles

In most small laboratory animals such as rats, hamsters and mice, the distal bronchioles
consist of several generations of non-alveolized bronchioles and a single, short alveolized
bronchiole that connects to the alveolar duct. The lining epithelium is composed of simple
cuboidal cells, with approximately equal numbers of ciliated cells and non-ciliated Clara
cells (Widdicombe and Pack, 1982; Plopper et al., 1983b). In higher mammals such as
humans and monkeys, however, there are several generations of both non-alveolized and
alveolized (respiratory) bronchioles (Castleman et al., 1975; Tyler, 1983). The non-alveolized
bronchioles are lined with ciliated cells and non-ciliated secretory cells, while the alveolized
bronchioles are scattered with alveolar type I and type II cells amongst simple cuboidal cells.

Clara cells

Although there are significant inter- and intra-species variations in their ultrastructural
characteristics, Clara cells are generally ovoid or columnar in shape, with a centrally-
located nucleus, prominent Golgi, and abundant organelles including agranular and granular
endoplasmic reticulum. Their most prominent features are the membrane-bound electron-
dense secretory granules. While the granules do not contain glycoprotein, Clara cells are
metabolically active. CC10 (or CCSP) is a secreted protein homologous to uteroglobin



10 CH01 PULMONARY EPITHELIUM: CELL TYPES AND FUNCTIONS

that may be important in regulating the inflammatory response and is used as a Clara cell
marker (Plopper et al., 1980c, 1980a, 1980b; Widdicombe and Pack, 1982; Singh et al.,
1990). The surfactant protein SP-B is another secretory product of Clara cells that may
be involved in host defence activity (Phelps and Floros, 1991). These cells also produce
proteins with inhibitory effects on proteases; one such example is the antileukoproteases
found one the surface of human airway (Simionescu and Simionescu, 1983; Yoneda and
Walzer, 1984). Furthermore, Clara cells have the capacity to metabolize xenobiotics through
their cytochrome p450 monooxygenase activity, a function that renders them susceptible to
injury by lipophilic compounds (Baron et al., 1988).

Stem cell niche at the bronchioalveolar region The most important property of Clara cells
is their ability to act as stem cells. Clara cells have long been considered to be progen-
itor cells for the terminal bronchioles (Evans et al., 1976, 1978). Repopulation studies of
specific epithelial cell types in vitro and in vivo suggested that basal cells and bronchiolar
Clara cells have stem and progenitor cell capabilities in the regeneration of the trachea,
bronchi, and bronchioles (Nettesheim et al., 1990). In the study of normal human lungs
obtained from autopsy, triple sequential histochemical staining was used to elucidate the
contribution of Clara cells to the proliferation compartment. Using MIB-1 as a proliferation
marker, anti-CC10 for the identification of Clara cells, and a PAS stain marker for goblet
cells, Clara cells were found to be absent in the proximal airway epithelium, while their
contribution to the proliferation compartment in the respiratory bronchioles was 44 per cent.
This demonstrated that Clara cells play an important role in the normal maintenance of
the human distal conducting airway epithelium (Boers et al., 1999). Recent studies using
naphthalene-injured mice have suggested that a subset of naphthalene-resistant Clara cells
in the bronchiolar epithelium acts as a stem cell population. In mice whose Clara cells were
ablated by naphthalene, a population of variant Clara cells that were cytochrome p450 2F2
negative and resided in discrete pools associated with neuroepithelial bodies (NEBs) were
found to exhibit multipotent differentiation and to regenerate the bronchiolar epithelium
(Reynolds et al., 2000a, 2000b). The associated neuroendocrine cells are thought to provide
a niche that regulates the expansion of Clara cell secretory protein (CCSP)-expressing cells
(Hong et al., 2001). In a study searching for cells contributing to the renewal of terminal
bronchioles after Clara cell depletion in mice, CCSP-expressing cells that were localized to
the bronchioalveolar duct junction (BADJ) were also identified as the predominant prolif-
erative population in initial terminal bronchiolar repair. These cells included a population
of label-retaining cells, characteristic of a stem cell population. Furthermore, immunohisto-
chemical co-localization studies involving CCSP and the NEB-specific marker, calcitonin
gene-related peptide, indicate that BADJ-associated CCSP-expressing stem cells function
independently of NEB microenvironments. These studies identify a BADJ-associated, NEB-
independent, CCSP-expressing stem cell population in terminal bronchioles and support the
theory that region-specific stem cell niches exist to maintain epithelial diversity after injury
(Giangreco et al., 2002). Identified at the bronchioalveolar duct junction, bronchioalveolar
stem cells (BASCs) retain characteristics of regional stem cells such as LRC accumulation,
self-renewal, and multipotency in clonal assays. BASCs are believed to maintain the Clara
cell and alveolar cell populations in the distal airway. Interestingly, Clara cells and alveolar
cells of the distal lung and their transformed counterparts give rise to adenocarcinoma. This
work also points to BASCs as the putative origin cells for this subtype of lung cancer (Kim
et al., 2005).
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1.4 Epithelial cell types and functions of the gas
exchange region

The main function of the pulmonary acini is to facilitate efficient gas exchange between blood
and air. The air–blood barrier is a three-layered structure consisting of capillary endothelium,
basement membrane, and a thin, membrane-like epithelium that allows diffusion of gases
while serving as a barrier against the leakage of solutions into the alveoli (Gehr et al.,
1978). This thin layer of epithelium is composed of large, flat alveolar type I cells that
cover 90 per cent of the alveolar surface, and cuboidal alveolar type II cells that cover the
remaining 10 per cent (Haies et al., 1981). Tight junctions form a gasket-like seal between
adjoining cells and help maintain their structural and functional polarity (Schneeberger and
Hamelin, 1984).

Alveolar type I cells

Alveolar type I cells are large, flat squamous cells with a relatively simple structure that
function mostly as a thin, gas-permeable membrane. Each cell has a small nucleus surrounded
by a few small mitochondria, an inconspicuous Golgi apparatus, and some cisternae of
endoplasmic reticulum with ribosomes (Low, 1952). There are also pinocytotic vesicles in
the peripheral region of the cytoplasm and at both the alveolar and interstitial surfaces of
the cells (Gil et al., 1981). The vesicles are thought to be involved in protein transportation
between cells and alveoli (Bignon et al., 1976; Schneeberger and Hamelin, 1984).

Proliferation potential Alveolar type I cells are sensitive to injury by various agents,
such as NO2 (Evans et al., 1975), ozone (Plopper et al., 1973), and bleomycin (Jones
and Reeve, 1978). If the damage is lethal, the cells detach, exposing denuded basement
membrane. Alveolar type I cells are considered to be terminally differentiated and cannot
divide; therefore, they must depend on the mitosis and differentiation of alveolar type II
cells for repopulation (Evans et al., 1975).

Alveolar type II cells

Alveolar type II cells are small and cuboidal in shape, and constitute approximately
15 per cent of the cells of the alveolar epithelium. They contain unique lamellar bodies and
various organelles, including mitochondria, endoplasmic reticulum, filaments, microtubules,
and pinocytic vesicles (Macklin, 1954; Crapo et al., 1982). The cells are structurally and
functionally polarized due to the existence of tight junctions at the lateral cell surface that
divide the cell into apical and basolateral domains. The apical membrane contains molecules
not found in the basolateral membrane, such as glycoprotein 330 (Chatelet et al., 1986),
alkaline phosphatase (Edelson et al., 1988), and special glycosylated molecules recognized
by lectin. The apical cell membrane also has numerous short microvilli, which are used to
identify type II cells (Wright et al., 1986). Secretion and endocytosis take place mostly in
the apical domain.

The most important function of alveolar type II cells is the synthesis and secretion of
surface-active materials, referred to as surfactants (see Chapter 8). Pulmonary surfactants
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are a complex mixture of proteins and phospholipids that lower surface tension at the
air–liquid interface and prevent the alveolar surface from collapsing (Wright and Dobbs,
1991; Dobbs, 1994). They consist predominantly of phospholipids that are rich in dipalmi-
toylphosphatidylcholine and phosphatidylglycerol synthesized by type II cells, along with
several unique proteins such as surfactant proteins SP-A, SP-B, SP-C and SP-D (Rooney
et al., 1994; Batenburg and Haagsman, 1998). The appropriate composition of pulmonary
surfactants is crucial to normal functioning. For example, a deficiency of dipalmitoylphos-
phatidylcholine at the alveolar surface has been associated with infant respiratory distress
syndrome (RDS). Prior to secretion, the surfactants are stored in lamellar bodies as densely
packed lamellae and are secreted into the alveolar lumen by regulated exocytosis. In this
process, lamellar bodies are propelled to the apex, where they fuse with the membrane
and release their contents into the alveolus (Ryan et al., 1975). After the surfactant lipids
are released, the spheroid lamellar bodies reorganize into an expanded membrane lattice
called ‘tubular myelin’ (Williams and Mason, 1977). Alveolar type II cells can also endo-
cytose surfactant from the alveolar space via small pinocytic membrane-bound vesicles
that form multivesicular bodies involved in endocytic transportation. The materials taken
up by this pathway are largely recycled to lamellar bodies (Williams, 1984; Hallman
and Teramo, 1981; Chander et al., 1987), with remaining materials degraded (Chander
et al., 1987).

Proliferation potential and stem cell niche in alveoli Alveolar type II cells are believed to
be the only stem cell of the alveolar epithelium, able to proliferate as well as differentiate
into alveolar type I cells (Mason et al., 1997; Griffiths et al., 2005; Reynolds et al., 2004;
Gomperts and Strieter, 2007; Uhal, 1997; Weiss et al., 2006). Numerous in vivo animal
studies have demonstrated the ability of type II cells to repopulate the alveolar epithelium.
Briefly, various pollutants and reagents were used to injure the airway epithelium (Liu et al.,
2006). Following the injury event, type II cells were observed to proliferate and differentiate
into type I cells to restore the alveolar epithelium, with cells showing characteristics of both
alveolar types in the intermediate stages (Evans et al., 1973, 1975, 1972; Kapanci et al.,
1969; Adamson and Bowden, 1974, 1975; Aso et al., 1976). The ability of alveolar type
II cells to differentiate into type I cells has also been demonstrated in vitro. Type II cells
isolated from rats begin to exhibit type I cell characteristics after a period of in vitro culture
(Brody and Williams, 1992; Danto et al., 1992, Dobbs et al., 1988; Kikkawa and Yoneda,
1974; Paine et al., 1988; Paine and Simon, 1996). Altering the culture substrate has an
effect on whether type II cells retain their characteristics or differentiate into type I cells,
highlighting the importance of the extracellular matrix microenvironment in determining cell
fate (Shannon et al., 1992).

Type II cells themselves are a heterogeneous group. Studies have shown that some type
II cells are more susceptible to injury than others, and the true stem cell population within
the group has been characterized as E-cadherin negative, proliferative, and having high
telomerase expression (Adamson and Bowden, 1975; Reddy et al., 2004). Though much
less prevalent in the literature, there is also evidence that alveolar type I cells differentiated
from type II cells can dedifferentiate back into type II cells under certain conditions (Danto
et al., 1995). This may lead to the classification of type I cells as a limited progenitor cell
as well, although there is a general consensus that type II cells are the stem cells of the
alveolar epithelium.
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1.5 Circulating stem cells and applications in lung
regenerative medicine

Many reports have suggested that adult bone marrow acts as a source of circulating stem
cells that localize to various tissues and differentiate into tissue-specific cells (Anjos-Afonso
et al., 2004; Herzog et al., 2003; Jiang et al., 2002; Korbling and Estrov, 2003; Neuringer
and Randell, 2004; Pereira et al., 1995; Prockop, 2003; Wagers et al., 2002). Multiple
subpopulations of bone marrow may be involved, including haematopoietic stem cells,
mesenchymal stem cells, endothelial progenitor cells, fibrocytes, and circulating epithelial
progenitor cells (Direkze et al., 2003; Schmidt et al., 2003; Bucala et al., 1994; Epperly et al.,
2003; Hashimoto et al., 2004; Kotton et al., 2001; Krause et al., 2001). Most of the evidence
comes from animal and clinical transplant cases, which arguably revealed chimerism and
engraftment of donor cells. In multiple studies involving bone marrow transplants in animals,
donor bone marrow-derived cells were identified in the lung with lung cell phenotypes (Abe
et al., 2004, 2003; Anjos-Afonso et al., 2004; Beckett et al., 2005; Epperly et al., 2003;
Grove et al., 2002; Hashimoto et al., 2004; Jiang et al., 2002; Kotton et al., 2001; Krause
et al., 2001; Loi et al., 2006; Macpherson et al., 2005; Ortiz et al., 2003; Pereira et al.,
1995; Rojas et al., 2005; Schoeberlein et al., 2005; Theise et al., 2002; Yamada et al.,
2004). In human bone marrow transplants, chimerism of epithelial and endothelial cells as
well as engraftment of bone marrow-derived cells were found in lung tissue (Mattsson et al.,
2004; Suratt et al., 2003; Albera et al., 2005). Furthermore, chimerism and engraftment
have also appeared in the lung epithelium following human lung transplants, suggesting that
circulating stem cells in the recipient can localize to the donor lung (Kleeberger et al., 2003;
Spencer et al., 2005; Albera et al., 2005).

There is also evidence that bone marrow-derived cells localize to sites of lung injury and
help mitigate the damage (Abe et al., 2004; Epperly et al., 2003, Gomperts et al., 2006;
Hashimoto et al., 2004; Ishizawa et al., 2004; Kotton et al., 2001; Ortiz et al., 2003; Rojas
et al., 2005; Theise et al., 2002; Yamada et al., 2004, 2005; Ishii et al., 2005; Moore et al.,
2005; Burnham et al., 2005). Other studies, however, have suggested that in some cases, bone
marrow-derived cells may actually contribute to fibrosis (Epperly et al., 2003; Hashimoto
et al., 2004; Phillips et al., 2004). Indeed, controversy remains about the actual ameliorative
effect of circulating stem cells, whether or not they can engraft in other organs, and whether
engrafted cells undergo fusion or transdifferentiation (Aliotta et al., 2005; Vassilopoulos
et al., 2003; Wang et al., 2003; Chang et al., 2005; Davies et al., 2002; Kotton et al., 2005;
Zander et al., 2005; Loi et al., 2006). Clearly, researchers have not yet reached a consensus
about the role that circulating stem cells play in lung processes.

1.6 Stem cell therapy: embryonic or adult?

Stem cell therapy has been vaunted as a possible source of cures. We hope that stem or
progenitor cells can be used to repair injury and fix diseases, or that an endogenous stem
cell population can be targeted for gene therapy. While stem cell therapies using embryonic
stem cells or endogenous stem cells of the pulmonary system have thus far been limited
to speculation, some studies have shown that bone marrow-derived stem cells may have
an ameliorative effect on lung diseases and injuries (Abe et al., 2004; Ishizawa et al.,
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2004; Ortiz et al., 2003; Rojas et al., 2005; Yamada et al., 2004, 2005; Burnham et al.,
2005; Gomperts et al., 2006). As previously discussed, much debate continues over the
therapeutic effects of these circulating stem cells. The cell subpopulation most appropriate
for therapeutic application remains to be identified, and their in vivo proliferation and
differentiation activity defined. As seen in cases where applied bone marrow-derived stem
cells can actually contribute to a disease state (Epperly et al., 2003; Hashimoto et al., 2004;
Phillips et al., 2004), great care must be taken when introducing stem cells into the system.
Though embryonic stem cells have not yet been used in cell therapy for the pulmonary
system, researchers have had moderate success in obtaining airway epithelial cells from
mouse and human embryonic stem cells (Ali et al., 2002; Coraux et al., 2005; Nishimura
et al., 2004, 2006; Rippon et al., 2004, 2006; Samadikuchaksaraei et al., 2006; Wang et al.,
2007). Although functional pulmonary epithelial cells differentiated from embryonic stem
cells might one day be useful in treating disease, immunological difficulties could prove
to be the biggest obstacle to overcome. Until these problems are solved, the embryonic
stem cell system may contribute mostly to the areas of understanding developmental and
disease processes. The endogenous stem cells of the lung present another potential pool of
cells for transplantation or gene therapy, but the definitive characterization of these stem
cell populations must first be completed. Additionally, the ability to isolate pure populations
of these cells could enhance current xenograft models of airway epithelium regeneration,
which have demonstrated the ability of airway epithelial cells to repopulate a denuded
trachea (Puchelle and Peault, 2000; Shimizu et al., 1994; Engelhardt et al., 1992b, 1995;
Zepeda et al., 1995; Dupuit et al., 2000; Castillon et al., 2004; Escotte et al., 2004). Using
this technique in a more limited, well-controlled manner alongside gene therapy techniques
could offer new treatments using a patient’s own pulmonary stem cells – perhaps altered or
enhanced in vitro – to treat airway epithelial diseases and injuries (Castillon et al., 2004;
Engelhardt et al., 1992b).

Another area that requires further study for all stem cell populations is the stem cell niche,
or microenvironment. We must fully understand the effects that the microenvironment has
on stem cell proliferation and differentiation before we can be confident of the safety and
efficacy of any stem cell therapy. While some soluble factors have been studied – especially
in areas of embryogenesis and development – researchers have only begun to understand
their effects and those of the three-dimensional extracellular matrix (Warburton et al., 2005;
Dunsmore and Rannels, 1996). With further study, pulmonary diseases may one day be
treated with the help of stem cells.

1.7 Conclusion

In addition to facilitating the exchange of respiratory gases, the pulmonary epithelium is a
physical barrier that is constantly exposed to infectious organisms, oxidative stress, and toxins
from the external environment. Roughly 10 to 12 epithelial cell types can be identified in the
pulmonary epithelium. The distribution of these epithelial cell types is species-dependent and
airway region-specific (Figure 1.1). Roughly, the distribution is correlated to the functions of
each airway segment. In the trachea and bronchi, these functions are the trapping and removal
of particles and infectious microorganisms. To perform these functions, ciliated, basal and
non-ciliated secretory cells capable of mucus secretion are predominately present. In the
distal bronchioles, only minimal mucociliary function is undertaken in the narrowing airway



REFERENCES 15

space. The major function in this distal region is to sense and condition the incoming air,
requiring mainly Clara and PNE cells. Among Clara cells, there are differences in cytochrome
p450-mediated drug metabolism as well as local distribution. In the gas exchange region,
alveolar type I cells contribute a large cell surface area, while cuboidal type II cells are
responsible for surfactant production to prevent lung collapse. To maintain airway integrity
and efficiently respond to injury, the pulmonary epithelia should contain active stem cell
niches throughout the airway that can immediately produce transient amplifying cells when
needed. There have been extensive studies to identify these niches and the specific cell
type(s) serving as adult stem cells. These studies may one day lead to the development of
cell therapies for various airway and lung diseases.
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2.1 Introduction

The respiratory tract is lined by a continuous layer of epithelial cells. Pseudostratified
columnar epithelium made up of ciliated, goblet, and basal cells line the large proximal
airway. In the distal airway, ciliated cells transition to a more cuboidal morphology and
decrease in number, while basal cells and Clara cells become more prominent. Alveoli are
lined by a thin monolayer of type I alveolar cells interspersed with type II alveolar cells.
Together, these cells constitute a remarkable epithelial tissue that regulates host defence,
inflammation, gas exchange, and barrier function. Barrier function and interactions with the
surrounding microenvironment are determined by specialized structures residing at cell–cell
and cell–substratum junctions. This chapter examines these structures, their relevance in
the pulmonary epithelium, reviews their protein constituents and associations, and discusses
newer insights into their functions and potential roles in disease.

2.2 Cell–cell adhesive structures

In 1870, the Italian scientist and microscopist Giulio Bizzozero designated the ‘terminal
bar’, an apical 1–2 �m area of condensation observed at epithelial cell–cell junctions
(Bizzozero, 1870). In 1963, Farquhar and Palade re-examined this structure using elec-
tron microscopy (EM) and discovered the tripartite ‘junctional complex’ (Farquhar and
Palade, 1963). The three components, based on distinct morphologies and relative locations
(Figure 2.1), were named the zonula occludens or ‘closing belt’, now referred to as the tight
junction (TJ), the zonula adherens or ‘adhering belt’, now known as the adherens junction
(AJ) or intermediate junction, and the macula adherens or ‘adhering spot’, now known as
the desmosome. Analogous ultrastructure has been described in both non-mammalian and
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Tight Junction

Adherens Junction

Desmosome

Focal Adhesions

Basement Membrane

Hemidesmosome

Gap Junction

Figure 2.1 Epithelial cell–cell and cell–substratum adhesion structures: tight junctions, adherens
junctions, desmosomes, hemidesmosomes, and focal adhesions. The TJ is the most apical member of
the junctional complex. TJ strands and fibrils form a circumferential, gasket-like band. Below the TJ
is the E-cadherin-rich AJ which is linked to intracellular actin through linker proteins to form another
continuous band around the perimeter of the cell. Desmosomes form discrete disc-like adhesion sites
which characteristically associate with intermediate filaments (IFs), rather than with actin. IFs loop
from the desmosomal plaque to the cytoplasm, then back. Hemidesmosomes are specialized structures
that mediate adhesion of the epithelial cell to the underlying basement membrane. Hemidesmosomes,
like desmosomes, associate with IFs through its cytoplasmic plaque. Focal adhesions are regions of
close apposition to the underlying extracellular matrix organized around links between integrins and
the ends of actin filaments. Gap junctions permit intercellular metabolic coupling, but are not formally
described as cell–cell, or cell–substratum adhesion structures

mammalian pulmonary epithelia. Gap junctions, or nexi, which permit metabolic coupling
and direct transmission of small cytosolic signalling molecules between adjacent cells, are
not considered part of the junctional complex and will not be specifically reviewed here.
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2.2.1 Tight junctions

The TJ is the most apical member of the junctional complex (Figure 2.1). At low magni-
fication, it forms a continuous intercellular belt-like zone, 0.1 to 0�7 �m in depth, where
adjacent plasma membranes are juxtaposed. Higher magnification of this zone reveals punc-
tate contacts where the outer lipid leaflets of conjoined plasma membranes merge, eliminating
interposed extracellular space. These contacts correspond to the dramatic strands and fibrils
seen in EM freeze-fracture replicas. Rat airway have TJ morphologies that vary between
epithelial cell type (Schneeberger, 1980). In the trachea, TJs in ciliated cells have sparsely
interconnected parallel luminal fibrils and large ablumenal fibril loops. In distal intrapul-
monary airway, the luminal fibrils are highly interconnected. This TJ morphology is also
seen with serous cells, epithelial ‘brush cells’, and Clara cells. In normal human bronchi,
however, EM of these strand arrangements shows highly variable patterns from one junction
to the next, irrespective of either airway distribution or cell type (Godfrey et al., 1992).
In human alveolar epithelial cells, freeze-fracture replicas reveal a belt-like network of 3–7
superimposed fibrils that partition to the protoplasmic (P) face, with complementary grooves
that partition to the exoplasmic (E) face (Bartels, 1979). It is generally assumed that these
strands and fibrils represent polymers of interacting transmembrane proteins, although a
contribution from lipids and specialized lipid structures cannot be ruled out (Tsukita et al.,
2001). These transmembrane proteins terminate at a cytoplasmic plaque, originally described
as a 0.2 to 0�5 �m ‘diffuse band of dense cytoplasmic material’ (Farquhar and Palade, 1963).

The first major advance in defining the molecular composition of TJs occurred in 1993,
when the Tsukita group used an isolated junction-enriched fraction from chick liver as an
antigen to generate monoclonal antibodies. Prior to this, attempts to raise antibodies recog-
nizing the highly-conserved TJ structure in mammals were not successful. Both occludin
(Furuse et al., 1993) and the first set of claudins (Furuse et al., 1998a) were discovered.
Soon thereafter, a novel member of the immunoglobulin superfamily, termed the junctional
adhesion molecule (JAM), became the third type of transmembrane protein known to exist
in TJs (Martin-Padura et al., 1998).

A rapidly growing number of TJ constituents have since been identified, supporting the
concept that the TJ is an elaborate multifunctional protein complex. TJs contain upwards
of 40 different proteins, including products of multigene families, which are arranged with
characteristic adhesion complex architecture, consisting of a set of transmembrane proteins,
a large number of cytoplasmic adaptor proteins, and a group of miscellaneous proteins that
interact either directly or indirectly with the cytoplasmic plaque.

Occludin

Occludin is a 60-kDa tetraspan protein that orients two extracellular domain loops, charac-
teristically rich in glycine and tyrosine residues, between cytosolic amino (N)- and carboxy
(C)-terminal domains (Figure 2.2). Human occludin is the product of a single gene located
on chromosome band 5q13.1 (Saitou et al., 1997). Occludin mRNA has been shown to
be highly expressed in the testis, kidney, liver, lung, and brain – all tissues that bear
well-developed TJs (Saitou et al., 1997). Splice variants of occludin have been identified in
human colonic epithelial cells (Mankertz et al., 2002), Madin–Darby canine kidney (MDCK)
cells (Muresan et al., 2000), and in many mammalian tissues including the human bronchial
epithelium (transmembrane domain 4-deficient isoform (TM4-)) (Ghassemifar et al., 2002).
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Figure 2.2 Epithelial transmembrane cell–cell and cell–substratum adhesion proteins. Tight junction:
occludin, claudin-1, and junction adhesion molecule (JAM)-A. Occludin contains a first extracellular
loop that is characteristically rich in tyrosine and glycine residues and a C-terminal PDZ domain. In
contrast, the amino acid composition of the two extracellular loops of claudin varies significantly
among different claudins. Claudins (except for claudin-12) contain a C-terminal PDZ motif (conserved
YV sequence). JAM-A spans the plasma membrane once and has two extracellular Ig type domains (V),
of which the first loop is required for homotypic binding between cells. Adherens junction: epithelial
(E)-cadherin is a classical type I cadherin containing five cadherin repeats (Cd) of approximately
110 amino acids separated by four calcium binding sites. The N-terminus contains the conserved
HAV motif required for homophilic binding. Desmosomal cadherens: desmocollin-1 and desmoglein-1.
Desmocollin-1 is a classical type I cadherin that participates in homodimeric and homotypic binding.
Its short conserved C-terminus interacts with intermediate filaments. Demoglein-1 differs from
desmocollin-1 in that it contains a short propeptide and only four Cd repeats. Furthermore, its
intracellular domain contains five, 28–30 amino acid-long repeat sequences (desmoglein repeats) (D)
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Splice variants have been suggested to differentially affect TJ adhesion. In epithelial cells,
occludin undergoes various post-translational modifications, including targeted phosphory-
lation (Stuart and Nigam, 1995), which is thought to affect occludin assembly at the TJ.
Occludin is a target substrate for multiple kinases, including non-receptor tyrosine kinases
Src and Yes (Chen et al., 2002; Kale et al., 2003), and serine/threonine kinases, such as
casein kinase (CK)2 (Smales et al., 2003) and protein kinase C (PKC) (Andreeva et al.,
2001).

Approximately half of the 522 amino acid residues of occludin are contained within its
long cytoplasmic C-terminal tail (Ando-Akatsuka et al., 1996). The last 150 amino acids
of this tail interact directly with F-actin (Wittchen et al., 1999). This property is unique to
occludin, and not shared by other TJ integral proteins, which require protein adaptors. The
cytoplasmic tail also interacts with a large number of proteins at the TJ plaque (Nusrat et al.,
2000). These include scaffolding proteins such as cingulin (Citi et al., 1988) and zonula
occludens (ZO)-1 (Fanning et al., 1998), ZO-2 (Itoh et al., 1999a), and ZO-3 (Wittchen
et al., 2000), and the membrane trafficking protein VAMP (vesicle-associated membrane
protein, or synaptobrevin)-associated protein of 33 kDa (VAP33) (Lapierre et al., 1999).
ZO belongs to a family of multidomain scaffolding proteins known as membrane-associated
guanylate kinase (MAGUK) homologues, all of which contain several binding domains
(e.g. src homology (SH)3 and post-synaptic density protein-Drosophila disc large tumour
suppressor-ZO-1 (PDZ) (Ranganathan and Ross, 1997; Lockless and Ranganathan, 1999))
and an enzymatically inactive guanylate kinase (GK) domain. The recently solved crystal
structure of the occludin-ZO-1 binding site (Li et al., 2005) may provide additional insights
into this highly-conserved interaction.

Initial experimental data suggested that occludin might be the principal protein required to
maintain TJ structure and adhesive function (Furuse et al., 1996). However, examination of
epithelia in mice deficient in occludin did not reveal obvious differences in epithelial barrier
function (Saitou et al., 2000). Epithelial claudins, rather, are now considered the essential
determinants of TJ structure and function. In retrospect, since occludin is a single gene
product that lacks an extracellular charge, it seems unlikely that it could produce the kind
of functional variety seen in TJs, including tissue-specific resistances and unique paracel-
lular charge-specificities. On the other hand, occludin-deficient mice do display a complex
phenotype that includes chronic inflammation and hyperplasia of the gastric epithelium,
calcification in the brain, testicular atrophy, loss of cytoplasmic granules in striated duct
cells of the salivary gland, and thinning of compact bone. Furthermore, occludin-deficient
male mice are infertile (Saitou et al., 2000). This diverse phenotype may ultimately reflect
complex occludin-mediated cell signalling, with each finding dependent on a specific cadre
of plaque proteins. As of yet, occludin deficiency has not been associated with a phenotype
specific to the lungs or to the pulmonary epithelium.

Figure 2.2 (Continued) The C-terminus expresses the adhesion motif, R/YAL. Integrins �3�1 and
�6�4 � �3�1 contains an �3 chain proteolytically cleaved into a heavy and a light chain, which
are disulphide-bonded (S-S). �3�1 has complex binding specificities to fibronectin, collagen, and
laminin-5. �6�4 is the primary integrin constituent of hemidesmosomes. Unique among integrin
� chains, �4 contains a large 118 kDa cytoplasmic domain with four fibronectin type III repeats (FnIII).
This cytoplasmic tail interacts with intermediate filaments, rather than with actin, as seen with other
integrins. N-Glycosylation sites (grey circles), amine terminus (N), carboxyl terminus (COOH)
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Claudins

In 1998, the first claudins, claudin-1 and -2, were co-purified with occludin (Furuse
et al., 1998a). Database searching, and both cDNA and genomic cloning, have since
expanded the claudin multigene family to include at least 24 members in humans and
mice. Claudins are believed to be the essential determinants of both TJ structure and func-
tion. Claudin incorporates into TJ fibrils when expressed in MDCK cells, and forms TJ
strands de novo when expressed in L fibroblasts lacking endogenous claudins (Furuse et al.,
1998b). Furthermore, L-fibroblast claudin transfectants exhibit increased adhesion activity
and form ultrastructural TJ ‘kissing points’ between adjacent cells (Kubota et al., 1999).
L-fibroblasts expressing singlets or pairs of claudin-1, -2, and -3 produce TJ strands through
homomeric and heteromeric claudin binding within individual strands, and homotypic and
heterotypic binding between opposing strands (except between claudin-1 and -2) (Furuse
et al., 1999).

Claudin genes encode 20–27 kDa proteins, none of which show sequence homology
to occludin (Furuse et al., 1998a) (Figure 2.2). Like occludin, however, claudins are
predicted to be tetraspan proteins with cytoplasmic N- and C-terminal domains (Furuse
et al., 1998a). Claudins are recognized by a highly-conserved amino acid motif, GLWxxC-C,
contained within the first extracellular loop (Van Itallie and Anderson, 2004). This
first extracellular loop influences paracellular charge selectivity and resistance (Colegio
et al., 2003). Diversity in this loop, outside of the conserved motif, may explain
how claudins, or why a particular claudin repertoire, might determine paracellular ion
specificity.

Despite having strikingly divergent C-terminal cytoplasmic domains, claudins all end
(with the exception of claudin-12) in a PDZ-binding motif (most contain the conserved
YV sequence). Claudins interact with the PDZ domains of a variety of proteins, including
ZO-1, -2, and -3 (Itoh et al., 1999), the multi-PDZ domain protein (MUPP)-1 (Hamazaki
et al., 2002), and the Protein Associated with Lin Seven (PALS)-1-associated TJ protein
(PATJ) (Roh et al., 2002). ZO-1 and ZO-2 can independently determine whether and where
claudins are polymerized (Umeda et al., 2006). PALS-1 and PATJ are thought to regulate
apical-basal polarity in mammalian epithelial cells (Straight et al., 2004; Shin et al., 2005).
Polarity is a fundamentally important feature of epithelial cells and epithelial cell function.
Despite insights provided by predicted structure and known C-terminal binding partners,
the functions associated with this domain remain unclear. L-fibroblasts expressing claudin
mutants lacking almost all of the C-terminal cytoplasmic domain still form TJ strands
(Furuse et al., 1999). Claudins lacking their last three amino acids, or those in which the
PDZ-binding sites are blocked by epitope tagging, still localize to cell–cell contacts and
form freeze-fracture strands (Furuse et al., 1998b). The strands formed by PDZ-blocked
claudins, however, are poorly organized and not restricted to the apical border (McCarthy
et al., 2000).

In the pulmonary epithelium, claudin expression varies with specific cell type and differ-
entiation state, with changes in transepithelial permeability, and in response to transcription
factors linked to lung branching morphogenesis. Transdifferentiation of rat alveolar epithelial
type II cells to cells with a type I-like phenotype after prolonged culture or exposure to
epidermal growth factor (EGF) is associated with increases in claudin-4 and -7 and decreases
in claudin-3 and -5 expression (Chen et al., 2005). In adult rat lung sections, claudin-
3, -4, and -5 are expressed in alveolar type II epithelial cells and claudin-5 is expressed
throughout the alveolus (Wang et al., 2003). Induced increases in rat type II cell permeability
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increases both claudin-3 and -5 expression (Wang et al., 2003). Claudin-1, -3, and -5 are
expressed in normal airway of human lungs (Coyne et al., 2003). Heterologous expression of
claudin-1 and -3 in IB3-1 human airway epithelial cells decreases solute permeability, while
claudin-5 expression increases permeability (Coyne et al., 2003). Sphingosine 1-phosphate
(S1P), a lipid mediator that induces pulmonary edema formation when administered through
the airway, acts additively with tumour necrosis factor (TNF) to induce a rapid loss of
claudin-18. These changes correlate with increased edema formation in a mouse model
of acute lung injury (Gon et al., 2005). Claudin-18 is also uniquely down-regulated in
T/ebp/Nkx2.1-deficient mouse embryo lungs (Niimi et al., 2001). The T/ebp/Nkx2.1 tran-
scription factor is expressed in all pulmonary epithelial cells during early development and
is considered an important regulator of pulmonary branching morphogenesis (Yuan et al.,
2000).

Wide-ranging in vivo functions of claudins may be deduced from both human heredi-
tary disorders caused by mutations of claudin genes and knockout mouse phenotypes. For
example, mutation of a gene encoding claudin-14, which is expressed in the outer hair cells
of the cochlea, is associated with profound autosomal recessive deafness (Wilcox et al.,
2001). Claudin-16 (also known as paracellin-1) mutations cause familial hypomagnesemia
with hypercalciuria and nephrocalcinosis (Simon et al., 1999). Consistent with this, the
first extracellular loop of claudin-16 carries a characteristically negative charge which could
determine divalent cation selectivity in the loop of Henle. Claudin-19-deficient mice walk
awkwardly on smooth surfaces, a phenotype that has been attributed to a lack of TJs in
myelin sheaths and subsequent defects in saltatory conduction in the peripheral nervous
system (Miyamoto et al., 2005). Specific pulmonary diseases directly associated with claudin
deficiency or specific claudin mutations have not yet been demonstrated. However, consid-
ering the diversity of the claudin family and heterogeneity of its attributed functions, one
would expect that diseases involving, for example, pulmonary epithelial TJ regulation of
paracellular permeability, sodium vectorial transport (Shlyonsky et al., 2005), and ion selec-
tivity (e.g. acute lung injury, bronchitis, asthma, cystic fibrosis), epithelial cell differentiation
(e.g. bronchogenic carcinoma), or aberrant lung development might reflect alterations in
normal claudin function.

Junctional adhesion molecule

JAM-1 was the first protein belonging to the Ig superfamily identified at TJs (Martin-Padura
et al., 1998). JAM-1 is now called JAM-A according to revised nomenclature (Muller,
2003).1 JAM-A is a 43 kDa glycosylated protein characterized by two extracellular
V-type Ig domains, a single transmembrane domain, and a short intracellular C-terminal
domain containing a PDZ binding motif (Figure 2.2). JAM-A localizes to epithelial TJ
strand-containing regions (Itoh et al., 2001) and forms homophilic contacts between V-type
Ig domains of opposing JAMs. Although the subcellular localization of JAM-B and JAM-C
has not been addressed by ultrastructural analysis, JAM-C has been shown to co-distribute

1 The new nomenclature for JAMs applies identical names for mouse and human analogues. JAM-A corresponds
to JAM, JAM-1, F11-receptor or the 106 antigen. JAM-B corresponds to mouse JAM-3 and human JAM-2 and
vascular endothelial (VE)-JAM. JAM-C corresponds to mouse JAM-2 and to human JAM-3. Two JAM-like
molecules JAM-4 and JAM-like (JAML) are more closely related to the coxsackie and adenovirus receptor (CAR)
and the endothelial cell-selective adhesion molecule (ESAM).
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with ZO-1 when expressed in polarized epithelial cells, suggesting that it, like JAM-A, is
associated with epithelial TJs (Aurrand-Lions et al., 2001). In addition, human JAM-A is
expressed in platelets and on circulating leukocytes including monocytes, neutrophils, and
B- and T-lymphocytes (Williams et al., 1999); JAM-A facilitates migration of monocytes
through the paracellular pathway (Martin-Padura et al., 1998; Del Maschio et al., 1999).
JAM-B (also known as VE-JAM, mouse JAM-3, or human JAM-2) and JAM-C (also known
as mouse JAM-2 or human JAM-3) are expressed in the endothelium of several different
organs (Aurrand-Lions et al., 2001). Like JAM-A, JAM-C is expressed in platelets and
by various human leukocyte subsets (Liang et al., 2002; Santoso et al., 2002). In human
airway epithelium, JAM is expressed (Liu et al., 2000), but its specific function has yet to
be determined.

Four additional Ig-superfamily members have been identified at TJs: JAM-4 (Hirabayashi
et al., 2003), the coxsackie and adenovirus receptor (CAR) (Cohen et al., 2001), and CAR-
like membrane protein (CLMP) (Raschperger et al., 2004) in epithelial cells, and endothe-
lial cell-selective adhesion molecule (ESAM) (Nasdala et al., 2002) in endothelial cells.
JAM-4 recruits ZO-1 and occludin to cell–cell contacts and mediates calcium-independent
homophilic adhesion (Hirabayashi et al., 2003). CAR recruits ZO-1 to the cell membrane
and, when overexpressed in epithelial cells, increases transepithelial resistance (Cohen et al.,
2001). CLMP co-localizes with ZO-1 and occludin at TJs and also appears to regulate
transepithelial resistance (Raschperger et al., 2004). While JAM-4, CAR, and CLMP are
similar in structure to JAM-A, -B, and -C (contain two Ig-like domains, a single trans-
membrane domain, and C-terminal PDZ binding domain), they do contain distinguishing
elements: the cytoplasmic tails are longer (105–118 residues in JAM-4, CAR, and CLMP
vs. 40–50 residues in JAM-A, -B, and -C) and contain different subclasses of PDZ domain
(PDZ1 in JAM-4 and CAR vs. PDZ 2 in JAM-A, -B, and –C). JAM-4 mRNA is weakly
expressed in rat lung (Hirabayashi et al., 2003). CAR is identified by immunocytochemistry
on the basolateral sides of non-permeabilized human airway epithelial cells (Walters et al.,
1999). CLMP mRNA is expressed in human lung (Raschperger et al., 2004).

Though JAM-A has been the most thoroughly evaluated of the TJ-associated Ig proteins,
its function at TJs remains unclear. As opposed to claudins (Furuse et al., 1998b), JAM-A
does not induce TJ strands when expressed in fibroblasts (Itoh et al., 2001). JAM-A appears,
nevertheless, to be linked to claudin-1 by ZO-1 (Ebnet et al. 2000) and MUPP-1 (Hamazaki
et al., 2002) through PDZ domain interactions. Partitioning-defective protein (PAR)-3, a
regulator of cell polarity, binds to JAM-A through its PDZ domain (Ebnet et al., 2003).
Thus, it appears that JAM-A is tethered to claudins by protein adaptors and recruits PAR-3
to the TJ (Mizuno et al., 2003). PAR-3 is associated with atypical PKC and PAR-6 to form a
complex (PAR-3/aPKC/PAR-6) that has been shown to facilitate TJ formation and establish
cell polarity in mammalian epithelial cells (Ohno, 2001). Other cytoplasmic proteins bound
to JAM-A include calcium/calmodulin-dependent serine protein kinase (CASK) (Martinez-
Estrada et al., 2001) and cingulin (Bazzoni et al., 2000), which respectively, are suggested
to serve signalling and tethering functions.

2.2.2 Adherens junctions

Farquhar and Palade described the AJ in epithelial cells as an electron-dense narrowing
of the intercellular space to 25–35 nm located just below the TJ (Farquhar and Palade,
1963) (Figure 2.1). AJs hold epithelial cells together by tight calcium-dependent links. Three
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principal proteins have been identified in AJs: cadherins, �-catenin, and �-catenin. Cadherins
constitute a major class of adhesion molecules that supports homophilic cell–cell adhesion
that is critical to the development and maintenance of all solid tissues (Takeichi, 1991). The
first cadherin to be identified was epithelial (E)-cadherin (cadherin-1), a prototypical classical
type I cadherin (Takeichi, 1995)2�3 (Figure 2.2). Classical cadherin extracellular domains
contain five tandem repeats of approximately 110 amino acids (cadherin domains) separated
by four calcium-binding pockets. The N-terminus contains a conserved HAV motif required
for homotypic binding between cadherins on neighbouring cells. The role of the remaining
four tandem cadherin repeats in adhesive binding is not known. The cytoplasmic domains
are 150–160 amino acids in length and mediate interactions with the actin cytoskeleton
through linker proteins known as catenins (Takeichi, 1995). E-cadherin associates with the
armadillo protein family member �-catenin, which then binds to �-catenin to form a roughly
stoichiometric complex (Ozawa and Kemler, 1992).

AJs have long been believed to link actin cytoskeleton networks across cell–cell junctions
through direct interactions between E-cadherin, �-catenin, �-catenin, and actin. However,
existence of a quaternary complex containing these four species has never been demonstrated.
Recent data suggest that �-catenin does not simultaneously bind to both actin and the
E-cadherin–�-catenin complex. Furthermore, some evidence suggest that �-catenin may act
as a molecular switch to actively regulate actin assembly at sites of E-cadherin-mediated
cell–cell adhesion (Drees et al., 2005), thereby introducing more complexity to its known
AJ protein linker function.

Pulmonary epithelial cells express E- and P-cadherin. In mouse embryonic lungs,
E- and P-cadherin are expressed in all pulmonary epithelial cells during early development.
P-cadherin gradually disappears, first from epithelium lining larger airway, then eventually
from the remainder of lung (Hirai et al., 1989). Normal rat lung shows staining of E-cadherin
predominantly in alveolar type II cells (Kasper et al., 1995). The human bronchial epithelial
cell line, 16HBE14o(-), expresses E- and P-cadherin, but not N-cadherin. Increasing conflu-
ence of these cells in culture is associated with increased E-cadherin and decreased P-cadherin
expression (West et al., 2002). In normal human bronchial epithelium, columnar cells express
moderate levels of E-cadherin, while basal cells express high levels of P-cadherin (Smythe
et al., 1999).

E-cadherin-�-catenin interactions have been suggested to be important in a variety of
functions that may be relevant to pulmonary disease, including regulatory roles in protease-
activated receptor (PAR)-2-mediated increase in airway epithelial permeability (Winter et al.,
2006), epithelial proliferation and lung extracellular matrix (ECM) remodelling and repair in
response to lung injury (Douglas et al., 2006), and as markers of and possibly mediators of
lung cancer progression, state of differentiation, and metastatic potential (Awaya et al., 2005).
�-catenin is also a component of the Wnt signalling pathway and serves as a transcriptional
co-activator with T-cell factor/lymphocyte enhancer factor (Tcf/Lef) (Nelson and Nusse,
2004). Tcf/Lef has been implicated in the development of cancers, including lung cancer
(Ohira et al., 2003).

2 E-cadhein is also known as uvomorulin, Arc-1, liver cell adhesion molecule (L-CAM), and cell-CAM 120/80.
3 Other classical type I cadherins include the desmosomal cadherins (desmoglein and desmocollin), neural
(N)-cadherin (cadherin-2), placental (P)-cadherin (cadherin-3), and retinal (R)-cadherin (cadherin-4). Each assigned
letter indicates the tissues in which the cadherin was originally identified.
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2.2.3 Desmosomes

The desmosome, sometimes referred to as a ‘spot-weld’ between cells, is the third member
of the tripartite junctional complex described by Farquhar and Palade (Farquhar and Palade,
1963) (Figure 2.1). Ultrastructurally, desmosomes measure between 0.1 and 1�5 �m in
diameter and are delineated by an electron-dense plaque and electron-dense filaments that
span the intercellular space (Cowin, 1985). In contrast to AJs, which are linked to actin
filaments, desmosomes are linked to intermediate filaments (IFs). IFs are composed of
tissue-specific complements of desmin, vimentin, and/or cytokeratins (Yamada et al., 1996).
Cytokeratin expression is often used as a marker of epithelial cell morphology. In early states
of human lung development, ‘simple’ cytokeratins (cytokeratin-7, -8, -18, -19) are detected
in bronchial epithelial cells. At later stages, other cytokeratin isoforms (-13 and -14) can
be detected, with differential expression in columnar vs. basal cells (Broers et al., 1989).
Cytokeratin-19 expression (suggested to influence type II alveolar phenotype) in primary rat
alveolar type II cells varies with factors influencing cell shape and intercellular contacts,
e.g. lower cell seeding density and low calcium levels (decreases desmosome formation)
(Paine et al., 1995). Vimentin is expressed in fetal bronchial epithelium, but decreases to a
few scattered bronchial cells at birth and into adulthood. Desmin filaments are present in
smooth muscle cells of the lung (Broers et al., 1989). IFs emanate from the desmosome
plaques into the adjacent cytoplasm, looping repeatedly from the cytoplasm to the plaque
and then back into the cytoplasm (Franke et al., 1983). In pseudostratified airway epithelium,
desmosomes are present along lateral aspects of columnar cells, particularly towards cell
apices, and at columnar-basal cell junctions.

The major constituents of desmosomes are membrane glycoproteins known as desmo-
somal cadherins. Desmosomal cadherins are single-pass, transmembrane-spanning proteins
containing conserved regions of homology on the extracellular domain required for calcium
binding and adhesion, and on the cytoplasmic domain required for binding to cytoplasmic
adapter proteins. Two subclasses of desmosomal cadherins are known: the desmogleins (Dsg)
and desmocollins (Dsc) (Figure 2.2). These proteins are encoded by individual genes that are
clustered on human chromosome 18q12.1 (Hunt et al., 1999). Three Dsgs (Dsg-1, -2, and -3)
and three Dscs (Dsc-1, -2, and -3) have been identified. These heterogeneous isoforms are
expressed in tissue-, cell stratification-, and differentiation-specific patterns (Koch et al.,
1992). The extracellular N-terminus of Dsg-1 has a short 29 amino acid propeptide and only
four tandem repeat domains, compared to the longer propeptide and five cadherin repeats
seen in other classical cadherins. Also, the adhesion motif, R/YAL, required for homophilic
adhesion, differs from the classical cadherin HAV sequence (Kowalczyk et al., 1994).

Desmosomal cadherins are the pathophysiologic targets of autoimmune or toxin-mediated
disruption in the human blistering skin diseases, pemphigus and bullous impetigo (including
its generalized form, staphylococcal scalded skin syndrome) (Payne et al., 2004). Mutations
in the human Dsg-1 gene have been linked to the rare autosomal dominant disorder striate
palmoplantar keratoderma (SPPK), a disease characterized by marked hyperkeratotic bands
on the palms and soles (Hunt et al., 2001). In the lung, immunohistochemical analysis
shows variable expression of Dsg-3 in normal pulmonary epithelium, and in lung cancers
(Boelens et al., 2007). Dsg-3 stains weakly at apical borders of basal bronchial epithelial
cells and robustly at squamous cell carcinoma cell–cell junctions. Dsg-3 is not detected
in lung adenocarcinomas. Negative Dsg-3 staining in lung cancer has been shown to be
associated with decreased 5-year survival in non-small cell lung cancer, and to indicate poor
prognosis in atypical pulmonary carcinoid tumours (Fukuoka et al., 2007).
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The cytoplasmic plaque of desmosomes is complex and exhibits tissue-specific differences
in both structure and composition. Members of two protein families populate the desmosomal
plaque: armadillo proteins plakoglobin (PG) and the plakophilins (PPs), and plakin proteins
desmoplakin (DP), envoplakin, periplakin, and plectin. All desmosomal plaque proteins are
defined by structural motifs that participate in the coupling of desmosomal plaques to IFs
(Troyanovsky and Leube, 1998). PG (also called �-catenin) binds tightly to the cytoplasmic
domains of Dsg and Dsc through highly-conserved sequence repeats known as Arm repeats
(Troyanovsky et al., 1994a; Roh and Stanley 1995). Desmosomal cadherins lacking the
PG binding site are unable to anchor IFs (Troyanovsky et al., 1994b). PG is not restricted
to desmosomes – it also associates with AJ cadherins (Peifer et al., 1992), reflecting its
close homology to �-catenin. In the lung, PG is highly expressed in normal bronchioles at
apical and lateral borders of basal epithelial cells and in glandular epithelial cells (Boelens
et al., 2007). Interestingly, PG has been shown, as has �-catenin, to be a component in Wnt
signalling, and thus, has been suggested to have a role in cancer development. In non-small
cell lung cancer cell lines, PG is weakly expressed, or absent. However, when PG expression
is increased by treatment with a histone deacetylase inhibitor, Tcf/Lef transcription factor
activity is reduced, which correlates with inhibition of cell growth and decreased malignant
potential (Winn et al., 2002).

The PPs are desmosomal plaque proteins that localize to both the desmosome and to
the nucleus. PP-1, originally named ‘band 6 protein’, was isolated as an accessory protein
bound to keratin in stratified and complex epithelia (Heid et al., 1994). Two additional splice
variants have been cloned, PP-2, and PP-3 (Bonne et al., 1999; Mertens et al., 1999). PPs
are composed of an N-terminal head domain and a C-terminal domain containing 9 Arm
repeats (Choi and Weis, 2005). The head domains mediate interactions with desmosomal
proteins, including DP, PG, Dsg, and Dsc, and are sufficient to direct PPs to cell junctions
(Kowalczyk et al., 1999).

The plakins are a family of large cytolinker proteins (200–700 kDa) that are important for
coupling different adhesive junctions (desmosomes, hemidesmosomes, and focal adhesion
contacts) to the cytoskeleton. Seven plakin family members have been identified based on
domain structure. Four of these, DP, plectin, envoplakin, and periplakin, have been localized
to desmosomes (Jefferson et al., 2004).

DP is the most abundant of desmosomal plaque proteins. It is expressed in two splice
variant isoforms (DP-1 and -2) and is required both for assembly of desmosomes and for
their association with IFs. The N-terminal plakin domain peptide (DP-NTP) targets DP to
desmosomal plaques (Bornslaeger et al., 1996). The C-terminal domain of DP contains three
plakin repeat domain (PRDs). DP PRD crystal structure shows that each repeat contains 4.5
copies of a 38 amino acid motif that forms a globular structure containing a conserved basic
groove that may represent an IF binding site (Choi et al., 2002). Combined PRDs support a
strong bond with vimentin (individual PRDs weakly bind to vimentin). Plectin, envoplakin,
and periplakin do not appear to play major roles in desmosome function.

In normal lung, DP stains weakly at the basolateral borders of suprabasal cells and at the
apical ends of ciliated cells. DP is highly expressed in bronchial glands (Young et al., 2002).
DP expression has been associated with pulmonary epithelial transdifferentiation and has
been shown to vary with lung cancer cell type (Boelens et al., 2007). DP expression at cell–
cell junctions is high in adenocarcinomas, and particularly high in squamous cell carcinomas.
Furthermore, microarray analyses also reveal significant differential gene expression of DPs
(as well as cytokeratin-18) between different lung cancer types (Young et al., 2002).
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2.3 Cell–substratum adhesion

2.3.1 Integrins

The principal adhesion molecules involved in epithelial cell binding to the basement
membrane are members of the integrin family. In humans, there are 18� and 8� integrin
subunits that noncovalently associate to form 24 heterodimeric pairs. The crystal structure
for the extracellular domains of an intact integrin (Xiong et al., 2002) demonstrates the
presence of a cation-binding site in the exposed � subunit face that coordinates all but one
of the free sites on bound cation, leaving a free coordination site to interact with negatively
charged residues. Recognition sequences on integrin ligands contain a corresponding nega-
tively charged amino acid, e.g. aspartic acid in the arginine-glycine-aspartic acid (RGD)
sequence. RGD is recognized by a substantial subset of integrins. The closely-apposed �
subunit helps determine ligand binding specificity; for example, a subset of � subunits
contains an inserted (I) domain that extends from the � subunit face to form cooperative
�/� ligand binding sites (Lee et al., 1995).

At least seven different integrins (�2�1� �3�1� �6�4� �9�1� �v�5� �v�6, and �v�8)
are expressed in airway epithelial cells of healthy adults (Damjanovich et al., 1992). These
integrins, and some of their known ligands, are listed in Table 2.1. Of these, �3�1 and �6�4

Table 2.1 Integrins expressed on airway epithelial cells. VCAM, vascular cell adhesion
molecule; L1-CAM, L1 cell adhesion molecule; vWF, von Willebrand factor; ADAMs, a dis-
integrin and metalloprotease protein; LAP, latency-associated peptide; TGF, transforming
growth factor

Integrin Known ligand(s) Distribution

�2�1 Collagen I (IV), Tenascin C,
Echovirus

Diffusely expressed, principally on
basal cells

�3�1 Laminin-5, -10, -11 Diffusely expressed with highest level
expression on basal surface of basal
cells

�6�4 Laminin-5, -10, -11 Restricted to basal surface of basal
cells

�9�1 Tenascin C, Osteopontin, VCAM-1,
L1-CAM, vWF, Factor XIII, Tissue
Transglutaminase, Fibronectin EIIIA
Domain, Angiostatin, ADAMs
1,2,3,9,15 (at least)

Diffusely expressed, principally on
basal cells

�5�1 Fibronectin Diffusely expressed, but only after
injury

�v�5 Vitronectin, Adenovirus, Ostepontin Diffusely expressed, principally on
basal cells

�v�6 LAP of TGF-�1 and TGF-�3,
Fibronectin, Tenascin C,
Osteopontin, Vitronectin, Foot and
Mouth Disease Virus

Diffusely expressed, principally on
basal cells

�v�8 LAP of TGF-�1 and TGF-�3,
Vitronectin

Diffusely expressed on basal cells
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are the only receptors for matrix proteins known to be present in normal epithelial basement
membranes (laminin-5, -10, and -11) (Carter et al., 1991; Eble et al., 1998) (Figure 2.2).
�3�1 is concentrated at epithelial cell bases and also (with lower expression levels) at lateral
and apical surfaces (unpublished observations). Mice lacking the �3 subunit have defects
in branching morphogenesis in the lung and kidney (Kreidberg et al., 1996). Furthermore,
these animals have dramatic defects in the structural organization of epithelial basement
membranes (DiPersio et al., 1997). These observations led to identification of a role for
�3�1 in organizing basement membranes into ordered structures. Studies with isolated
cells from �3-deficient mice demonstrated an important role for �3�1 in epithelial cell
migration (Hodivala-Dilke et al., 1998). �6�4 is restricted to the cell–substratum surface
of basal cells, where it serves as a major component of hemidesmosomes (Stepp et al.,
1990) (discussed below). �2�1 is thought to interact with collagen IV (a common basement
membrane constituent), but its preferred ligands are other collagen isoforms, e.g. collagen
I (Kern and Marcantonio, 1998). Furthermore, diffuse surface expression of �2�1 suggests
other functions, and possibly other biologically important ligands. While �2�1 and �3�1
have been suggested to play roles in homotypic cell–cell interactions in epithelia (Carter
et al., 1990), this has not been demonstrated in experimental models (Weitzman et al.,
1995). Furthermore, mice lacking either �3 or �2 have not been described to have defects
in epithelial cell–cell interactions (Kreidberg et al., 1996; Holtkotter et al., 2002).

The other integrins that are expressed on basal airway epithelial cells, �5�1 (the original
‘fibronectin receptor’), �9�1� �v�5� �v�6, and �v�8, recognize a wide array of ligands
that are not components of healthy epithelial basement membranes. Many of the ligands
recognized by these integrins (e.g., fibronectin, tenascin C, and osteopontin) are among the
most highly-induced proteins at sites of epithelial injury (Young et al., 1994; Weinacker
et al., 1995). Vitronectin, the best characterized ligand for �v�5, is principally a plasma
protein and therefore, is also likely to be enriched in the airway after injury or other increases
in vascular permeability. In addition, �5�1, which is generally not present in healthy adult
airway epithelium in vivo, is rapidly induced by epithelial injury (Pilewski et al., 1997)
(Figure 2.3). Thus, these integrins appear to be good candidates to serve as sensors that
allow epithelial cells to rapidly detect and respond to ECM changes that accompany lung
and airway inflammation and injury.

Integrins as regulators of cell proliferation

Integrins play critical roles in regulating cell proliferation (Guadagno et al., 1993). Most
adherent cells are incapable of proliferating without signals from the ECM that are trans-
mitted through integrins. Integrins are frequently enriched within membrane microdomains
containing other cell surface receptors (e.g., growth factor receptors) that contribute to
cell proliferation. These microdomains include structures called focal adhesions (FAs)
(Figure 2.1), regions of close apposition to the underlying matrix organized around links
between integrins and the ends of actin filaments. FAs contain large numbers of adaptor
proteins, signalling kinases, and other signalling pathway components. Although signals
initiated by integrins have been shown to enhance cell proliferation in vitro without addition
of exogenous, soluble growth factors, it is likely that these results are explained, in part,
by autologous production of growth factors by the cultured cells. Ligation of integrins can
activate several kinases known to be activated by growth factor receptors, including Src, Ras
(Schlaepfer et al., 1994), and mitogen-activated protein (MAP) kinases (Chen et al., 1994).
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Figure 2.3 Changes in the level and distribution of airway epithelial integrin expression in response
to injury. Depicted are normal, uninjured epithelium (Normal Epithelium), and a theoretical site of
denudation (Epithelial Wound). Differential integrin expression is seen between (1) normal columnar
and (2) basal cells, and (3) epithelial cells at the wound site associated with a provisional extracellular
matrix. �6�4 is restricted to the cell–substratum surface of basal cells, where it serves as a major
component of hemidesmosomes. �3�1 is concentrated at the basal surface, but is also expressed
at lower levels around the lateral and apical surfaces of cells throughout the epithelium. �5�1 is
expressed only at the injury site. Expression of �2�1� �3�1� �6�4� �v�5, and �v�6 are dramatically
upregulated along the injured surface

A specific subset of integrins (including �1�1� �5�1, and �v�3) can induce, or enhance,
cell proliferation through interaction of the � subunit cytoplasmic domain with caveolin-1, a
membrane protein that plays a role in organizing membrane microdomains. In this pathway,
caveolin-1 recruits the Src family kinases, Yes or Fyn, which recruit the adaptor protein
Shc, that in turn leads to recruitment and activation of the well-characterized Ras pathway
(Wary et al., 1998).
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Transgenic mice expressing �1, alone or in combination with subunits �2 or �5, in
suprabasal keratinocytes exhibit epidermal hyper-proliferation, a prominent feature of the
human skin disease psoriasis (Carroll et al., 1995). However, several studies have also
suggested that overexpression of �5�1 can inhibit cell proliferation (Giancotti and Ruoslahti,
1990; Varner et al., 1995). One mechanism by which such inhibition occurs has been
demonstrated in studies utilizing the colon carcinoma cell line HT-29, a cell line that
normally does not express �5�1. Heterologous expression of �5�1 in these cells dimin-
ished their proliferative capacity, an effect that appeared to involve cellular quiescence
induced by the growth arrest specific gene gas-1 (Varner et al., 1995). Interestingly, this
effect was a consequence of expression of unligated integrin, since plating of transfected
cells on dishes coated with the �5�1 ligand fibronectin reversed gas-1 induction and
growth inhibition. If a similar pathway is operative in normal epithelial cells, the combined
effects of the growth-promoting role of ligated integrin and the growth inhibitory role of
unligated integrin would provide an elegant mechanism by which cells in normal adult
epithelia (which would not be in contact with fibronectin) are kept out of the cell cycle,
while cells at sites of injury (where fibronectin in greatly enriched) can be stimulated to
proliferate.

Integrins as regulators of epithelial cell survival

Nontransformed epithelial cells cannot survive in the absence of anchorage to the ECM
and die by apoptosis soon after detachment, a process that has been termed anoikis (Frisch
and Francis, 1994). This process, like the withdrawal of growth and survival factors from
other primary cells, is mediated, at least in part, by activation of a cascade of caspase
proteases that lead to rapid and efficient cell death. Epithelial cells are thus primed to
activate a classical caspase-mediated execution program; ligated integrins appear to deacti-
vate this program. Anoikis likely plays the important role of preventing detached epithelial
cells in hollow organs such as the lung or gastrointestinal tract from reattaching at inap-
propriate sites. However, anoikis does not appear to be a universal feature of all epithelia.
For example, rather than die in this absence of input from integrins, keratinocytes termi-
nally differentiate and begin the process of keratinization (Watt, 2002). In the mammary
gland, where involution is a normal phenomenon that follows termination of breast-feeding,
apoptosis in the involuting gland is associated with degradation of the stromal matrix by
metalloproteinases, a process that presumably results in unligated integrins. Indeed, in this
system, apoptosis can be induced either by antibodies to �1 integrins or by overexpression
of the matrix-degrading protease stromelysin-1 in the absence of obvious cell detachment
(Boudreau et al., 1995).

Role of integrins in epithelial cell polarity

In vivo, surface epithelial cells, including those lining the conducting airway and alveoli
of the lung, are polarized and establish specialized structures along their basal, lateral, and
apical surfaces. Establishment of appropriate epithelial polarity requires input from integrins
(Ojakian and Schwimmer, 1994). In most epithelia, normal polarity is principally dependent
on interactions between integrins and the basement membrane constituent laminin (Sorokin
et al., 1990). Furthermore, many of the normal differentiated functions of epithelial cells
cannot be induced in nonpolarized cultures (Streuli et al., 1991). Considerable insight into
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the mechanisms underlying establishment of polarity has come from studies of mammary
gland epithelial cells. In tissue culture, these cells can be induced to form polarized glandlike
structures with a central lumen by overlaying cultures with epithelial-derived basement
membrane proteins, or with purified laminin (Muschler et al., 1999). Only under these
circumstances will mammary epithelial cells fully differentiate in response to lactogenic
hormones. These responses to laminin are mediated by input from both �3�1 and �6�4, as
well as other nonintegrin receptors (Muschler et al., 1999).

Renal epithelial cells (MDCKs) can also be induced to form polarized structures containing
an apical epithelium facing a lumen if they are plated in a three-dimensional culture environ-
ment. In this case, MDCK cells produce their own laminin and organize it into a basement
membrane along the basal surface utilizing �3�1. Studies utilizing inducible forms of the
small GTPase Rac1 have demonstrated a critical role for Rac1-induced reorganization of the
actin cytoskeleton in establishing epithelial polarity (O’Brien et al., 2001). A similar role for
polarity in secretory cell differentiation has been demonstrated in serous cells derived from
airway submucosal glands, which require input from a �1-integrin and laminin to express
their differentiated secretory cell phenotype (Tournier et al., 1992).

Integrin-mediated activation of transforming growth factor (TGF)-�

As noted above, integrins can interact with a wide variety of extracellular ligands. Although
integrin ligation is usually thought of as a mechanism that induces signals in the integrin-
expressing cell, it has recently been recognized that integrins can also modify the conforma-
tion of extracellular ligands. One of the most dramatic examples of this is integrin-mediated
activation of TGF-�. TGF-� is secreted as a latent complex composed of the mature cytokine
and an N-terminal fragment of the same gene product assembled as a noncovalently-
associated double homodimer. In this form, TGF-� is unable to bind to its receptors and is
therefore considered latent. Most tissues, including the lung, contain large amounts of this
latent complex that is stored and chemically cross-linked to components of the ECM. Thus,
much of the regulation of the biological effects of TGF-� involves extracellular activation
of these latent complexes. At least two integrins that are expressed on lung epithelial cells,
�v�6 (Munger et al., 1999) and �v�8 (Mu et al., 2002), bind to the latency associated
peptide of TGF-�1 and TGF-�3 and can induce activation of latent complexes. In the case
of �v�6, this pathway has been shown to be critically important in in vivo models of
pulmonary fibrosis (Munger et al., 1999) and acute lung injury (Pittet et al., 2001). Mice
deficient in the �v�6 integrin develop low-grade pulmonary inflammation and macrophage
activation, suggesting that this integrin plays a critical role in maintaining normal lung
homeostasis. Rescue experiments showed that limited transgenic expression of �v�6 in a
subset of alveolar epithelial cells was sufficient to prevent pulmonary inflammation and
macrophage activation (Huang et al., 1998). Lifelong absence of �v�6 results in persistent
over-expression of matrix metalloproteinase (MMP)-12 in alveolar macrophages, and even-
tual development of age-related emphysema (Morris et al., 2003). This suggests that acquired
or inherited abnormalities in �v�6, TGF-�, and other components of this signalling pathway
could contribute to the development of emphysema. �v�6 also appears to play a critical
role in maintaining the normally blunted inflammatory response in alveolar epithelial cells;
this process can be transiently overcome by ligation of toll-like receptors on macrophages
(e.g. in response to alveolar infection), a process that involves rapid down-regulation of
�v�6 expression (Takabayshi et al., 2006). All of the effects described above appear to be
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regulated by �v�6 expressed on alveolar epithelial cells. The in vivo significance of �v�6
and �v�8 that is expressed on epithelial cells in the conducting airway is less clear. �v�8
has been shown to play an important role in inhibiting the proliferation of cultured airway
epithelial cells, an effect that appears to be due to its ability to activate TGF-� (Fjellbirkeland
et al., 2003).

Integrins in repair of wounded epithelia

Surface epithelia all have the capacity to repair areas of denudation (Chapter 4). This process
involves at least three functional changes in epithelial cells involved in repair: spreading,
migration, and proliferation. Each of these processes requires integrins. The effects of
wounding on local expression of integrins and their ligands have been most extensively
studied in squamous epithelia, such as the skin. Cutaneous wounds contain a provisional
matrix that is rich in the integrin ligands fibronectin, osteopontin, and tenascin. In response
to epithelial injury, there are dramatic changes in both the spatial distribution and level of
expression of epithelial integrins. Expression of �2�1� �3�1� �5�1� �6�4� �v�5, and �v�6
are dramatically upregulated along the injured surface (Larjava et al., 1993) (Figure 2.3).
Tightly-regulated spatial and temporal patterns of expression for each of these integrins
suggest that each might play a unique role in orchestrating normal healing. However, there
must also be substantial redundancy in this process, since inactivation of single integrins
(e.g., �v�5 (Huang et al., 2000) or �v�6) or even two integrins simultaneously (e.g., �v�5
and �v�6; unpublished observations) does not lead to significant impairment in the rate or
quality of cutaneous wound healing.

The most careful study of the effects of airway epithelial wounding on integrin expression
was performed utilizing human bronchial grafts placed under the skin of severe combined
immune deficiency (SCID) mice (Pilewski et al., 1997). In this system, the pattern of
integrin expression seen in the absence of injury was quite similar to the pattern seen
in normal human airway. After injury, the most prominent changes were upregulation of
�5�1� �v�5, and �v�6 expression along the wound edge. As in cutaneous wounds, �2�1
and �6-containing integrins were diffusely expressed on cells above the basal layer. The
relevance of these findings to in vivo injury in humans was confirmed by the observation
that integrin expression in airway from patients with cystic fibrosis was similar to that seen
in the injured xenografts (Pilewski et al., 1997).

In vitro studies have also identified a role of integrin-mediated TGF-� activation in
sheet migration and closure of wounded airway epithelium. Both �v�6 and �v�8 can be
‘activated’ by mechanical scratch wounds of cultured airway epithelial cells and contribute
to activation of locally produced TGF-�1 (Neurohr et al., 2006). Under these condi-
tions, TGF-� inhibits the rate of sheet migration and wound closure independent of any
effects on cell proliferation. Interestingly, blockade of �v�8 enhances the rate of wound
closure under these conditions, whereas blockade of �v�6 has no effect. This appears to
be due to a TGF-�-independent role of �v�6 in accelerating the rate of epithelial sheet
migration.

Roles of integrins in epithelial neoplasia

Initial efforts to understand the roles that integrins might play in the development of epithe-
lial tumours involved descriptive immunohistochemistry. Descriptions of integrin staining
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in lung cancers, for example, have shown qualitatively similar integrin repertoires between
squamous, adeno-, and large cell carcinomas and normal bronchial epithelium, while bron-
chioloalveolar carcinoma (BAC) integrin expression paralleled that of the alveolar epithelium
(e.g. by its strong expression of �1�1 and �3�1) (Koukoulis et al., 1997). However, it
soon became apparent that the changes in integrin protein expression in epithelial tumours
are complex and heterogeneous. As noted above, many primary epithelial cells undergo
apoptosis in response to loss of integrin ligation. However, in most epithelial cancers, loss
of integrin ligation does not induce apoptosis, suggesting that carcinomas do not require
input from integrins to survive. Similarly, carcinomas do not appear to require anchorage
(i.e., integrin dependence) for growth. By anchoring epithelial cells to the normal base-
ment membrane, integrins could impede tumour cell migration and subsequent invasion and
metastasis. It is not surprising, therefore, that a general decrease in integrin expression is
seen in many invasive carcinomas. However, since integrins can also enhance growth factor-
mediated proliferation, provide traction for cell migration through the ECM, and localize
matrix-degrading proteases to the leading edge of migrating cells (Brooks et al., 1996), it
is also not surprising that many epithelial tumours utilize integrins to enhance their growth
and/or invasion. In at least one case, the same integrin ��6�4	 that restricts movement of
normal epithelial cells through hemidesmosome anchorage is utilized by malignant epithelial
cells to support migration and invasion (Chao et al., 1996; Gambaletta et al., 2000). In this
case, a key step is the redistribution of �6�4 from hemidesmosomes to the leading edge, an
otherwise normal homeostatic mechanism that supports migration of epithelial cells at the
wound edges.

The integrin �v�6 also appears to modify malignant transformation and enhance the
growth and invasion of epithelial tumors (Xue et al., 2001). In this case, �v�6 affects both
functions through different mechanisms. In the early stages of malignant transformation the
cytoplasmic domain of the �6 subunit specifically supports tumour cell proliferation, both
in vivo and in vitro, and also induces expression of the metalloprotease MMP-9 (Thomas
et al., 2001), which enhances tumor cell invasion.

2.3.2 Hemidesmosomes

Hemidesmosomes are specialized junction structures that mediate epithelial cell–substratum
adhesion in stratified squamous, transitional, and pseudostratified epithelia. Hemidesmo-
somal ultrastructure reveals small electron-dense domains in the plasma membrane composed
of an inner and an outer plaque, and a sub-basal dense plate (Figure 2.1). The inner plaque
serves as an anchorage site for intracellular IFs. Hemidesmosomes are best described in
the skin, where they provide stable adhesion of the epidermis to the underlying dermis,
conferring resistance to mechanical stress (Borradori and Sonnenberg, 1999).

Although hemidesmosomes, like desmosomes, are linked to the IF system, they do not
contain desmosomal proteins such as PG, desmosomal cadherins Dsg and Dsc, plakophilins
(PPs), or the plakins DP, envoplakin, or periplakin. They do, however, contain integrin
�6�4, the type XVII collagen bullous pemphigoid antigen (BP)180, the tetraspanin, CD151,
and two plakin family members plectin and BP230.

Integrin �6�4 links hemidesmosomes to a major component of the basement membrane,
laminin-5 (also referred to as laminin-322), whereas plectin and BP230 link hemidesmosomes
to IFs. Mice homozygous for null mutations of either the �6 or the �4 subunit die soon after
birth with severe blistering of the skin (Georges-Labouesse et al., 1996; van der Neut et al.,
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1996). A severe blistering disease has also been identified in a human infant homozygous
for a mutation of the �6 subunit (Ruzzi et al., 1997). Two mutations identified in the �4
gene of patients with a nonlethal form of junctional epidermolysis bullosa (JEB) disrupt its
binding to plectin (Rezniczek et al., 1998). When �4 cannot bind to plectin, neither BP180
nor BP230 are efficiently recruited into hemidesmosomes (Schaapveld et al., 1998). Plectin
gene mutations have also been associated with human skin fragility, though not to the degree
observed in plectin-deficient mice (Andra et al., 1997; Koss-Harnes et al., 2002).

Another laminin-binding integrin on human keratinocytes, �3�1, is strongly associated
with CD151, with which it forms ‘pre-hemidesmosomal’ clusters at the basal cell surface
(Sterk et al., 2000). CD151 then binds to �6 to become a component of mature hemidesmo-
somes, while �3�1 is recruited into FAs or redistributed to cell–cell contacts. Although
�3�1 does not appear to directly participate in hemidesmosome assembly, it might, together
with other �1-containing integrins, contribute to their formation by affecting localiza-
tion of �6�4. In �1-deficient mice, hemidesmosome numbers are reduced, which seems
to correlate with their observed phenotype of skin thickening and blistering (Brakebusch
et al., 2000).

Regulated hemidesmosome disassembly is thought to be important in cellular processes
including cell migration and differentiation. Proposed regulatory mechanisms for disas-
sembly of kertinocyte hemidesmosomes include epidermal growth factor-(EGF)-induced
phosphorylation of �4 by Fyn (a pathway that was shown to regulate experimental metas-
tases formation) (Mariotti et al., 2001) and �4 phosphorylation by PKC� (and possibly other
kinases), resulting in loss of interaction with plectin (Rabinovitz et al., 2004).

Previously, it was thought that pulmonary epithelial hemidesmosomes occurred exclu-
sively between basal cells and the underlying basement membrane; the few columnar
cells reaching down to the basement membrane were thought to be anchored in place,
rather, through desmosomal attachments to the basal cells (Michelson et al., 2000). More
recently, normal human bronchial epithelial (NHBE) cells have been shown to express
�6�4, hemidesmosome-associated structural proteins bullous pemphigoid antigen (BPAG)-1
and -2, and to produce laminin-5. Bronchial biopsy specimens have also been shown to
contain laminin-5 in their basement membranes, and BP230, BP180, and �6�4 at epithelial
cell-ECM junctions. Furthermore, ultrastructural imaging has revealed structures resembling
intact hemidesmosomes (Michelson et al., 2000).

2.4 Conclusion

The pulmonary epithelium is no longer known simply as a passive protective barrier. It
is now recognized as a highly organized, multifunctional tissue that plays critical roles in
normal and pathologic function throughout the entire respiratory system. Epithelial struc-
tures first visualized over a century ago and dramatically revisited by EM in the 1960s
spawned an important and expanding area of research – defining epithelial cell–cell and
cell–substratum interactions. Significant advances in knowledge have been made in the iden-
tification and characterization of critical adhesion structures including TJs, AJs, desmosomes,
and hemidesmosomes and specific adhesion molecules like integrins. These structures and
their functional components have since been shown to have critical roles in myriad functions
including maintenance of epithelial cell differentiation, proliferation, repair, polarity, para-
cellular barrier function and ion selectivity, regulating organ morphogenesis and repair, and
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determining tumour malignant and metastatic potential. Many of these structures have now
been identified in the pulmonary epithelium. Elucidating details of these adhesion structures
and molecules and their functions promises to provide wide-ranging insights into pulmonary
health and disease.
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The Epithelium as a Target

Louise E. Donnelly
National Heart and Lung Institute, Imperial College London, UK

3.1 Introduction

The epithelial cells that line the airway consist of several different types including ciliated
columnar cells, basal cells and secretory/goblet cells. The distribution pattern of the different
types of epithelial cells changes from the bronchi down to the alveoli. In the bronchi, the
airway epithelium consists of ciliated epithelial cells, goblet cells and a few Clara cells,
whereas in the small airway the cells are less columnar and more cuboidal with increased
numbers of Clara cells. This array of cell types forms the airway epithelium and is the first
line of defence against airborne agents including allergens and irritants. Furthermore, these
cells not only form a physical barrier between the airway lumen and the interstitium but
they also have the capacity to exhibit many pro- and anti-inflammatory features and may
actively participate in the inflammatory processes in the lung. Therefore, any disruption
of the normal functioning of the airway epithelium could contribute to and /or exacerbate
disease processes in the lung. Exactly how the airway epithelium is modified or damaged
in inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease is
currently under investigation. This chapter will describe the mechanisms of damage to the
airway epithelium and how these contribute to disease pathophysiology.

3.2 Asthma

Shedding of the airway epithelium is a common histological feature observed in biopsies
obtained from asthmatic patients (Jeffery, 2004). Although this desquamation is variable
in mild asthmatics and may be due to sampling techniques (Ordonez et al., 2000), the
presence of epithelial cells in induced sputum from asthmatic patients (Creola bodies) and the
correlation of epithelial shedding with airway hyperresponsiveness in more severe disease
(Jeffery et al., 1989; Tateishi et al., 1996) would suggest that damage to the epithelium
contributes to the underlying pathophysiology of asthma.
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The mechanism of this heightened responsiveness associated with epithelial shedding is
unclear, but compromised integrity of the airway barrier may increase the sensitivity of the
airway to various stimuli including neuropeptides such as substance P (Joos et al., 1994).
Similarly, alteration of the epithelium could increase permeability of the airway mucosa and
exacerbate exudation of plasma into the airway (Goldie and Pedersen, 1995). In addition,
the presence of Th2 lymphocytes in the airway of these patients (Robinson et al., 1992,
1993) would suggest a predominance of Th2 cytokines, including interleukin (IL)-4 and
IL-13 (Wong et al., 2001), which have profound effects on the airway epithelium causing
these cells to release chemotactic agents including eotaxin (CXCL11) (Li et al., 1999), and
to stimulate mucin production (Wu et al., 1990).

3.2.1 Allergen exposure

Asthma exacerbations are triggered by a number of stimuli including viral infections, cold
air, pollution and exercise, but allergen exposure is one of the most prevalent factors associ-
ated with the development of asthma, and with the frequency of subsequent exacerbations.
The airway epithelium is the first target for inhaled allergens. These cells cannot process
allergen but are capable of trafficking these particles such that the allergen translocates
from the airway lumen to the submucosa where it can come into contact with underlying
antigen presenting cells, including dendritic cells (Mattoli, 2001). In asthma, where the
epithelial layers have become denuded, these particles may interact directly and stimulate
the mucosa and possibly the airway smooth muscle. Some of the most common allergens are
derived from house dust mite, Dermatophagoides pteronyssinus, and include the proteases
designated (Der p) proteins. A number of studies have examined the effects of these Der
p proteins on airway epithelium and demonstrated disruption of the tight junctions between
the epithelial cells via their innate protease activity (Kauffman et al., 2006; Page et al.,
2006). Thus, allergen exposure to the epithelium can contribute to epithelial shedding
(Herbert et al., 1995) and hence facilitate trafficking of the allergens (Wan et al., 1999).
Indeed, avoidance of the allergen can reduce epithelial cell numbers in induced sputum from
asthmatic children (Piacentini et al., 1998) further supporting the hypothesis that damage
to the epithelium in asthma is driven by allergen challenge. It is, therefore, conceivable that
allergen could stimulate directly the airway smooth muscle. Indeed, it has been demonstrated
that exposure of airway smooth muscle to Der p1 will enhance smooth muscle constrictor
responses and lead to activation of mitogen-activated protein (MAP) kinase pathways which
in turn could regulate inflammatory mediator production (Grunstein et al., 2005).

Allergen-driven epithelial responses include the production of IL-8 (CXCL8) and IL-6
following stimulation with Der p1 and Der p5 proteins (Adam et al., 2006; Asokananthan
et al., 2002; Kauffman et al., 2006). These allergen-derived proteases exert their effects on
the airway epithelium via activation of the protease-activated receptors (PAR), in particular
PAR-2 (Asokananthan et al., 2002). Similar responses have been observed when airway
epithelial cells were exposed to other allergens derived from German cockroach extracts
that again mediate the release of IL-8 (Hong et al., 2004; Page et al., 2003). Activation
of the epithelial cell layer with these antigens is also dependent upon activation of PAR-2
(Hong et al., 2004; Page et al., 2003); however, PAR-independent pathways leading to
cytokine production also exist, but the relative importance of each pathway is yet to be
evaluated (Adam et al., 2006; Kauffman et al., 2006). Stimulation of the airway epithelium
with allergen could contribute to the increased inflammatory cell influx associated with the
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underlying chronic inflammation observed in asthma. For example, Der p induces the release
of CCL17 (thymus and activation regulated chemokine – TARC) from epithelial cells, the
levels of which can be further enhanced when co-stimulated with IL-4 and transforming
growth factor (TGF)� (Heijink et al., 2006). CCL17 is a ligand for the chemokine receptor
CCR4 which is expressed by T-lymphocytes, therefore allergen stimulation of the epithelium
could drive the inflammatory process in asthma directly. Similarly, antigen stimulation of
the epithelium leads to the production of the potent neutrophil chemoattractant, IL-8 (Adam
et al., 2006; Page et al., 2003), thereby regulating neutrophil trafficking into the airway.

3.2.2 Inflammatory cells

The inflammatory influx observed in the lungs of asthmatic subjects is characterized by
increased numbers of eosinophils, mast cells, and T-lymphocytes following allergen chal-
lenge (Bousquet et al., 2000). Indeed, the numbers of eosinophils in bronchoalveolar lavage
(BAL) correlates with the numbers of epithelial cells present, suggesting an association
between eosinophilic inflammation and epithelial damage (Oddera et al., 1996).

Following allergen challenge, eosinophils will migrate towards the airway lumen and
are located at the sites of epithelial damage (Erjefalt et al., 1997). Although such studies
cannot exclude the possibility that the eosinophil may be participating in the repair process,
the observation that co-culture of eosinophils with bronchial epithelial cells leads to CD18-
dependent degranulation of the eosinophil and the release of cytotoxic mediators including
eosinophil cationic protein (ECP), major basic protein (MBP) and eosinophil-derived neuro-
toxin (Takafuji et al., 1996) would suggest that eosinophils are involved in damage of the
airway epithelium in asthma. Furthermore, the presence of increased levels of IL-5 in the
airway of asthmatic subjects promotes the adhesion of eosinophils to the airway epithelium
via upregulation of CD18 and �4 integrins (Sanmugalingham et al., 2000). Interestingly,
activation of co-cultures of eosinophils and epithelial cells with Der p1 antigens increases
epithelial expression of ICAM-1 and a concomitant induction of CD18 and ICAM-1 by
eosinophils, thus mediating the adhesion of these cells leading to production of IL-1�,
IL-6, IL-10, tumour necrosis factor (TNF)-� and granulocyte macrophage-colony stimulating
factor (GM-CSF) via NF-�B, AP-1 and p38 MAP kinase dependent mechanisms (Wong
et al., 2006).

Such activation of eosinophils can drive both apoptosis and necrosis of human primary
airway epithelial cells in vitro but despite the fact that other cytotoxic molecules are
released following degranulation of the eosinophil, apoptosis of the airway epithelium is
thought to be mediated mainly via the production of TNF-� from these cells (Trautmann
et al., 2002). This then leads to the possibility that other inflammatory cells in the asth-
matic airway such as macrophages and mast cells could contribute to epithelial cell death
via the production of TNF-�. Furthermore, this effect is potentiated by the presence of
interferon (IFN)-� and has led to the observation that T-cells and eosinophils co-operate
to induce epithelial damage (Trautmann et al., 2002). Despite such compelling evidence,
whether eosinophils are responsible for epithelial damage remains controversial since murine
models of eosinophilic inflammation do not show any alteration in epithelial fragility (Blyth
et al., 1996).

Other inflammatory cells that will contribute to the damaged epithelium include
neutrophils. In children undergoing acute exacerbations, epithelial damage is associated with
an increase in IL-8 but not with an enhanced eosinophilic signal (Yoshihara et al., 2006).
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Moreover, in severe asthma there is a marked increase in the presence of neutrophils in
the airway (Wenzel, 2003) suggesting an altered pathophysiology compared to less severe
asthma. Neutrophils contain azurophilic granules that release proteases including neutrophil
elastase, cathepsin G and proteinase-3 that can damage the airway epithelium. Moreover,
the persistence of neutrophils may be enhanced since the airway epithelium is not capable of
phagocytosis of apoptotic neutrophils, which contrasts with its ability to remove apoptotic
eosinophils (Sexton et al., 2004). The effects of neutrophils on the airway epithelium may
be potentiated during viral induced exacerbations. Infection of the airway epithelium with
respiratory syncytial virus (RSV) enhances neutrophil adhesion and increased damage and
epithelial shedding (Wang et al., 1998). The mechanisms for these interactions include the
RSV-induced upregulation of neutrophil chemoattractants in the epithelium, together with
increased expression of adhesion molecules, including ICAM-1 on the airway epithelium
and CD18 on the neutrophil, leading to activation of neutrophils and release of cytotoxic
mediators including proteases (Wang and Forsyth, 2000).

3.2.3 Glucocorticosteroids

Glucocorticosteroids are the mainstay of anti-inflammatory therapy in asthma. These drugs
can reduce the inflammation in the airway by promoting apoptosis of eosinophils and
T-lymphocytes thus reducing the inflammatory load (Meagher et al., 1996; Melis et al.,
2002; O’Sullivan et al., 2004). However, while controversial, it has been reported that
glucocorticosteroids also induce apoptosis in airway epithelial cells (Dorscheid et al., 2001;
White and Dorscheid, 2002), raising the prospect that this treatment could be responsible
for the persistence of epithelial damage observed in patients with chronic asthma. Recently,
combination therapies of �2-adrenoceptor agonists and glucocorticosteroids have been shown
to be more effective at reducing the inflammatory load in moderate asthma when compared
with inhaled steroids alone (Ankerst, 2005; Currie et al., 2005). This may be of benefit to
the airway epithelium as the apoptotic effect of glucocorticosteroids can be reduced by co-
administration of �2-adrenoceptor agonists (Tse et al., 2003), thus the combination therapies
currently available may prevent epithelial damage in these patients.

3.3 Alteration in epithelial cell type distribution

A clear feature of asthma is increased expression of mucin reflecting changes in goblet
cells or submucosal gland function (Rogers, 2002). Goblet cell hyperplasia is observed in
the large airway in asthmatic subjects (Shimura et al., 1996), with up to threefold more
cells in bronchial biopsies of subjects with mild asthma compared with control subjects
(Ordonez et al., 2001). Whether this increase in goblet cell number reflects basal epithelial
cell differentiation or goblet cell division remains to be elucidated. However, in most cases
the source of goblet cells is via differentiation of non-granulated epithelial cells (Rogers,
2002) but whether this occurs during disease pathology is not known. Currently, there is little
evidence in asthma that this increase in goblet cell number reflects a loss in the numbers
of progenitor cells such as the basal cells, surface epithelial serous cells or Clara cells.
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An alteration in Clara cell number could alter the host response of the airway as these cells
are responsible for the production of a number of anti-inflammatory molecules including
lactoferrin and secretory leukocyte protease inhibitor (Rogers, 2002).

3.4 Overview of epithelial damage in asthma

There are clearly a number of factors that contribute to epithelial dysfunction in asthma.
Whether allergens, pollutants or infectious agents are the initiating factor for epithelial
damage in asthmatic subjects is unknown, but they certainly can work alone or in concert
to promote epithelial fragility (Figure 3.1). This can, in turn, promote leukocyte influx and
mediate the chronic inflammation observed in the asthmatic lung (Figure 3.1), which can also
contribute to epithelial damage. This cycle of epithelial damage and inflammation should be
ameliorated by anti-inflammatory agents; however, since glucocorticoids may also promote
epithelial cell apoptosis, it appears that alternative anti-inflammatory strategies are warranted
to maintain epithelial integrity in the asthmatic airway.
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Figure 3.1 Putative mechanisms of epithelial damage in asthma. Allergens, pollutants or infec-
tious agents such as viral particles can adhere to the airway epithelium and mediate permeability of
tight junctions and stimulate the release of inflammatory mediators leading to epithelial shedding
and inflammatory cell recruitment. Various inflammatory subtypes are recruited into the intraepithe-
lial spaces and stimulate the epithelium, enhancing inflammatory mediator production. Subsequent
activation of the inflammatory cells leads to the release to cytotoxic substances that mediate the
apoptosis or necrosis of the airway epithelium, thus contributing to the cycle of epithelial damage
and inflammation observed in asthma
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3.5 Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that
is largely irreversible (GOLD, 2001) and is associated with an underlying inflammation
consisting predominantly of macrophages, T-lymphocytes and neutrophils (Donnelly and
Barnes, 2006). The major cause of COPD is cigarette smoking but only approximately
15–20% of smokers will develop this disease (Lindberg et al., 2006). Unlike asthma, the
airway epithelium is not denuded in COPD; however, there is marked goblet cell hyper-
plasia and squamous metaplasia (Jeffery, 2004). In addition, the amount of mucin stored
within these cells is also increased and shows a correlation with airflow obstruction (Innes
et al., 2006).

Airway epithelial cells from COPD patients have been shown to exhibit differential
patterns of gene expression when compared with cells from smokers without COPD and cells
from nonsmokers (Pierrou et al., 2006). These differences were mainly reflected in genes
regulating oxidant stress responses, and these responses were reproduced when cells were
cultured in vitro and exposed to cigarette smoke extract (CSE) (Pierrou et al., 2006). Studies
examining airway epithelial cells derived from bronchial brushings from these patients have
also shown differences in inflammatory mediator expression when compared with cells
obtained from asymptomatic smokers and from nonsmokers. For example, transforming
growth factor (TGF)� expression is increased in small airway epithelial cells and correlates
with obstruction and smoking history (Takizawa et al., 2001). Culture of airway epithelial
cells from these patients also shows an enhanced response to inflammatory stimuli. For
example, stimulation of these cells with TNF� leads to increased release of IL-8 and IL-6
by cells from COPD patients compared with smokers with normal lung function (Patel et al.,
2003). Similarly, exposure of cells to a combination of TNF� and IFN� also demonstrated
increased expression of IL-8 and a second neutrophil chemoattractant CXCL1 (growth-
related oncogene-� – GRO�) (Schulz et al., 2004). Such observations have led to studies
examining the effects of the major stimulus in COPD, namely cigarette smoke, usually
in the form of CSE, on inflammatory gene expression and mediator release by airway
epithelial cells.

3.6 Effect of cigarette smoke

Exposure of bronchial epithelial cells to CSE increases release of IL-8 (Glader et al., 2006;
Mio et al., 1997). By contrast, IL-8 release is inhibited following exposure of type II
alveolar epithelial cells to CSE (Witherden et al., 2004), suggesting differential responses of
pulmonary epithelial cells could regulate the inflammatory influx observed in COPD. IL-8
is a neutrophil chemoattractant and a marked neutrophilia is observed in the large airway
of these patients and is reflected by increased neutrophil numbers in the induced sputum of
these patients when compared with smokers and nonsmokers (Keatings et al., 1996; Traves
et al., 2002). This neutrophilia is not observed in bronchoalveolar lavage samples which are
thought to reflect the alveolar airspaces (Traves et al., 2002). Therefore, release of IL-8 from
the bronchial epithelium following stimulation with cigarette smoke could be responsible
for the neutrophil influx in the large airway but not in the alveoli.

CSE also affects other aspects of epithelial cell function including stimulation of prolif-
eration at low concentrations via the activation of ERK MAP kinases (Luppi et al., 2005);
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however, increasing concentrations of CSE led to inhibition of this response and activation
of the p38 MAP kinase pathway (Luppi et al., 2005) with inhibition of the release of TGF-�
and fibronectin, thereby inhibiting the epithelial repair process (Wang et al., 2001). However,
the relevance of the concentrations of CSE to exposure of the airway epithelium to cigarette
smoke in smokers is not known. In an attempt to address this problem, other workers have
developed methodologies to expose airway epithelial cells to cigarette smoke directly.

Exposure of epithelial cells to cigarette smoke leads to activation of p38 MAP kinase
and the transcription factor NF-�B (Beisswenger et al., 2004) suggesting that smoke can
directly stimulate cells to produce inflammatory mediators. Additionally, exposure of cells
to cigarette smoke increased the permeability of the epithelial cell layer but this effect
was increased in cells from COPD patients compared with cells with normal lung function
(Rusznak et al., 2000). Moreover, expression of IL-1� and sICAM-1 by these cells was
also increased and associated with a concomitant decrease in intracellular glutathione levels,
suggesting that an oxidant stress mediates this response (Rusznak et al., 2000).

Cigarette smoke contains more than 4700 components therefore it is difficult to deter-
mine exactly which component is responsible for the observed effects of cigarette smoke.
Nevertheless, many studies have demonstrated that exposure of the epithelium to CSE
induces an oxidative stress (Bowler et al., 2004; Marwick et al., 2002; Moodie et al., 2004;
Rahman and MacNee 1999). Oxidants stimulate the airway epithelium via activation of
NF-�B leading to the expression of many inflammatory genes including IL-8 and matrix
metalloproteinase (MMP)-9 (Hozumi et al., 2001; Tomita et al., 2003); furthermore oxidant
exposure of cells leads to inactivation and down regulation of histone deacetylase (HDAC)-2
leading to glucocorticosteroid insensitivity (Ito et al., 2001, 2006; Tomita et al., 2003).
This may be a particularly important mechanism in COPD as the underlying inflamma-
tory response is steroid-resistant (Barnes, 2000b; Barnes et al., 2003; Culpitt et al., 1999;
Ito et al., 2001) and could be related to cigarette smoke exposure. Not only can cigarette
smoke mediate inflammatory responses in the airway epithelium, it can also potentiate the
effect of other damaging agents. For example, cigarette smoke potentiates the effect of
the house dust mite allergen, Der p1, to increase the permeability of the epithelial layer
and the release of inflammatory mediators including IL-8, IL-1� and sICAM-1 (Rusznak
et al., 2001, 1999).

3.7 Other causative factors

Cigarette smoke is not the only causative agent in the development of COPD. Burning
of biomass fuels and air pollutants have also been implicated in the aetiology of airflow
obstruction and chronic bronchitis (Ekici et al., 2005; Perez-Padilla et al., 1996), although the
exact mechanisms leading to the pathophysiology of the obstruction remain to be elucidated.
Ambient air pollution particles are also respirable and will target the epithelium.

3.7.1 Pollution

Experimental models of in vitro cell culture or explanted trachea have shown that the airway
epithelium is capable of taking up diesel exhaust particles by endocytic mechanisms (Boland
et al., 1999). Indeed, such particles can translocate through the epithelial layer into the
underlying submucosa and induce fibrosis in the airway wall (Churg and Wright, 2002).



64 CH03 THE EPITHELIUM AS A TARGET

These particles are not inert and generate an oxidative stress (Tao et al., 2003) together
with activation of NF-�B causing inflammatory gene transcription and potentiating the
inflammatory response leading to release of IL-1� and IL-8 (Boland et al., 1999; Churg
and Wright, 2002). Other atmospheric pollutants will also impact upon the responses of
the airway epithelium. For example, ozone and nitrogen dioxide will induce the release
of a variety of inflammatory cytokines from the airway epithelium and increase epithelial
permeability (Bayram et al., 2002; Bosson et al., 2003). Indeed, it has been proposed that
the release of Clara cell protein, CC16, can be used as a marker of ozone-induced lung
injury and can be measured in serum in the absence of other markers of epithelial damage
such as albumin in the bronchoalveolar lavage fluid (Blomberg et al., 2003).

3.7.2 Infection

The incidence and prevalence of bacterial infections are associated with an accelerated
decline in lung function in COPD (Donaldson et al., 2002). The major bacterial pathogens in
COPD are Haemophilus influenzae, Streptoccocus pneumoniae and Moxarella catarrhalis,
though exactly why COPD patients are more prone to these infections is unknown. In COPD
patients colonized with H. influenzae there is a neutrophil infiltration; however, defensins
released by neutrophils from these patients were incapable of killing this bacteria (Gorter
et al., 1998). Indeed, adhesion of H. influenzae to the epithelial cell surface was enhanced
by the presence of neutrophil defensins (Gorter et al., 1998). Moreover, exposure of the
epithelium to H. influenzae-derived proteins and the bacteria itself can stimulate the cells to
produce IL-8 via activation of the MAP kinase pathways (Wang et al., 2003) an effect that
can be potentiated in the presence of TNF-� via activation of NF-�B (Watanabe et al., 2004).
Similarly, H. influenzae and rhinovirus infection can enhance the expression of the neutrophil
chemoattractants IL-8, CXCL1 and CXCL5 and upregulate the expression of ICAM-1 and
toll-like receptor (TLR)-3 (Sajjan et al., 2006) which could increase the susceptibility of the
epithelium to enhanced adhesion and further activation.

3.8 Alveolar epithelial cell apoptosis – emphysema

A key feature of COPD is the development of emphysema (Barnes, 2000a). Emphysema
is the destruction of the alveolar airspaces, a key component of which is the apoptosis or
necrosis of alveolar epithelial cells. The turnover of the alveolar epithelium in patients with
emphysema is not well understood; however, biopsy studies have revealed there are enhanced
proliferative and apoptotic processes occurring in the alveolar epithelium from emphysema-
tous patients compared with tissue from asymptomatic smokers and nonsmokers (Yokohori
et al., 2004). Interestingly, increased levels of markers of epithelial cell apoptosis persist
following smoking cessation in patients with COPD suggesting that this effect may not be
related directly to smoking (Hodge et al., 2005). Exactly why the epithelium from emphy-
sematous patients shows increased turnover is not clear; however, mediators of epithelial
apoptosis are under investigation. Blockade of vascular endothelial growth factor (VEGF)
receptors leads to alveolar cell apoptosis and the development of emphysema in rat models
(Kasahara et al., 2000). Subsequently, it was proposed that oxidative stress could reduce the
levels of VEGF promoting apoptosis of the epithelium (Tuder et al., 2003). Cigarette smoke
could therefore contribute to alveolar apoptosis via increased oxidative stress; however, it
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is also possible that cigarette smoke induces necrosis of alveolar epithelial cells directly via
inhibition of caspases and thus contributes to the development of emphysema (Wickenden
et al., 2003).

Other mechanisms of epithelial cell apoptosis leading the development of emphysema
have also been proposed. There is an increase in the numbers of CD8+ T-lymphocytes
in the lungs of patients with COPD (Saetta et al., 1999). These cytotoxic T-cells cells
contain granzyme and perforins, which together with TNF-� can induce epithelial cell death
(Shinbori et al., 2004). The CD8+ T-cells in COPD lung express high levels of CXCR3
(Saetta et al., 2002). The three ligands for this receptor, CXCL9, CXCL10 and CXCL11
are all released by airway epithelial cells following stimulation with IFN-� (Cole et al.,
1998; Mohan et al., 2002; Sauty et al., 1999) and can be potentiated by TNF-� (Mohan
et al., 2002; Sauty et al., 1999). The concentrations of these cytokines are increased in
COPD due to the presence of inflammatory cells including macrophages and T-lymphocytes,
thereby perpetuating an inflammatory cycle leading to the destruction of the lung tissue
(Figure 3.2).
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Figure 3.2 Airway epithelial cell–T-cell interactions in the development of emphysema. Airway
epithelial cells will produce CXCR3 chemokines, CXCL9, CXCL10 and CXCL11 upon stimulation with T-cell-
derived IFN�. This effect can be potentiated by TNF� released by activated macrophages. Recruitment
of CD8+ cytotoxic T-cells will lead to the release of cytotoxic molecules such as granzyme B and
perforin which promote apoptosis of the alveolar epithelium and ultimately emphysema

3.9 Overview of epithelial damage in COPD

There are a number of factors that contribute to epithelial dysfunction in COPD. By far
the most important risk factor for the development of COPD is cigarette smoking. The
oxidant stress associated with cigarette smoke will stimulate the epithelium to produce
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inflammatory mediators and upregulate adhesion molecules which facilitate the binding of
bacterial pathogens to the cell surfaces (Figure 3.3). These factors mediate the inflammatory
response by recruitment and activation of macrophages, neutrophils and T-cells which, in
turn, release pro-inflammatory mediators and proteases that alter epithelial permeability and
contribute to the characteristic desquamation of the airway epithelium (Figure 3.3).
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Figure 3.3 Putative mechanisms of epithelial damage in COPD. Cigarette smoke, pollutants and
bacteria can interact with the airway epithelium and mediate permeability of tight junctions and
stimulate the release of inflammatory mediators leading to desquamation of the surface with loss
of ciliated epithelium. There is an upregulation of adhesion molecules leading to enhanced bacte-
rial adhesion and further activation of the epithelium. This enhances inflammatory cell recruitment
including neutrophils and macrophages which produce damaging proteases including neutrophil elas-
tase and MMPs. In addition, macrophages will also contribute to the release of TNF� which can mediate
apoptosis of the epithelial cells. Cytotoxic substances will also be released by invading T-cells and
together mediate damage to the epithelium

3.10 Damage to the epithelium in other diseases

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis trans-
membrane regulator (CFTR), an epithelial chloride channel that regulates periciliary lining
fluid ion concentrations. Failure of this channel is associated with mucous plugging, impaired
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mucillary clearance and persistent infection of the airway most notably with Pseudomonas
aeruginosa (Chmiel and Davis, 2003). However, the lack of functioning CFTR is not the only
difference in the airway epithelial cells lining the lungs of these patients that may contribute
to the disease pathology. Airway epithelial cells from CF patients express increased levels of
IL-8 compared with cells derived from healthy controls (Sajjan et al., 2004). As neutrophil
accumulation in the lungs of these patients is a common histopathological feature of CF,
it would appear that activation of the airway epithelium could mediate this neutrophilia.
Adherence of neutrophils is also enhanced in airway epithelial cells from CF patients leading
to a heightened inflammatory response with further increases in the release of IL-6 and IL-8
(Tabary et al., 2006). Furthermore, the adherence of neutrophils to the epithelial surface
appears to mediate damage via the release of proteases (Venaille et al., 1998). Adhesion of
P. aeruginosa also stimulates the airway epithelium leading to the the release of IL-8 from
these cells (Delgado et al., 2006). However, adhesion only occurs during repair processes
and requires expression of asialo ganglioside M1 (de Bentzmann et al., 1996a, 1996b).

Obliterative bronchiolitis can occur during rejection of lung transplant patients and is
characterized by epithelial damage. This is an irreversible process that is not understood, but
the epithelial layer is lost and replaced by fibroblastic scar tissue (Ward et al., 2005). One
of the first features of this disease is apoptosis of the airway epithelial cells (Alho et al.,
2003) and may be mediated by chronically activated CD8+ T-cells in the epithelial layer
(Ward et al., 2005).

Damage to the airway epithelium is not restricted to disease states. For example, CC16
secreted by Clara cells is increased in the children attending swimming pools suggesting
exposure to ozone or chlorine may alter epithelial integrity (Lagerkvist et al., 2004). Elite
athletes and competitive rowers also demonstrate increased numbers of airway epithelial
cells in induced sputum (Bonsignore et al., 2003; Morici et al., 2004) but these cells do not
exhibit high expression of adhesion molecules or expression of inflammatory transcription
factors. This would suggest that increased rates of airflow across the epithelium could drive
mechanical damage but this does not appear to elicit an inflammatory response.

3.11 Conclusions

The airway epithelium is the protective barrier that prevents the underlying mucosa becoming
a target for damage caused by tobacco smoke, pollutants and infectious agents. In the disease
state, the airway epithelium is altered to become an inflammatory cell capable of producing
cytokines and chemokines as well as other mediators that can perpetuate the inflammatory
response. These responses appear to be disease-specific. For example, epithelial fragility
and shedding seems to be associated with asthma but is not seen in COPD or CF. Whether
this is due to an inherent defect in the asthmatic epithelial cell or is due to the specific type
of stimulus, for example, allergen challenge and associated protease damage, is not clear.
Similarly, in COPD, the airway epithelium appears to produce an exaggerated response
upon exposure to cigarette smoke, the main causative factor in the disease. At present,
pharmaceutical interventions to address the chronic inflammatory responses observed in
both asthma and COPD have targeted the inflammatory leukocyte influxes; however, the
differential hyperresponsiveness of the airway epithelium seen in these diseases may offer a
potential target(s) for the treatment of these inflammatory diseases.
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4.1 Brief introduction to epithelial shedding-repair and
associated functions in health and disease

To some extent, shedding of epithelial cells from the airway clearly can occur without
resulting in grave mucosal derangement and onset of major repair processes. Thus, single
epithelial cells can be shed by mechanisms apparently involving unimpeded integrity of
the epithelial lining. Even clusters of columnar epithelium can be shed without leaving
any evident open gaps in the epithelial lining. In the latter circumstance, the remaining
basal cells promptly develop a structural barrier above which restitution of lost columnar
cells takes place. A metaplastic epithelium with multiple cell layers, as can be seen in
inflammatory airway diseases, could also be expected to lose superficial epithelial cells
without appreciable loss of its composite barrier. Thus, epithelial shedding is not incompatible
with well maintained mucosal functions. This aspect is further underscored by the tendency of
epithelial cell loss to be exceedingly patchy. By inference, therefore, epithelial cell sacrifice
could, in part, be viewed as a component of first line airway defence to infectious and toxic
insults.

Studies involving ‘shedding-like’ loss in vivo of all epithelial cells in a small area indicate
that the denuded, but uninjured, epithelial basement membrane is not left naked for long. In an
area where all epithelial cells are lost. bulk plasma immediately covers the exposed basement
membrane. In the area of damage unfiltered plasma is promptly extravasated through newly
formed endothelial gaps in venular walls of a profuse subepithelial microcirculation. The
extravasated plasma moves across a pervious basement membrane forming a gel over the
entire denuded area. The gel constitutes a provisional, not very tight, but still important cover.
Together with locally accumulated granulocytes and other leukocytes, the plasma-derived
gel provides protection as well as a suitable milieu for speedy progress of epithelial repair.

The Pulmonary Epithelium in Health and Disease    Edited by David Proud
© 2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05951-7
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It is of note that a microcirculation-derived in vivo milieu is not always considered in cell
culture studies, where individual molecular factors of potential importance for epithelial
repair processes are usually being explored. Following denudation, epithelial cells of all
phenotypes (including ciliated cells) neighbouring the denuded area promptly dedifferentiate
and migrate rapidly to close the wound.

As soon as a new primitive epithelial cell barrier has been established, the plasma-derived
and granulocyte-rich gel cover is resolved or shed by mixing with airway secretions/exudates.
The presence of granulocytes and plasma proteins in the airway lumen also characterize
asthma and chronic obstructive pulmonary disease (COPD), especially during exacerba-
tions. Importantly, both granulocytes and bulk plasma proteins also move across a normal
epithelial lining. The plasticity of the intact, pseudostratified epithelial lining cells allows
unidirectional, paracellular flux of unfiltered plasma, as well as passage of granulocytes into
the airway lumen. The capacity to swiftly and non-injuriously permit passage of these major
components of host defence represents a significant contribution of intact airway epithelium
to innate immune function in health and disease. Furthermore, recent data suggest that non-
injurious egress of cells across an intact epithelial lining has a major role in eliminating
granulocytes from inflamed airway tissues. New concepts regarding non-injurious elimina-
tion of inflammatory cells from airway tissues across an intact epithelial lining including its
relation to occurrence and roles of apoptosis of these cells are reviewed elsewhere (Uller
et al., 2006).

It has been demonstrated that epithelial shedding-restitution processes alone can evoke
several of the pathophysiological and remodelling features of inflammatory airway diseases.
These in vivo findings underpin the possibility of a central role of epithelial injury and
repair in the pathogenesis of asthma (Persson et al., 1996), and suggest that events
associated with simple epithelial repair, in part, can be compared to activation of the
epithelial mesenchymal trophic unit that is operates during lung development (Demayo
et al., 2002).

Interestingly, a commonly expected result of epithelial shedding, ‘increased permeability’,
may not be prominent in vivo. Patchiness of the injury, together with quick repair, may
explain why an epithelial shedding disease such as asthma is not functionally charac-
terized by increased permeability to inhaled molecules (Persson et al., 1995). The fact
that plasma proteins appear on the mucosal surface is, however, a different matter and
cannot be interpreted as reflecting increased permeability of the epithelial lining. Epithe-
lial mechanisms involved in swift, unidirectional luminal entry of extravasated, unfiltered
plasma proteins across the intact airway mucosa are also reviewed elsewhere (Persson
et al., 2002).

The above introductory comments are largely based on observations in vivo. By contrast,
work on epithelial mechanisms is now dominated by in vitro approaches providing new
information on the molecular biology and pharmacology of repair of injured cell cultures.
In the early days of culture studies, readers were frequently reminded of shortcomings (as
well as advantages) of the in vitro possibilities. It must be reiterated that several central
features, including cell phenotypes, molecular milieus, and dynamics of local and external
influences cannot be fully mimicked in cell cultures. Despite this, however, these approaches
offer important opportunities for exploring reductive mechanisms. Without ignoring the
problematic issue of whether in vitro observations translate to the in vivo situation (Persson
et al., 2001), selected in vitro data will be considered in this chapter on repair and function
of the pseudostratified airway epithelium in vivo.
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4.2 Repair following shedding of single columnar epithelial
cells and following shedding of clusters of columnar cells

The occurrence of epithelial cells in asthmatic sputa was described as long ago as the latter
half of the 1800s. Strikingly, ciliated epithelial cells occurred both alone and as clusters of
epithelial cells, neither of which were associated with basal cells (Persson, 1997). Using
electron microscopy to examine bronchoalveolar lavage fluid, Montefort et al. (1992) calcu-
lated that the number of free epithelial cells was more numerous than clusters of epithelial
cells in samples obtained either from healthy or asthmatic individuals. Additionally, they
demonstrated that it was extremely rare to find basal cells attached to the shed columnar cells.
In allergen-challenged airway of allergic guinea-pigs, patchy areas of epithelial injury-repair
characteristically exhibited loss of columnar cells, but the bottom of each such epithelial
crater retained a complete layer of ‘basal’ cells (Erjefält et al., 1997a). Hence, it appears that
the junctional desmosomal attachment between columnar and basal cells is what is regularly
lost at shedding.

4.2.1 Loss of single epithelial cells

The loss of single columnar epithelial cells (Figure 4.1(a)) is likely a frequent event in
health and disease, so the consequences of single cell loss is of interest. However, this
phenomenon is poorly documented. This probably reflects both the quickness with which the
loss may be completed in each instance and the speed by which the space that was occupied
by the lost cell is fully closed. Occasional observations by scanning electron microscopy
of single columnar cells leaving the airway surface suggest the possibility that the gap
already begins to close during the shedding process. Such a mechanism would explain why
small gaps, reflecting loss of single cells, have not been widely reported. For example, such

(a)

Figure 4.1 (a) Loss of single epithelial cells: ‘Tight as they go’. (b) Patchy loss of clusters of columnar
epithelial cells: after losing their cover of columnar cells, basal cells promptly create a new barrier.
(c) Patchy areas of complete shedding/denudation: ‘hot spots of speedy epithelial repair along with
defence, inflammatory, and remodelling reactions’
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Figure 4.1 (Continued)

single-cell gaps were not detected in carefully scanned whole-mounts of an airway surface
where allergen challenge had evoked significant shedding-repair processes in vivo (Erjefält
et al., 1997a). The single-cell loss perhaps may be likened to epithelial passage of individual
leukocytes in vivo. Thousands of eosinophils have been demonstrated to traverse the intact,
pseudostratified epithelial lining in vivo per min and per square centimetre of airway surface
without leaving any detectable apical traces of their paracellular routes into the airway lumen
(Erjefält et al., 2004). The epithelium in vivo also regains integrity immediately after letting
through an acute efflux of unfiltered plasma, including its largest proteins (Luts et al., 1990).
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Repair of single-cell epithelial defects has been examined in epithelial monolayers (Florian
et al., 2002). A potential limitation of such studies is that artificial destruction of a single cell
in epithelial cultures, and the ensuing closure of the lesion-induced gap, may not necessarily
mimic the processes involved in the ‘spontaneous’ shedding of an endogenously detached
single epithelial cell in vivo. In addition, in vitro findings may generally underestimate
the speed of epithelial restitution. For example, after scraping or stab-induced injury to
cell cultures the onset of repair is delayed and the speed of cell migration to cover the
wounds is initially slow (Zahm et al., 1991). By contrast, provided the basement membrane
is unharmed, in vivo repair after denudation starts immediately and the speed of repair
(rate of spreading and migration of neighbouring cells) is highest �3 �m/min� during the
initial and most critical minutes after epithelial cell loss (Erjefält et al., 1995a). Hence, it is
possible that restitution of single-cell defects in epithelial layers also differ in speed in vitro
compared to in vivo. Yet in vitro observations demonstrate a reasonably quick formation of
tight junctions, as demonstrated both functionally and through appearance and turnover of
junction proteins (ZO-1 and occludin) in such epithelial lesions (Florian et al., 2002). The
in vitro work further suggests a role for actin (the polymerization of which is antagonized
by cytochalasin D) in migration of ‘repair cells’ and in a ‘purse string’ mode of closure of
single epithelial cell lesions (Florian et al., 2002, Zahm et al., 1991). Further study is needed
to determine to what extent single epithelial cells are lost in vivo in response to various
insults, and whether there is a requirement for repair in these events beyond a maintained
seal around the individual columnar cell that is being shed into the airway lumen.

4.2.2 Apoptosis in vitro

A purse string mechanism may also be initiated when single epithelial cells in culture become
apoptotic (Florian et al., 2002). Apoptosis and its sequelae, again, appear to be a field where
in vitro observations frequently fail to translate into in vivo systems (Uller et al., 2006).
So far, there is little evidence for involvement of columnar or basal epithelial cell apoptosis
(as properly defined by morphology) prior to shedding events in vivo. By contrast, apoptosis
of alveolar lining cells has been demonstrated and has been considered to be implicated in
development of emphysema (Imai et al., 2005). It is of note that observations derived using
lung parenchyma can not a priori be extended to the all-important small airway changes
in COPD and asthma. Similarly, nothing can be deduced about occurrence of apoptosis in
the airway mucosa from observations that cells in the airway lumen, whether they are shed
epithelial cells or egressed granulocytes, readily undergo apoptosis to varying extents before
being finally eliminated via mucociliary clearance (Uller et al., 2006). The resistance of the
airway epithelial lining in vivo to pro-apoptotic stimuli, such as ligands of FAS receptors
(Uller et al., 2005), underscores our need to gain knowledge regarding the actual occurrence
of epithelial apoptosis in health and disease. Such information is pivotal for appraisal of
medical hypotheses on the roles of epithelial death and repair in asthma, which currently are
largely based on molecular biology data.

4.2.3 Loss of clusters of columnar cells

The second most common type of shedding appears to be loss of sheets of joined columnar
epithelial cells (Figure 4.1(b)). As repeatedly recorded in asthmatic sputa since the 1800s,
columnar cells can stick together even after being shed and mixed with airway secretions and
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exudates (Persson, 1997). It also has been repeatedly observed that asthmatic airway, in part,
are covered by squamous epithelial cells without any attached columnar cells. Accordingly,
these remaining cells have been called basal cells. However, they could equally well be
flattened ‘repair’ epithelial cells moving in to cover denuded areas. Cells covering the bottom
of epithelial craters, where columnar cells are lacking due to allergen challenge (Erjefält
et al., 1997a), could thus be transformed basal cells or they could be rapidly dedifferentiated
columnar epithelial cells that have quickly migrated from areas adjacent to the site of damage.
At the time of these studies, there was little specific information as to what changes occurred
to basal cells upon loss of their cover of columnar epithelium. A method was, therefore,
developed to explore, in some detail, effects of removal of columnar cells on remaining basal
cells. Tracheobronchial and nasal airway tissues with an intact mucosa and sub-mucosa were
used immediately after being surgically removed from animals and humans. The mucosal
surface was allowed to dry for one minute – just enough to make a drop of tissue adhesive
glue stick to epithelial apices. Another half-minute was allowed for hardening of the glue
which then was very gently removed, together with attached cells, by a rolling movement.
Thus, it was possible to selectively remove sheets of columnar epithelium. The remaining
tissue was incubated under conditions selected to approximate the in vivo milieu. This
technique was successful in that it did not lead to loss of basal cells, and the immediate
appearance of the remaining basal cells was similar to their drop- or cobblestone-appearance
seen in an intact epithelium. Interestingly, within 20 min the basal cells underwent a dramatic
transformation. They had spread and become exceedingly flat. The effect was that they
fully covered the space that initially existed between the original cobble-like basal cells.
Interdigitating cytoplasmatic protrusions also occurred and characterized the newly created
basal cell borders. After losing their cover of columnar epithelium the basal cells thus
promptly produced a novel barrier structure. This ability of basal cells did not differ between
human and guinea-pig airway, nor did it differ between human nasal and bronchial airway
(Erjefält et al., 1997b). Admittedly, the experiment was carried out ex vivo and the removal
of columnar cells, however gentle, may well have stretched and stressed the basal cells in
a manner unlike the natural shedding of a sheet of columnar cells under in vivo conditions.
The speed of the change ex vivo was, nevertheless, remarkable. In analogy with other data
(see above), it may be speculated that even higher speeds of basal cell barrier formation
than observed in the ex vivo study may take place in vivo. It is currently not known to what
extent shedding of only columnar cells can cause airway pathophysiological and remodelling
effects similar to those evoked by epithelial denudation–restitution events.

4.3 Epithelial denudation

A century ago, the issue of whether epithelial denudation was a unifying characteristic
of asthma was already a topic of debate. Due to the possibility of artefacts induced post
mortem, or at tissue handling, the balance of evidence then probably rested with pathologists
who demonstrated intact epithelial linings in patients with the most severe forms of asthma
(Persson, 1997). However, the debate has continued and intensified in recent years. There is
now increased understanding of the problem of sampling artefacts when describing epithelial
loss in biopsies obtained from asthmatic individuals (Jeffery, 1996). It also has been demon-
strated that cryo-sectioning clearly produces denuded areas in allergen-challenged allergic
airway where denudation evidently was not present prior to the sectioning. Interestingly, the
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ease by which sectioning procedures produce denudation is greatly increased in samples with
ongoing inflammation (Erjefält et al., 1997a), suggesting that epithelial fragility is an impor-
tant characteristic. The frequent demonstration of denudation in asthma could, therefore, be
interpreted as reflecting a fragile epithelial lining. Increased epithelial fragility would also
be expected to increase the likelihood of the occurrence of patches of truly denuded areas
in vivo. This is important because even small areas of epithelial denudation–repair can cause
significant pathophysiological effects, as well as remodelling of the airway (Figure 4.1(c)).

Data emerging from in vivo studies in guinea-pigs, involving ‘shedding-like’ (no damage
to the basement membrane and no surgery or bleeding) removal of a tiny stretch of pseudo-
stratified epithelium of the trachea have produced information on the repair milieu, on the
onset and speed of repair, on which cells participate in repair, and on pathophysiological
and remodelling sequelae to epithelial denudation–restitution in vivo (Persson and Erjefält,
1997). We are now exploring the possibility of producing well controlled, and non-bleeding,
epithelial removal including denudation in vivo in human polyp tissues, which have epithelial
features similar to those observed in asthma and, possibly, COPD as well (unpublished
observations by M. Andersson, C. Persson, and L. Uller). Until the advent of validated data
from studies in human airway, this discussion will focus on the animal data.

4.3.1 Plasma exudation and granulocytes

In airway with an intact mucosa, extravasated bulk plasma can enter the lumen with only
a few minutes’ delay. This likely reflects the need to build up a small increase in epithe-
lial basolateral hydrostatic pressure (about 2 cm H2O suffices) to open one-way, valve-like,
paracellular epithelial pathways into the airway lumen (Gustafsson and Persson, 1991).
However, in denuded spots, extravasated plasma promptly appears on the surface of the intact
basement membrane. Holes in the basement membrane (Erjefält et al., 1994; Howat et al.,
2001) may be the structural correlates to this unhindered passage of plasma proteins. The
microvascular permeability response to denudation is both prompt and sustained. A substan-
tial plasma-derived gel structure is first produced to completely cover the denuded area
and then the exudation continuously supplies this gel with fresh proteins. During repair of
denuded areas, increased amount of a significant number of proteins, including fibronectin,
fibrinogen, different growth factors etc., derive from the microcirculation (Erjefält et al.,
1994), obviating the need for epithelial cells themselves to produce many of these proteins.
The plasma proteins and their active degradation products also have chemoattractant proper-
ties explaining, in part, the ensuing accumulation of leukocytes, including many neutrophils,
in the gel cover. Neutrophils in the repair gel contribute to host defence in the vulnerable
areas with defective epithelium. Neutrophils may also promote repair by clearing the mucosa
of necrotic epithelial cells (such as occur acutely upon exposure to ozone) which otherwise
will impede the repair process (Hyde et al., 1999).

4.3.2 Ciliated and secretory cells dedifferentiate and become speedily
migrating repair cells

Whilst plasma exudation is in continued progress, a new cell lining is quickly established.
The loss of neighbouring epithelial cells, obviously provides a strong signal for repair. Thus,
at the border between the denuded surface and the maintained pseudostratified epithelium,
the activity is dramatic. Here the ciliated cells internalize their cilia, and the secretory cells
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discharge their granules. At the same time both cell types change from a columnar to
a flattened shape and start to migrate over the basement membrane. The dedifferentiated
migrating cells remain dynamically attached to each other by patchy cell–cell connections.
During the first 15 minutes after denudation, migration occurs at speeds of about 3 �m/min,
and, in this time frame, the newly formed migratory cell sheet covers up to 60 �m wide zones
of the previously denuded basement membrane. The ultrastructural evidence demonstrating
that the ciliated cell is not terminally differentiated, as was previously believed, but is ready
to dedifferentiate to participate in repair is corroborated by a maintained ratio between
secretory and ciliated cells along the borders of the repair zone (Erjefält et al., 1995a).
Incidentally, this role of the ciliated cell has recently been noted again by Park et al. (2006).
As demonstrated in the mid-1990s, the efficiency of the initial, and most critical, phase of
epithelial repair is clearly dependent on the ability of both ciliated and secretory epithelial
cells to dedifferentiate into primitive, migrating ‘repair’ cells.

Epithelial damage occurring in response to inflammatory insults, such as allergen chal-
lenge, cause exceedingly patchy, almost circular, epithelial damage sites. This is the case
even if the challenge is applied very uniformly over a large surface area (Erjefält et al.,
1997a). The effects of cells dedifferentiating and migrating from all around such a site
very rapidly produce a new lining of cells, making the presence of actual denudation very
short-lived events in vivo. Whether extrapulmonary progenitor epithelial cells contribute to
repair after patchy shedding of cells from the pseudostratified airway epithelium remains
speculative.

4.3.3 Features of the initial cover of repair cells and its development
into a normal fully differentiated airway epithelium

When the denuded area has received its initial primitive cell cover, the plasma-derived
gel together with its additional components including granulocytes is resolved and shed.
Then there is a more slow development of a normal pseudostratified epithelium. The new
epithelium eventually consists of a few layers of squamous, poorly differentiated cells, as
is also observed in inflammatory airway diseases. On the surface aspect, these cells display
ridge-like seals. Tight junctions and desmosomes also develop. Within a few days, ciliated
and secretory columnar epithelial cells appear and then, after a few more days, the phenotypic
appearance of the previously denuded area is no longer distinguishable from areas that have
not been denuded. The time periods involved would be dependent upon the size of the
denudation. Here, the approximate times given represent the repair following denudation of
an 800 �m wide epithelial path (Erjefält et al., 1995a). After a single denudation cycle of
this artificial size, abnormally increased numbers of secretory cells was never observed.

4.3.4 Epithelial proliferation and repair

The migrating epithelial cells involved in repair do not display increased mitotic activity
above that of a normal intact epithelium. However, once the initial cover is complete, these
cells increase their mitotic activity 10–20-fold. Simultaneously, a more modest, fourfold
increase in mitotic activity occurs in the ‘old’ epithelium surrounding the damaged area
(Erjefält et al., 1995a). Cell proliferation is clearly an important component of epithelial
repair, but it is not involved in the early critical phase of restitution of an epithelial cell cover.
The rather sustained increase in epithelial mitotic activity makes this a potentially useful
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index of repair activity to be detected in airway biopsies. Increased epithelial cell proliferation
has also been reported in asthmatic and rhinitic airway. Interestingly, Kicic et al. (2006),
working with samples of epithelial cells obtained by brushing, have demonstrated that the
proliferative capacity of these cells is greater in children with mild asthma than in healthy
controls. Holgate et al. (2003), also working with cultures of human airway epithelial
cells, observed no difference between adult asthmatics and normal individuals regarding
proliferation rates. Yet, based on intriguing molecular biology data and on epithelial repair
data in vitro they have advanced the idea that the duration of epithelial repair is prolonged in
asthma due to an imbalance between proliferation and cell survival signals. The possibility
of altered features of the asthmatic epithelium impairing its own repair makes it all the more
important to study actual epithelial restitution events in diseased airway in vivo. Exposure to
tobacco smoke has been reported to slow down epithelial repair in animals exposed to toxic
levels of naphthalene (Van Winkle et al., 2004), suggesting that epithelial repair defects may
be involved also in the pathogenesis of COPD.

4.4 Pharmacology of epithelial repair

4.4.1 Repair-promoting factors

In recent years numerous reports have identified individual molecules of putative significance
in epithelial repair. The shape changes in cells that dedifferentiate and migrate in the
immediate response to epithelial removal necessarily involve activity of cytoskeleton proteins
(Zahm et al., 1991). Thus, cell migration may be facilitated by several matrix metallo-
proteinases (MMPs), including MMPs 3,7, and 9, potentially via effects on cell–cell contacts
and on the extracellular matrix (Buisson et al., 1996; Parks et al., 2001). Clearly, growth
factors with a particular focus on the ability of EGF to stimulate proliferation, have attracted
interest (Holgate et al., 2003). There have also been attempts to identify individual serum
factors of importance for epithelial repair (Patchell and Dorscheid, 2006). Lackie and Adam
(2006) have summarized in vitro findings focusing on the potential for cellular carbohydrates
to enhance epithelial repair. Other agents reported to stimulate closure of epithelial wounds
in vitro include adenosine agonists (Allen-Gipson et al., 2006), bombesin (Tan et al.,
2006), and neutrophil defensins (Aarbiou et al., 2004). Hence, a rapidly growing number of
autacoids remain to have their potential roles defined in in vivo studies of epithelial repair
in health and disease.

4.4.2 Repair-retarding factors

Rhinovirus infections target the airway epithelium causing generation and release of major
regulatory proteins (Proud and Chow, 2006). However, little has been documented regarding
the reputed viral infection-induced epithelial damage. Bossios et al. (2005) now claim to have
an in vitro epithelial system where they find cytotoxic actions of rhinovirus infection as well
as delayed wound healing. TGF-beta may exemplify endogenous agents reported to attenuate
(Neurohr et al., 2006), as well as increase (Lechapt-Zalcman et al., 2006), repair of wounds
in epithelial cell cultures. Details regarding possible links between inflammatory mediators,
developmental pathways and epithelial repair are reviewed by Demayo et al. (2002) in their
discussion on pathogenesis of bronchopulmonary dysplasia. Of apparent concern, are the
reports on negative repair effects of drugs employed chronically as local airway treatments
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of obstructive airway diseases. Thus, both beta agonists and corticosteroids can impede the
repair of scraping-induced ‘denudation’ paths in cultured layers of epithelial cells (Dorscheid
et al., 2006; Schnackenberg et al., 2006). These in vitro test systems may exhibit different
pharmacological features depending on the number of ‘denudation’ scrapings employed, and
it has already been suggested that neither type of anti-asthma drug affects repair negatively
in more ‘chronic’ cell culture experiments (Wadsworth et al., 2006). An urgent need emerges
for in vivo evaluation of effects of airway drugs before speculation on treatment interference
with epithelial repair grow out of proportion. Indeed, a potent airway steroid, given prior to
denudation as well as during the repair phase, was without effect on the prompt and high-
speed repair mechanisms evoked in vivo at shedding-like denudation experiments (Erjefält
et al., 1995b).

4.5 Epithelial shedding-restitution as a causative process
in airway inflammation and remodelling

4.5.1 Pathophysiology

Almost by definition, epithelial shedding beyond the loss of single columnar cells should
cause some increase in mucosal permeability. However, as discussed above, the ability of the
epithelium to create new barriers is so highly developed that significant shedding can occur
without causing any troublesome permeability to inhaled noxious stimuli. The somewhat
confusing medical history involving reports on increased, unchanged, or decreased airway
permeability in airway diseases such as asthma and allergic rhinitis has been reviewed
elsewhere (Persson et al., 1995). Suffice it to state here that ongoing inflammatory airway
disease may well exhibit a decreased (sic!) inward permeability to molecules deposited on
the airway surface. A decreased functional permeability may, in part, reflect entrapment of
inhaled material in secretions/exudates. It is also possible to explain reduced permeability by
the presence of areas of repairing epithelium because these are characterized by a reduced
length of intercellular stretches (available for paracellular absorption) compared to the same
area of normal epithelium.

The epithelium, its sensory innervation, and a profuse subepithelial microcirculation are
common features arranged for cross-talk both in guinea-pig trachea and human airway. As
may be expected, denudation immediately affected the physiology of these three juxtaposi-
tioned mucosal end organs. Thus, in the vicinity of the tracheal denudation zone (Erjefält
et al., 1995a), and spreading further all around the large airway, the untouched epithelium
displayed a dramatic acute reduction in its stored secretions. The expelled secretions act to
protect the still unharmed epithelium and could also contribute to the plasma-derived gel.
The secretory capacity gradually returned to normal levels in a few days. It is possible that
this secretory response, in part, was mediated via the innervation. It was also noted that
as early as during the proliferation phase, which followed after covering of the denuded
area with migrating repairing epithelium, peptidergic nerve fibres reappeared, indicating that
restitution of a normal, fully differentiated epithelium is preceded by a scattered sensory
innervation. The mechanisms involved in these events, which also occur while subepithelial
fibroblasts and smooth muscle are proliferating (Erjefält et al., 1995a), may be of a similar
nature to epithelial–mesenchymal interactions that occur in developing embryonic lungs
(Demayo et al., 2002).



4.5 EPITHELIAL SHEDDING-RESTITUTION AS A CAUSATIVE PROCESS 85

As discussed above, plasma exudation emerged as an important physiological response to
denudation, and was a response that was maintained throughout the phase during which a
new primitive epithelial lining was established. Re-epithelialization thus occurred in a milieu
enriched with plasma-derived adhesive proteins, such as fibrinogen and fibronectin, and with
growth factors, including epidermal growth factor (EGF), known to be present in plasma
(Persson and Erjefält, 1997). Interestingly, the expression of EGF receptors is increased in
asthmatic epithelium, which has been interpreted as a sign of widespread damage and repair
(Holgate et al., 2003). Microvascular-epithelial exudation of plasma is a hallmark of asthma
and of exacerbations of COPD and has multiple properties of pathogenetic potential in these
diseases (Persson et al., 2002).

4.5.2 Granulocytes

The morphological correlate to the extravasation of plasma is the formation of small interen-
dothelial gaps in venules residing just beneath the denuded zone. Although extravasation of
granulocytes also occurs across the venular walls, these leukocytes do not use the gaps but
migrate with a maintained sealing near these gaps. Early examinations by Felix Marchand
suggested that epithelial damage in severe asthma is patchy and associated with conglom-
erates of neutrophils, eosinophils, and fibrin (Persson and Erjefält, 1997). Such foci of
epithelial injury and associated cells and proteins have also been demonstrated in guinea-
pig airway subjected to allergic inflammation (Erjefält et al., 1997a). Thus, patchy sites
of epithelial injury-repair are associated with activated neutrophils, which even emerge
into the lumen as domes of clustering cells. Potentially, the neutrophilic feature of severe
asthma may, in part, reflect the occurrence of epithelial injury-repair events. Eosinophils
also may abound at the epithelial repair sites (Erjefält et al., 1996). Eosinophils have not
only been implicated in damage and epithelial shedding, but these cells may also promote
repair in vivo, since their granules contain growth-promoting proteins. A particular mode of
eosinophil degranulation in vivo – primary cytolysis followed by tissue deposition of clusters
of free extracellular granules (Persson et al., 2000) – is seen both in asthmatic airway and
in areas of speedy epithelial repair processes in guinea-pig airway. This latter observation
contributes to complicating the discussion of the eosinophil as a culprit cell in bronchial
asthma.

4.5.3 Epithelial mesenchymal cross-talk and remodelling sequelae
to epithelial repair

In the absence of compelling evidence of extensive epithelial disruption, Holgate et al. (2003)
have considered that increased epithelial expression of EGF receptors reflects widespread
epithelial damage-repair in asthma. These authors have further argued that a correlation
between over-expression of these receptors and the thickness of the lamina reticularis links
epithelial injury to an underlying remodelling response. However, there appear to be even
stronger links between epithelial shedding-repair and airway remodelling. Experimental
in vivo findings have directly demonstrated multiple remodelling effects associated with the
epithelial restitution processes that follow upon ‘disease-like shedding’. The remodelling
seen at these shedding–restitution events in vivo involves the epithelium itself, its basement
membrane, the subepithelial fibroblasts, and the smooth muscle (Persson et al., 1996). The
repairing epithelium goes through a phase of epithelial metaplasia before restitution of
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a normal epithelium. However, simple shedding-like denudation, even if repeated several
times, does not produce the goblet cell hyperplasia that occurs in inflamed or diseased
airway. Other mechanisms than simple shedding–restitution would thus be involved in
generation of an abnormal, secretory epithelial lining. Yet, repeated denudation without
any additional airway inflammatory processes is sufficient for production of a significant,
asthma-like thickening of the reticular basement membrane. Furthermore, even a single cycle
of denudation–repair evokes markedly increased mitosis in subepithelial fibroblasts and
smooth muscle cells indicating important cross-talk between epithelium and mesenchymal
cells even in minor repair events. Intriguingly, disease-like remodelling mechanisms thus
emanate from the mere restitution events occurring after shedding of epithelial cells from an
otherwise normal and uninflamed airway mucosa. Such observations contribute to putting
focus on epithelial mechanisms as a causative component in the early pathogenesis of airway
diseases (Persson et al., 1996; Holgate et al., 2003; Hackett and Knight, 2007).
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Integration of Epithelial Ion
Transport Activities into Airway
Surface Liquid Volume and Ion
Composition Regulation
Mark T. Clunes, Peter F. Bove and Richard C. Boucher
Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North
Carolina at Chapel Hill, North Carolina, USA

5.1 Introduction: the role of fluid in airway/
alveolar physiology

The alveoli are the primary site of gas exchange in the lung; as such, a wet surface is
necessary to facilitate dissolution of gas. The airway, although not involved in gas exchange,
conduct air to the alveoli and in the process warm, humidify, and sterilize the air as it passes
down the respiratory tree. In the airway, fluid is important, not as a solvent for gas exchange,
but as a component of innate lung defence. The fluid lining of the airway supports the flow
of secreted mucus up the respiratory tree and in this way acts as the main barrier between
inspired pathogens/particulates and the epithelial surface. In addition, a body of evidence
is emerging which demonstrates that the physical properties of mucus, e.g., viscoelastic
properties and mesh-size of the polymer gel (mucus), are hydration-dependent, and have a
major effect upon the ability of mucus to trap and clear bacteria from the airway surfaces
(Matsui et al., 2005, 2006). Thus, fluid is a crucial element lining all respiratory surfaces
from the most proximal nasal epithelium to the most distal alveolar epithelium.

Obviously, regulation of the volume of this fluid is paramount: too much fluid leads to
alveolar flooding and impaired gas exchange, while too little fluid leads to airway dehydration
and impaired innate lung defence. Little is known about the interplay of fluid transport in
the alveolus and the airway. Fluid is likely secreted in the alveolus probably by the type
II pneumocytes and absorbed in the airway by the ciliated cells of the surface epithelium.
Additional volume is added to airway surfaces by secretions from the submucosal glands
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present further up the respiratory tree in the larger airway. Lung fluid secretion is a process
that starts during early embryo development. Indeed, fluid is crucial developmentally, since
it provides a distending pressure that acts as a stimulus for developing air spaces to grow.
Paucity of lung epithelial secretion during development leads to reduced alveolarization
and thickened alveolar septae at birth. Thus, fluid is a complex and obligate component of
alveolar/airway physiology.

Figure 5.1 Schematic illustration of the human respiratory tract. Ion channels in the apical plasma
membrane of airway epithelial cells regulate periciliary fluid depth and mucus hydration. In ciliated
cells of the superficial epithelium, the epithelial Na+ channel (ENaC) mediates Na+ entry, and Cl−

and water follow through trans and/or paracellular pathways, decreasing airway surface hydration. In
contrast, Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) and/or
calcium-activated Cl− channels (CaCC), increases surface hydration. The airway are predominantly
absorptive although Cl− secretion can be stimulated. Submucosal glands are also known to contribute
to airway surface liquid in the more proximal airway. In the alveolus, the type II cells are thought to
be the primary cells regulating fluid volume on the alveolar surface, with both secretory and absorptive
capacity. Little is known about the interface between the alveolus and the terminal bronchioles in
terms of fluid handling. Fluid may flow from the alveolus up into the airway (A), or the alveolus
may be isolated in terms of its fluid handling, with type II cells balancing secretion and absorption
without flow up onto the airway (B)
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The surface area of the lung decreases vastly as fluid travels up the respiratory tree.
Therefore, as mucus is propelled proximally, fluid volume must be controlled to prevent
flooding of the airway (Figure 5.1). However, water transport cannot be achieved directly
by biological systems. Cells can, however, transport ions, and those ions can create osmotic
gradients that provide the driving force for water flow. The airway epithelium is leaky,
and changing the mass of electrolytes on the luminal surface sets up the osmotic gradient
required for the flow of water from the interstitial fluid to the lumen. This can occur through

Figure 5.2 Mechanisms of ion transport and fluid secretion in the ciliated cells of the superficial
airway epithelium. Water absorption from the ASL is achieved osmotically by increasing the mass
of NaCl transported into the basolateral domain. The Na+-K+-ATPase maintains a low �Na+� inside
the cell, and provides an electrochemical gradient for Na+ to flow into the cell through apically
located ENaC channels. Na+ is then pumped into the basolateral space, creating a transepithelial
potential difference (PD) (apical negative). The transepithelial PD drives Cl− from the lumen to the
basolateral space via the paracellular route. Thus, increased [NaCl] in the basolateral space forms
an osmotic gradient for water flow. In contrast, NaCl transport into the apical space provides the
osmotic gradient required for water secretion. Cl− is accumulated inside the cell by the basolaterally
located electroneutral cotransporter. Under basal conditions Cl− accumulates to ∼ 60mM and is in
electrochemical equilibrium across the apical membrane. Upon stimulation, basolateral K+ channels
open, and ENaC closes, hyperpolarizing the cell and driving Cl− through apically located channels
(CFTR and/or CaCC). The transepithelial PD provides the driving force for Na+ to flow paracellularly,
thus, the osmotic gradient is formed to transport water from the basolateral to the apical space
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conductive cellular pathways (i.e. aquaporins) or through the paracellular route. Therefore,
ion transport is key for solute flow.

In the airway epithelium, net salt (ion) transport reflects a balance of two main ionic
conductances in the apical membrane: a Cl− conductance dominated by the cystic fibrosis
transmembrane conductance regulator (CFTR) and a Na+ conductance mediated by the
epithelial sodium channel (ENaC). CFTR and ENaC are selective ion channels and, as such,
conduct ions in response to electrochemical gradients. Vectorial ion movement ultimately
depends upon the electrochemical gradients for Na+ and Cl− permeation across the apical
membrane, generated by pumps and transporters on the basolateral membranes. A summary
of the main pumps, transporters, and channels thought to underlie solute transport in airway
is shown in Figure 5.2.

5.2 Model of ion and solute transport through
airway epithelia

Absorption of Na+ from the airway surface liquid (ASL) occurs via a ‘leak-pump’ mecha-
nism. Basolaterally located, the Na+-K+-ATPase pump is abundantly expressed and accounts
for 20–30 per cent of cellular ATP metabolism under resting conditions. For every two
K+ ions transported into the cell, three Na+ ions are moved out. This charge disparity sets
up an electrical gradient across the cell membrane. It is also largely the Na+-K+-ATPase
that sets up the inwardly directed Na+ gradient (�Na+�i ∼ 20 mM vs. �Na+�o 100 mM) and
outwardly directed K+ gradient (�K+�i 100 mM vs. �K+�o 5 mM) observed across epithelial
cell membranes. Since there is such a large inwardly directed Na+ gradient, and a smaller
inward electrical gradient (cell interior negative), opening of apical membrane Na+ channels
(ENaC) results in the flow of Na+ into the cell. Na+ is then pumped out of the cell to
the basolateral interstitial space by the Na+-K+-ATPase. This transport process creates a
potential difference (PD) across the epithelium (apical side negative). This transepithelial
electrical gradient drives anions (which are predominantly Cl−) out of the apical space,
through the paracellular pathway, and into the basolateral space. Thus, NaCl is transported
from the apical to the basolateral side of the epithelium and sets up an osmotic gradient for
water flow, apical to basolateral.

Secretion is achieved by Cl− transport from the basolateral to the apical surface of airway
epithelia. On the basolateral membrane, the electroneutral cotransporter Na+-K+-2Cl− moves
Cl− into the cell. This step is vital, since Cl− secretion can be abolished by blocking the
cotransporter with bumetanide. Na+ entering the cell through the cotransporter is pumped
back out by the Na+-K+-ATPase, while basolateral K+ channels allow K+ recycling at
the basolateral membrane. Cl− is thus accumulated inside the cell (40–60 mM), but only
reaches electrochemical equilibrium across the apical membrane under resting conditions.
The opening of apical Cl− channels (CFTR or CaCC) must be coordinated with opening
of basolateral (and possibly apical) K+ channels to hyperpolarize the cell interior and
provide an electrical driving force for Cl− to flow from the cell into the ASL. Without the
hyperpolarizing effect of opening K+ channels, there would be no electrical driving force for
Cl− secretion, and indeed, blocking K+ channels inhibits Cl− secretion. The transepithelial
PD (apical side negative) generated by Cl− secretion creates an electrical gradient for Na+

flow through the paracellular path to the apical domain. Thus, the mass of NaCl increases
in the ASL and an osmotic gradient is created for water secretion. Water flow, in response
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to the osmotic gradients set up by ion transport occurs via cellular conductive pathways,
i.e. aquaporins, or via the paracellular route.

Whether or not the secretory and absorptive processes occur in the same cells is still
debated. In the gut, secretion is predominantly from the bottom of the crypt, whereas
absorption occurs predominantly at the villi tip. Similar spatially distinct models have been
suggested for airway. However, to date, the majority of data, e.g., for channel localization and
electrophysiological studies, suggest that the superficial airway is predominantly absorptive
in nature but can be stimulated to secrete, and that the ciliated cells are the site of both
processes (Kreda et al., 2005; Rochelle et al., 2000; Tarran et al., 2006, 2005a).

5.3 Airway histology

The bronchi and bronchioles of human lungs have a pseudostratified epithelium with a
variety of different specialized cells. The superficial epithelium of the bronchi / bronchioles
is composed mainly of ciliated cells (50–70 per cent surface area), that control mucus
flow by ciliary beating, and regulate fluid transport onto the airway surface. Goblet cells
are interspersed, and secrete mucins (MUC5AB), which form part of the polymer gel that
we know as mucus. In the upper airway and cartilaginous bronchioles, invaginations of
the epithelium form a ciliated duct into which the secretions from multiple acini collect.
These submucosal glands secrete fluid and mucins (predominantly MUC5B) and importantly,
unlike the superficial epithelium, are innervated by cholinergic nerves. Although submucosal
glands are known to secrete fluid, their function is not absolutely required, since rat and
mouse lungs are known to secrete fluid normally and yet have very few submucosal glands.

5.4 Airway ion secretion

Two main chloride secretory pathways are present in human bronchial epithelial cells, and
are often defined by the distinct second messengers that activate each pathway. The predom-
inant pathway is via the cAMP/PKA-mediated Cl− channel, CFTR. It is known to be the
predominant pathway, since absence of this channel, as in cystic fibrosis, leads to reduced
fluid on airway surfaces. The CFTR pathway is thought to maintain the basal secretion
across the airway, and can be activated by such receptors that increase cAMP, e.g., adeno-
sine receptor A2b (apical), �2 receptor (basolaterally). In addition, an alternative chloride
secretory pathway (CaCC), sensitive to increases in free intracellular calcium concentration
��Ca2+�i�, is present in airway epithelium. This pathway can be activated by such receptors
that signal by increasing �Ca2+�i, e.g., P2Y (apical), cholinergic, bradykinin (basolateral).
Together, these two pathways constitute the main conductances present on airway epithelial
cell apical membranes that determine anion and water secretion.

5.5 The cystic fibrosis transmembrane conductance regulator

5.5.1 Structure

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a 1480 amino
acid polypeptide that forms a two-membrane spanning domain anion channel. On its own,
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this polypeptide forms an ATP- and PKA-dependent low-conductance anion channel, typical
of that found in the apical membrane of many chloride secreting epithelial cells. It is
part of the superfamily of transporters called the ATP-binding cassette transporters (ABC-
transporters). Proteins are classified as ABC-transporters, based on a common motif for
ATP-binding, the nucleotide binding domain (NBD), of which CFTR has two. The NBDs of
ABC-transporters bind ATP, and energy from its subsequent hydrolysis drives the transport
of a wide range of substrates across cell membranes. In utilizing the energy from hydrolysis
of ATP, substrates can be transported against a concentration gradient. CFTR is unique
among the ABC-transporters in that ATP-hydrolysis plays a role in channel function, but
that substrate transport is based on the standing electrochemical gradients across the cell
membrane, i.e. ATP-hydrolysis regulates CFTR activity but does not drive anions against
their electrochemical gradient. While each of the NBDs is able to bind ATP, only NDB2
has ATP-hydrolytic activity, but the exact link between ATP hydrolysis and channel gating
remains controversial. Nevertheless, ATP binding is required for channel function.

In addition to the two cytoplasmic NBDs there is an R domain, which is rich in consensus
sites for PKA and PKC phosphorylation but displays no definite three-dimensional structure.
This regulatory domain is another unique feature amongst the ABC-transporters. The R
domain is thought to be involved in driving channel opening, since neither of the NBDs are
particularly affected by PKA phosphorylation.

5.5.2 Localization

The predominant location of CFTR in the airway remains controversial. Initial studies,
employing both in situ hybridization and immunohistochemistry in human airway demon-
strated that CFTR was expressed weakly in the superficial epithelium and the highest
expression levels were found in the serous cells of the submucosal gland (Engelhardt et al.,
1992). This localization was important, since it suggested that submucosal glands were
the predominant site for Cl− secretion and, therefore, the primary site of fluid transport.
However, functionally, CFTR is known to be present in well differentiated cultures of human
bronchial cells (Tarran et al., 2005a), which are almost exclusively composed of ciliated and
goblet cells and have a pseudostratifed structure reminiscent of the airway superficial epithe-
lium. A number of studies since have suggested that the ciliated cells of the superficial
epithelium do express CFTR and, indeed, the ciliated cells are the primary site of CFTR
expression in human airway. One comprehensive study in particular, which examined the
respiratory epithelium from the nose to the bronchioles, demonstrated that all ciliated cells,
whether on the surface epithelium or in the submucosal gland duct, exhibit CFTR expression
in all patients studied. Only half of the patients studied demonstrated CFTR expression in
the serous cells of the submucosal glands, suggesting, perhaps, that CFTR expression is
lower in these structures (Kreda et al., 2005). Since the largest area in contact with airway
surface liquid is the airway surface, it makes sense that the superficial epithelium should
express channels to regulate solute secretion in airway.

5.6 Calcium-activated chloride channels

Calcium-activated chloride currents capable of stimulating solute transport have been known
in airway epithelium for over a decade (Knowles et al., 1991), and have generated much
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interest, since they represent a secretory pathway still functional in cystic fibrosis airway.
However, the molecular basis of these channels remains enigmatic. Unlike CFTR, the
CaCC conductance is not regulated by the second messenger cAMP. The calcium activated
currents in epithelial cells display some common features, such as the permeability sequence
I− > Cl− and sensitivity to niflumic acid and 4� 4′-diisothiocyanatostilbene-2� 2′-disulfonic
acid (DIDS). These features, along with the complete dependency upon increased intracellular
Ca2+ for activation of CaCCs, make discrimination of the two main secretory pathways in
airway epithelia relatively easy. However, there remains a range of diversities within the
described characteristics of CaCC, e.g., range 3–250 pS conductances, differential regulation
by calmodulin kinase, and different calcium sensitivities, suggesting that there may be more
than one molecular candidate or at least variability in the arrangement of the molecule/s.
While no definitive channel has been identified as ‘the’ CaCC in any epithelial cells, a
number of candidates have been proposed.

5.6.1 Bestrophins

Recently, the bestrophin family of chloride channels has been proposed as the putative CaCC
underlying the calcium mediated Cl− secretory response in airway (Kunzelmann et al., 2007).
This ∼ 70 kDa protein demonstrates a hydropathy profile suggesting a protein with four to
six candidate membrane spanning domains. These domains occur within the first 360 amino
acids, the region most conserved between bestrophin family members (Tsunenari et al.,
2003). Bestrophins have a high sensitivity to Ca2+ and demonstrate an EC50 for Ca2+ of
∼ 200 nM, well suited to respond to the changes in �Ca2+�i generated by receptor activation
in epithelial cells. Furthermore, bestrophins 1, 2 and 3 have been detected by RT-PCR in
mouse trachea and nasal epithelium, although functional evidence of ATP-mediated chloride
secretion and bestrophin 1 protein were only found in trachea. Human lung-derived immortal
cell lines expressing bestrophin 1 were found to have ATP-stimulated chloride secretion,
whereas those cell lines not expressing bestrophin 1 failed to respond to ATP. This ATP-
mediated chloride secretion was DIDS-sensitive and could be abrogated by bestrophin 1
RNAi treatment of cells. In addition, bestrophin 1 localizes to the apical membrane of murine
tracheal epithelium (protein not detected in nasal epithelium) and proximal colon (but not
distal). An exact functional correlation was found in that ATP-mediated short circuit current
could be stimulated in tracheal and proximal colon but neither nasal or distal colon (Barro
et al., 2006). Therefore, bestrophins are still in firm contention as the channels underlying
CaCC in airway epithelial cells.

5.7 K+ channels

Although K channels are less well characterized in airway epithelial cells than the apical
membrane ion channels for Cl− and Na+, they are important nonetheless. K+ channels
largely determine the membrane voltage and provide the driving force for other permeant
ions. Driving force is defined by the difference between membrane potential �Vm� and
the equilibrium potential of the ion. In normal physiological conditions, the equilibrium
potentials �Ex� for Na+ and Cl− are ∼+68 mV and ∼−30 mV respectively. Since the resting
apical membrane potential is in the −30 mV range, a hyperpolarizing effect of opening K+

channels leads to an increased driving force for Na+ entry into the cell or an increased driving
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force for Cl− exit, depending on which channels are active in the membrane. Typically,
secretagogues stimulate the opening of apical chloride channels and basolateral K+ channels
simultaneously, and inhibition of basolateral K+ channels leads to inhibition of Cl− secretion
by reducing driving force. Similarly, opening apical membrane Na+ channels leads to cellular
depolarization, and K+ channel activation offsets that effect.

In airway epithelia, basolateral K+ conductances can be stimulated by either an increase
in �Ca2+�i or cAMP/PKA. Increased �Ca2+�i activates KCa3�1�KCNN4/hSK4� K+ channels
which are sensitive to clotrimazole and Ba2+ while cAMP/PKA activates the KV7�1 channel
that is sensitive to Ba2+, clofilium and chromanol 293B �KCNQ1/KVLQT1� when associated
with the accessory subunit KCNE1 (Mall et al., 2000, 2003). However, these channels
display low activity under resting conditions, displaying activity only when the epithelia
are stimulated to secrete/absorb. The K+ channels that maintain membrane potential under
basal conditions are largely unknown. However, a recent report suggests a role for the
Ba2+-insensitive twin-pore domain K+ channels (Inglis et al., 2007).

5.8 Airway ion absorption

5.8.1 Structure of the epithelial Na+ channel – ENaC

In the airway epithelium, the main channel responsible for sodium, and hence, salt and water
absorption, is the epithelial sodium channel ENaC. ENaC is composed of three different
subunits (	� � and 
) that share 30 per cent homology at the protein level. Each subunit has
a topology predicting two transmembrane domains, short cytoplasmic amino- and carboxy-
termini and a large extracellular loop. There is still debate about the stoichiometry of native
channel organization, since the 	 subunit alone can form a Na+ selective pore, and co-
expression of 	� or 	
 subunits confer channel activity, albeit well below native channel
levels. However, in vitro, co-expression of 	�
 subunits forms a Na+ selective channel
that demonstrates characteristics of the native ENaC conductance, e.g. high Na+ selectivity,
sensitivity to amiloride in nM range and slow gating characteristics. It has been proposed,
and there is some consensus, that the native protein is formed with a heterotetrameric struc-
ture of 	�	
 subunits (Rossier, 2004). However, other regulatory subunits exist [� ENaC
(Ji et al., 2006)], and it is unknown how all of these subunits form as a native protein. What
is known, however, is that when 	�
 subunits of ENaC are co-expressed, subunit turnover
decreases dramatically, suggesting that the channel is stabilized in the membrane when all
subunits interact (Valentijn et al., 1998).

5.8.2 Localization

The general pattern of expression of ENaC in respiratory structures of rodents is that of
increased ENaC expression in the distal airway, type II cells of the alveolus, and nasal
epithelium, with less abundance in the trachea. Interestingly, there is also a difference
between lung regions in the ENaC subunit mRNAs that are expressed. In general, in those
structures known to be associated with significant amiloride-sensitive ion transport capabil-
ities, e.g., mouse nasal epithelium, rat type II cells, all three ENaC mRNAs were reported.
However, in lung and trachea, which display variable amiloride-sensitive current, 	 ENaC
mRNA seems dominant. The bronchus, bronchioles, and alveolar type II cells also all demon-
strated a strong presence of 	�
 ENaC mRNA (Rochelle et al., 2000). In human lung,
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� and 
 ENaC has been localized in ciliated cells of the bronchial / bronchiolar surface
epithelium, and Clara cells demonstrate detectable amounts of ENaC protein in the apical
membrane (Gaillard et al., 2000). In situ hybridization has also demonstrated 	�
 ENaC
mRNAs in the superficial epithelium of airway (Burch et al., 1995).

5.8.3 CFTR regulation of ENaC

While ENaC-mediated absorption may be regulated by cAMP raising agonists, CFTR plays
a central role in the regulation of ENaC activity in airway epithelia. Patch clamp studies
have demonstrated that PKA will activate ENaC in the absence of CFTR, and inhibit it
in the presence of CFTR (Stutts et al., 1995). ENaC inhibition via cAMP/PKA activation
of CFTR is physiologically appropriate, since for effective Cl− secretion, ENaC must be
inhibited to maintain the driving force for Cl− exit. A tissue-specific interaction between
CFTR and ENaC is likely, since in sweat gland duct cells this phenomenon is not apparent.
It remains to be resolved how CFTR is capable of inhibiting ENaC activity, e.g., either by
a direct interaction or through some unknown accessory protein/pathway.

5.9 Measurement of ion and water transport
in airway epithelia

5.9.1 Ussing chamber studies

A classic technique to identify the active ion transport capacities of an epithelium is to
perform ‘Ussing chamber’ experiments. With this technique, freshly excised or cultured cells
are placed in hemi-chambers that perfuse each surface of the epithelium independently with a
defined solution, typically a Krebs bicarbonate buffer, and the tissues are continually gassed
by gas-lift devices. The transepithelial PD �Vt� is measured with macroelectrodes placed near
to the apical and serosal surfaces, and Vt is nulled to zero by the passage of current from two
silver/silver-Cl− electrodes placed at an ‘infinite’ distance from the epithelial surfaces. With
this technique, the open circuit Vt is measured, the transepithelial resistance �Rt� calculated
from the voltage response to current pulses from Ohm’s law, and the current required to null
Vt to zero (the short-circuit current, Isc) directly measured or calculated.

The continuously short-circuited approach was developed to identify and quantitate active
ion transport by epithelia. This technique was utilized to characterize active ion transport in
freshly excised human airway epithelia, both from the upper (nasal) and lower airway (third
to sixth generation bronchi) (Knowles et al., 1984). As shown in Figure 5.3(A), the dominant
active ion transport process under short-circuit conditions is electrogenic, amiloride-sensitive
(i.e., ENaC-mediated) Na+ transport. Little, if any, secretion of Cl− is measured under these
conditions. Studies also identified a small net component of K+ secretion. This technique
also identified the capacity of human airway epithelia to secrete Cl−. For example, when the
apical membrane Na+ conductance (ENaC) is blocked, the apical membrane potential �Va�
becomes more negative, generating an electrochemical potential for Cl− secretion. It should
be noted that the identification of ion fluxes under short-circuit conditions is perturbed by
the fact that short-circuiting an epithelium does modestly change driving forces for ion flow.

Epithelia can also be studied in Ussing chambers under so-called ‘open circuit conditions’,
i.e., when the spontaneous Vt is not nulled. This condition more closely mimics the in vivo
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Figure 5.3 Summary of the ion transport processes of nasal and bronchial epithelia under open circuit
and short-circuited conditions as measured by radioisotope flux in the Ussing chamber. (A) Under
baseline short-circuit conditions, active ion transport is dominated by Na+ absorption in nasal and
bronchial epithelia. Symmetric Cl− fluxes were observed indicating no net Cl− transport under baseline
conditions. Application of amiloride to block apical ENaC, abolished Na+ absorption and initiated Cl−

secretion, an effect of cellular hyperpolarization. Under open circuit conditions, the transepithelial
PD formed by Na+ absorption leaves the apical side negative and slows positive charge absorption
�Na+�. In addition, the spontaneous transepithelial PD drives Cl− ions from the lumen resulting in
net Cl− absorption. (B) A summary of the ion transport processes as measured by nasal potential
difference in normal and CF patients. Normal nasal PDs are dominated by Na+ absorption, as shown
by their sensitivity to amiloride. Note that CF patients display much higher baseline PDs due to
increased Na+ absorption in the absence of CFTR, which is demonstrated by the large amiloride-
sensitive change in PD. Upon perfusion of low chloride, normal epithelia hyperpolarize significantly,
indicating a significant contribution to the PD by Cl−, this effect is absent in CF epithelia due to
absence of the main Cl− conductive pathway, CFTR. Isoprenaline is then added to increase cellular
cAMP, and activate CFTR, this effect is maximized in low Cl− since there is a greater driving force
for Cl− to exit the cell down its concentration gradient into low Cl−. Again, normal nasal epithelium
hyperpolarizes in response to isoprenaline, while CF epithelia display no response. Finally, ATP is
perfused to increase intracellular Ca2+ concentration via activation of P2Y2 receptors, and initiate
calcium-activated chloride currents (CaCC). Both normal and CF epithelia display a robust response to
ATP since CaCC are present in CF epithelia, and are unaffected in CF. (A) Reproduced, with permission,
from the American Journal of Respiratory and Critical Care Medicine 1992, Vol. 150, pp. 271–286. (B)
Reproduced with permission from Human Gene Therapy 1995, Vol 6, pp. 445–455
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Figure 5.3 (Continued)

situation, and, combined with isotope flux experiments, has yielded important data with
respect to the function of human airway epithelia. As shown in Figure 5.3(A), Na+ absorption
persists under open circuit conditions, albeit at a somewhat slower rate, and Cl− absorption
is detected under these conditions (Boucher, 1994). Na+ absorption is the active component
of the net NaCl− absorptive flux, with Cl− passively absorbed via the paracellular path to
preserve electroneutrality. The application of amiloride blocks Na+ absorption and induces
Cl− secretion. Under these conditions, active Cl− secretion occurs via the transcellular path,
whereas Na+ is now ‘secreted’ passively in response to the electrochemical gradient via
the paracellular path. Thus, these studies have highlighted that airway epithelia can both
absorb and secrete NaCl, and that, for these functions, a relatively nonselective paracellular
path is required for ion transport under open circuit conditions. Direct measures of the
permselectivity of the paracellular path have shown that it is, indeed, nonselective (Johnson
et al., 2004).

5.10 In vivo transepithelial PDs

The transepithelial PD across airway epithelia that is generated by active ion transport can
be measured in vivo as well as in vitro. For this technique, a ‘ground’ electrode is placed in
a submucosal compartment, typically under the skin of the forearm, and a flowing solution
electrode is placed on the airway epithelial surface, with both electrodes connected via
calomel half-cells to a voltmeter. Several manoeuvres can be performed to characterize the
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ion transport processes that contribute to the basal PD (Knowles et al., 1995). Typically,
the absolute magnitude of the PD is a reflection of the rate of Na+ transport. However, any
nonspecific effects on the electrical resistance �Rt� of the epithelial barrier will modify this
interpretation. The second manoeuvre, the application of amiloride to the surface, is also
employed to estimate the contribution of active Na+ absorption to the basal PD. However,
again, one must be cautious of this interpretation, as amiloride, as described above, not only
inhibits Na+ absorption, but also induces Cl− secretion. Thus, airway epithelia that manifest
a large active Cl− conductance may exhibit a small amiloride-sensitive PD that does not
reflect a small rate of Na+ transport, but rather, the efficient induction of Cl− secretion.

Several manoeuvres are utilized to estimate the magnitude of Cl− conductance in the
apical membrane. As noted above, the residual PD after the application of amiloride reflects
the capacity of the airway epithelium to secrete Cl−. This Cl− secretory capacity is a function
of both the magnitude of the apical membrane conductance and the driving force for Cl−

secretion. Since these driving forces may vary in the basal state, a useful manoeuvre to
assess the resting Cl− conductance of the apical membrane is to create a very large artificial
driving force for Cl− secretion by removing all Cl− from the luminal electrode perfusate.
Under these conditions, there is a virtually ‘infinite’ chemical driving force for Cl− secretion,
and hence, the response of the epithelium to ‘low Cl− solutions’ is a reasonable index of the
basal Cl− conductance in the apical membrane.

Finally, manoeuvres are often performed to estimate the relative contribution of the CFTR
Cl− conductance and the Ca2+-activated Cl− conductance to the resting membrane Cl−

conductance and the regulation of each of these permeabilities, respectively. Typically, to
investigate the regulation of CFTR Cl− conductance, isoproterenol is included in the luminal
perfusate to raise cell cAMP and activate CFTR. Thus, the isoproterenol-sensitive PD is
a good measure of the regulated CFTR Cl− conductance in airway epithelia. Conversely,
UTP is typically added to the luminal perfusate to activate, via P2Y2 receptors, increases in
intracellular Ca2+ and, hence, CaCC.

The nasal PD technique has been seminal in identifying the ion transport defects in CF, and
it has been a useful tool in identifying and characterizing novel therapeutic agents that may
normalize CF ion transport defects. Thus, as shown in Figure 5.3(B), a typical normal nasal
PD tracing reveals a basal PD of −30 mV, a PD that is 40 per cent inhibited by amiloride,
a large PD response to the 0 Cl− manoeuvre, and a PD response to both isoproterenol
and UTP activation of the CFTR and CaCC conductances, respectively. In contrast, the CF
nasal PD tracings exhibit a higher resting basal PD and a larger amiloride-sensitive PD,
both reflecting increased Na+ transport rates, virtually no response to 0 Cl− manoeuvres,
reflecting the absence of resting CFTR function, no response to isoproterenol, reflecting the
absence of cAMP-regulated CFTR conductance, and a large response to UTP, reflecting a
large CaCC conductance in the apical membrane.

5.11 Volume flow measurements

Epithelial ion transport can modulate the composition of a luminal solution, e.g., reduce the
concentration of NaCl (as in sweat), or volume (water) transported across the epithelium.
Therefore, studies were performed in which the capacity of airway epithelia to transport
volume transepithelially was examined. Miller and colleagues showed that human airway
epithelia under baseline conditions absorbed volume, consistent with net Na+ transport.
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Further, volume secretion could be initiated with the application of amiloride (Jiang et al.,
1993). These studies also suggested that CF airway epithelia hyperabsorb volume, consistent
with the raised basal rate of Na+ transport. Thus, these studies were consistent with airway
epithelia as primarily volume-transporting epithelia.

The observation that airway epithelia exhibit volume transport has two implications.
First, the prediction is that airway epithelia should be relatively water-permeable. Direct
measurements of the hydraulic permeability of the epithelium to water and osmotic water-
permeability of airway epithelia have been made in freshly excised tissues and culture
preparations (Farinas et al., 1997; Matsui et al., 2000). All data agree that human airway
epithelia are very water-permeable, with the apical membrane being the more permeable
of the two barriers. Second, because most epithelia affect isotonic volume transport, the
prediction is that the solutions on human airway surfaces are isotonic. Although a matter
of some debate in the mid-1990s, most measurements at present suggest that human airway
epithelia have an isotonic liquid on their surfaces (Knowles et al., 1997; Kotaru et al.,
2003). The Na+ concentration is somewhat lower than plasma, i.e., ∼ 120 mM, but the K+

concentration is raised compared to plasma, i.e., ∼ 20–25 mM. Thus, sum of the cations ×2
predicts an isotonic solution, consistent with direct measurements of osmolality. The major
anions in the ASL are Cl− and bicarbonate, at approximately the concentrations in plasma.

5.12 Physiologically ‘thin film’ measurements of ASL
volume regulation with confocal microscopy
and microelectrodes: studies of normal and CF
airway epithelia

Over the past decade, a technique has been developed that measures the physiologic regula-
tion of the ASL compartment under conditions that mimic those observed in vivo. For this
technique, well-differentiated cultured cells are utilized (Figure 5.4(A)). These preparations
exhibit the capacity to transport ions similarly to freshly excised tissues, have high water
permeabilities, secrete mucins, form two layers on their surfaces (periciliary and mucus),
and coordinate ciliary activity to effect mucus transport (Matsui et al., 1998b). To study
ASL volume regulation in these preparations, the ASL is labelled with fluorescent probes,
typically Texas red dextran to label the water compartment, and 1-�m beads to label the
mucus layer. Microelectrodes are inserted into the thin apical solution �∼ 7 �m� with a
serosal macroelectrode to measure the transepithelial PD and correlate active ion transport.
Interfacing this preparation with a confocal microscope has allowed the dynamic measure-
ment of ASL volume regulation and a dissection of the components of ion transport that
mediate these processes.

The typical experiment performed on cultures maintained under standard static tissue
culture conditions between confocal measurements is shown in Figure 5.4(B–E) (Tarran
et al., 2001). In this experiment, a small volume of an ASL mimic (PBS) is added to the
apical compartment and the epithelial response to this liquid challenge monitored over time.
The normal human airway epithelial culture absorbs the added excess volume and continues
to do so until a height of ∼ 7 �m is reached. At this point, volume absorption stops, and this
height is maintained over many hours. A height of 7�m appears to be appropriate for key
physiologic functions of ASL, as this height allows cilia to extend fully during the ciliary beat
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Figure 5.4 Airway surface liquid regulation in cultured human bronchial epithelial cells. (A) Perflu-
orocarbon OsO4 fixed human bronchial epithelial cultures display periciliary fluid (PCF) as a clear layer
between the cell surface and overlying mucus, cilial shafts can be seen in this layer. The cultures
develop as a pseudostratified epithelium with columnar ciliated cells and goblet cells atop the basal
cells, reminiscent of native airway epithelium. The PCL can be observed in live cells by inclusion of
a cell impermeant fluorescent marker, in this case dextran-labelled Texas red, the height of which is
measured using confocal microscopy. (B) and (C) ASL absorption is measured over time after addition
of 20�l of an ASL mimic, phosphate buffered saline (PBS), including dextran-labelled Texas red. ASL
volume starts high and over a period of 12 h is absorbed until it reaches a height of ∼ 7�m, where
it is maintained. A 7-�m ASL height allows the cilia to effectively maintain mucociliary transport.
(D) and (E) Transepithelial PD is measured after addition of 20�l of PBS. The PD initially starts high
reflecting high rates of amiloride sensitive Na+ absorption. As ASL is absorbed, overall PD falls and
becomes predominantly bumetanide sensitive, reflecting a shift from a predominantly absorbing to
a predominantly secreting epithelium. Reproduced, with permission, from the American Journal of
General Physiology, 2001, 118: 223–236

cycle and move mucus. Evaluation of the bioelectric responses to volume challenge suggests
that early, the volume absorption phase is dominated by an amiloride-sensitive absorptive
process, whereas later, when volume absorption slows, Na+ absorption also slows, and Cl−

secretion is induced. When ASL volume steady state is reached, absorption of Na+ and
secretion of Cl− are balanced (Figure 5.5(A)). Interestingly, this response mimics studies of
freshly excised tissues, in which the initial volume stimulus was initiated by gland secretion,
followed by absorption of liquid, as measured by cryopreservation techniques (Widdicombe,
2002). Thus, this type of volume regulation appears to be a fundamental process of human
airway epithelia.

An important observation made with this technique was that CF airway epithelia, typically
missing the CFTR protein in the apical membrane, have a very different volume regulatory
response to ASL addition (Matsui et al., 1998a; Tarran et al., 2005a, 2005b). First, the added
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Figure 5.5 Regulation of ASL volume (hydration) by normal human bronchial cells under static and phasic
motion culture conditions. Each graph depicts ASL height immediately after deposition of a small volume
of PBS followed by confocal measurements. The dashed line in each graph represents the ‘normal’ ASL
height, consistent with effective mucociliary transport. The horizontal bar depicts the relative magnitudes
of Na+ absorption and Cl− secretion as measured by microelectrode transepithelial PD (post amiloride or
post bumetanide for Na+ and Cl− transport respectively). The insert in (A), depicts the cilia as observed at
7�m ASL height, i.e., outstretched and capable of mucociliary transport. In normal airway cultures under
static conditions (A) added ASL is reabsorbed until a height of ∼ 7�m is reached, the ability to reach
this height reflects the coordinated activity of Na+ absorption by ENaC and Cl− secretion via CFTR. After
liquid deposition, Na+ absorption predominates, and as ASL height approaches 7�m� Na+ absorption slows
and Cl− secretion increases. If bumetanide is added to inhibit Cl− secretion or nystatin is added (as an
alternative pore for cation entry) to allow unrestrained absorption, then ASL fails to be regulated to 7�m.
Cultures grown under phasic motion (B), display a higher ASL height with two Cl− secretory components.
One component is via calcium-activated Cl− channels (CaCC), stimulated by ATP release from the epithelium
and inhibitable by apyrase (which catalyses ATP breakdown). The second component is via CFTR, which
is stimulated by adenosine/A2b/cAMP pathway, and inhibitable by adenosine deaminase (an enzyme that
catalyses the breakdown of adenosine). (C) Thus, under resting conditions, secretion is maintained by
adenosine/A2b/cAMP activation of CFTR. ATP is rapidly hydrolysed in ASL, producing adenosine, and the
low rate of ATP release under resting conditions fails to stimulate CaCC. However, under phasic motion (to
produce shear stress), ATP release rate increases and ATP/Ca2+ activation of CaCC adds to the secretion by
CFTR, while inhibiting Na+ absorption through ENaC
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ASL is absorbed more rapidly, consistent with accelerated net Na+ absorption. Perhaps
more importantly, there is an absence of the appropriate regulation of ASL homeostasis.
Specifically, CF airway epithelia absorb all of the liquid from the airway surface, so that
cilia cannot extend and beat normally. A corollary is that CF cultures cannot maintain mucus
transport under these conditions for a period longer than 24 h.

Bioelectric measurements yielded insights into the mechanisms of this dysfunction. First,
Na+ absorption is not regulated as a function of ASL volume, e.g., Na+ absorption persists
unabated at 48 h despite the fact that virtually all liquid has been removed. Second, CF
epithelia cannot initiate Cl− secretion as the volume of liquid on airway surfaces thins/reduces
and approaches 7 �m. Both the failure to regulate ENaC, and the inability to initiate Cl−

secretion, reflect the absence of CFTR function in the CF epithelium.

5.13 The role of physiologic airway shear-stress in ion
transport and ASL regulation

A recent improvement in this technique has been the capacity to maintain cells under the
phasic motion conditions that reprise the mechanical stresses that are exerted on the airway
epithelia in vivo during normal tidal breathing (Button et al., 2007; Tarran et al., 2005b).
Techniques to mimic both the surface airflow during tidal breathing and the transmural
compressive stress that occurs during tidal breathing have been developed. Quantitatively
different results are observed with respect to ASL volume regulation under these phasic
motion conditions. In normal airway epithelia, the height of ASL on airway surfaces increases
from ∼ 7 to 14 �m in the steady state. Importantly, in CF airway epithelia, ASL height
approximates 7 �m. Correlative mucus transport measurements reveal that mucus transport
rates are faster in normals under phasic motion conditions, and restored to measurable
levels in CF. Subsequent studies, in which the mucus layer was maintained on airway
surfaces, suggested that the extra fluid observed on the normal airway surface during
phasic motion conditions is ‘stored’ in the mucus layer, i.e., it acts as a reservoir (Tarran
et al., 2001).

These observations raise the intriguing question of what regulates the volume of liquid
on airway surfaces in health and disease. This issue is complex and is not fully understood.
There appears to be no absolute ASL volume sensor; for example, airway epithelia without
cilia appear to exhibit ASL volume regulation quite normally. Rather, it appears likely that
ASL volume is not fixed, but can vary in response to local stresses on the surface and
disease. For example, it may be more advantageous to have more liquid on airway surfaces
during infection and inflammation, increasing the efficiency of mucus transport.

There appear to be at least two pathways that may be important in regulating the ion
transport processes that mediate ASL volume homeostasis. First, regulation of the activation
state of ENaC (see above) sets the rate of Na+ transport by the epithelium. It appears that the
epithelial Na+ channel can be activated on airway surfaces by channel-activating proteases
(CAP) that convert silent ENaC on the apical membrane into active channels (Vallet et al.,
1997). Further, it appears that airway epithelia release antiproteases into ASL that can inhibit
the activation of CAPs (Bridges et al., 2001; Tarran et al., 2006; Tong et al., 2004). These
data have suggested that the antiprotease activity may, in a concentration-dependent manner,
regulate the activity of CAPs and hence, ENaC. For example, as ASL volume is reduced,
CAP inhibitor concentrations may increase, more effectively inhibit CAP, and slow the rate
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of Na+ absorption. Thus, it is very possible that the CAP/CAP inhibitor system may be
critically involved in determining overall rates of Na+ transport and the sensitivity of the
epithelium to Cl− secretagogues.

The second major system that controls the volume of ASL is the extracellular nucleotide–
nucleoside system (Lazarowski et al., 2004; Lazarowski and Boucher, 2000). The key concept
is that the rate of ATP release from the epithelium, reflecting both a basal rate of release and a
shear stress-regulated component, is a major determinant of ASL volume (Figure 5.5 (A–C))
(Tarran et al., 2005b). It is important to note that when ATP is released onto the airway
surface, there is a complex set of enzymes that will metabolize ATP ultimately to adenosine,
which then can be further metabolized to inosine, with both nucleosides being scavenged
and taken back up into the epithelial cells by specific transporters (Lazarowski et al., 2004).
The ratio of ATP to adenosine on airway surfaces will depend on the rate of release and the
distribution of the enzymes on the airway surface, both of these processes can be regulated
by disease, e.g., inflammation.

ATP itself regulates ASL volume via interactions with a luminally positioned P2Y2

receptor. This receptor is activated by ATP in a concentration-dependent manner to inhibit
ENaC via likely at least two mechanisms, by hydrolysis of inner leaflet PIP2 and PKC
activation (Ma et al., 2002; Yue et al., 2002). The inhibition of the apical membrane
Na+ conductance poises the epithelium to secrete Cl− in response to activation of apical
membrane Cl− conductances. ATP interactions with the P2Y2 receptor activate both CFTR,
via a PKC-dependent mechanism, and CaCC, by an IP3-dependent mechanism (Mason et al.,
1991). Thus, the net effect of ATP activation of P2Y2 receptors is to initiate NaCl and
volume secretion.

In parallel, adenosine activates a luminally positioned A2b receptor that is linked to the
formation of cAMP in cells (Huang et al., 2001). cAMP, via an interaction with PKA,
activates the CFTR protein in the apical membrane. CFTR, by as yet unknown mechanisms,
can inhibit ENaC itself, and activation of CFTR in the presence of ENaC inhibition gener-
ates Cl− secretion. Thus, normal human airway epithelia exhibit redundant mechanisms
for responding to ATP release with secretion, i.e., via ATP/P2Y2-R and adenosine/A2b

signalling. Importantly, it is likely that the overall secretion of ASL is ultimately dependent
on the nucleotide–nucleoside system.

The physiology of the nucleotide–nucleoside system also explains the differences in phys-
iology for both normal and CF cultures under static phasic motion conditions. For example,
under static culture conditions, the rate of ATP release is low �300 fmol/cm2/ min�, and
the enzyme system on the airway surface converts most ATP to adenosine (ATP concen-
tration ∼ 1 nM; adenosine concentration ∼ 100 nM). Under these conditions, normal airway
epithelia have the capacity to produce sufficient ASL to maintain 7 �m of volume on
the surface and efficient mucus transport via the ADO-A2b-CFTR axis. In contrast, CF
cultures fail to respond to activation of A2b receptors by adenosine due to the absence
of CFTR protein in the apical membrane. Thus, they cannot inhibit ENaC and initiate
Cl− secretion as normal cultures do. Under phasic motion conditions, the rate of ATP
release is increased ∼ 10-fold. Under these conditions, the ASL ATP concentrations reach
∼ 30–40 nM, and the adenosine concentrations, ∼ 200 nM. In normal airway epithelia,
the P2Y2–R activation of CFTR and CaCC produces the increase in ASL height/volume
from 7 �m to 14 �m, as noted above, whereas in CF cultures, the P2Y2–R activa-
tion accounts for the increase from 3 �m to ∼ 7 �m of liquid observed under these
conditions.
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5.14 Fluid transport across the alveolar epithelium

The distal airway is comprised of two main cell types, the alveolar type I and the alveolar
type II cells. Type I cells are large squamous-like cells that constitute most of the internal
surface area of the lung, while type II cells are smaller cuboidal cells that cover 2–5 per cent
of the alveolar surface (Matthay et al., 2005). Since alveolar type II cells can be readily
isolated in vitro, they have been studied at length.

Type II cells have been identified as the progenitor cells for the alveolar epithelium, and
have been shown to be responsible for restructuring the distal airway after damage to the
very susceptible type I cells (Mason, 2006). Type II cells have also been shown to synthe-
size and secrete surfactant to facilitate proper alveolar expansion (Rooney et al., 1994).
Moreover, type II cells possess the ability for Na+ and Cl− transport, mediating crucial
fluid homeostasis within the distal airway. Na+ uptake occurs on the apical surface of the
type II cell, in large part, through an amiloride-sensitive epithelial Na+ channel (ENaC)
(Eaton et al., 2004; Jain et al., 1999; Yue et al., 1995). In the lung, in situ hybridization
studies have identified the presence of mRNA for all three subunits of ENaC in vivo and
in vitro (Jain et al., 1999; Yue et al., 1995). Na+ diffuses through the alveolar cell to the
basolateral surface and is pumped into the interstitium by the ouabain-sensitive Na+� K+-
ATPase pumps (Eaton et al., 2004; Factor et al., 1998). Ussing chamber studies have
identified functional ENaC-mediated vectorial ion transport in vitro across high-resistance
rat alveolar type II cell monolayers by measuring short-circuit currents �Isc� (Factor et al.,
2007). Collectively, this well-regulated process is important for maintaining fluid home-
ostasis within the alveolus by aiding in the clearance of alveolar edema within intact
alveoli.

In addition to understanding the process of the clearance of excess fluid within the distal
airway, there have also been studies exploring the transport pathways involved in basal
lung Na+ and water movement. The exact role that ENaC plays, in the absence of agents
that are known to stimulate the activity of ENaC, is not clearly understood. However,
using RNA interference for 	-ENaC, current studies suggested the critical role for ENaC
upon �-adrenoceptor stimulation of lung fluid absorption, whereas baseline fluid absorption
appeared less dependent on ENaC (Li and Folkesson, 2005).

Although numerous studies have focused on the role of active Na+ transport as a primary
determinant for regulating fluid transport across the distal alveolar epithelium, the involve-
ment of Cl− transport pathways, mediated by CFTR, and their physiological significance to
vectorial fluid transport across the distal lung is still unresolved. Experiments in wild-type
mice, and the ex vivo human lung, demonstrated that fluid absorption caused by stimulation
was inhibited by glibenclamide, suggesting a role for CFTR-dependent Cl− absorption (Fang
et al., 2002, 2006). Moreover, both fluid absorption and Cl− uptake from the distal airspace
were stimulated by �-agonists in wild type, but not in CFTR-mutant �
F508� mice.

More recently, alveolar type II cells were identified as one of the major cell types within
the distal lung where CFTR may play a role in cAMP-mediated fluid transport, demonstrating
that CFTR is expressed in alveolar type II cells, and that the CFTR Cl− channel contributes
to cAMP-regulated fluid transport within the distal airspace of the lung (Fang et al., 2002,
2006; Leroy et al., 2006). However, a challenge still remains in understanding the relative
roles of CFTR-mediated Cl− secretion or absorption in the alveolus.

Alveolar type I cells, which cover approximately 95 per cent of the alveolar surface,
are large, flat cells whose primary function is to mediate gas exchange; however, their
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role in ion transport is still unclear. Current thoughts are that type II cells are the main sites
of ion transport in the lung, while type I cells provide a passive barrier, rather than an active
function. Detailed studies of type I cells have been limited to date, due to the difficulty
of maintaining them in cell culture. However, recent studies have demonstrated that type
I cells may not only express the machinery for active ion transport, but more importantly,
exhibit functional ion transport. For instance, several studies have established a possible
contribution of type I cells to vectorial fluid transport. To date, it is established that type I
cells express ENaC (Johnson et al., 2002), Na+� K+-ATPase (Borok et al., 2002), and aqua-
porins, specifically aquaporin 5, an integral membrane protein that facilitates water transport
across cell membranes in response to an osmotic gradient (Verkman, 2007). Interestingly,
studies have also found functional CFTR in freshly isolated type I cells (Johnson et al.,
2006), further demonstrating the potential importance of type I cells in maintaining fluid
balance.

Important advances have been made in the understanding of the reabsorption of fluid and
solutes by the distal alveolar epithelium with characterization of Na+ and Cl− transporters
under physiological and pathological conditions. Understanding the molecular and biophys-
ical properties of these transporters in vivo, and how these channels are regulated within
physiological and pathological environments, is crucial to developing targeted therapeutics.

References

Barro, S. R., Spitzner, M., Schreiber, R., & Kunzelmann, K. Bestrophin 1 enables Ca2+ activated Cl−

conductance in epithelia. Journal of Biological Chemistry, 282.
Borok, Z., Liebler, J. M., Lubman, R. L., Foster, M. J., Zhou, B., Li, X., Zabski, S. M., Kim, K. J.,

& Crandall, E. D. (2002) Na transport proteins are expressed by rat alveolar epithelial type I cells,
American Journal of Physiology – Lung Cell and Molecular Physiology, 282, L599–L608.

Boucher, R. C. (1994) Human airway ion transport (Part 1), American Journal of Respiratory and
Critical Care Medicine, 150, 271–281.

Bridges, R. J., Newton, B. B., Pilewski, J. M., Devor, D. C., Poll, C. T., & Hall, R. L. (2001) Na+

transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39-9437, American
Journal of Physiology, 281, L16–L23.

Burch, L. H., Talbot, C. R., Knowles, M. R., Canessa, C. M., Rossier, B. C., & Boucher, R. C. (1995)
Relative expression of the human epithelial Na+ channel (ENaC) sub-units in normal and cystic
fibrosis airways, American Journal of Physiology, 269, C511–C518.

Button, B., Picher, M., & Boucher, R. C. (2007) Differential effects of cyclic and constant stress on
ATP release and mucociliary transport by human airway epithelia, Journal of Physiology (London),
580, 577–592.

Eaton, D. C., Chen, J., Ramosevac, S., Matalon, S., & Jain, L. (2004) Regulation of Na+ chan-
nels in lung alveolar type II epithelial cells, Proceedings of the American Thoracic Society,
1, 10–16.

Engelhardt, J. F., Yankaskas, J. R., Ernst, S. A., Yang, Y., Marino, C. R., Boucher, R. C., Cohn, J. A., &
Wilson, J. M. (1992) Submucosal glands are the predominant site of CFTR expression in human
bronchus, Nature Genetics, 2, 240–247.

Factor, P., Senne, C., Dumasius, V., Ridge, K., Jaffe, H. A., Uhal, B., Gao, Z., & Sznajder, J. I.
(1998) Overexpression of the Na+� K+-ATPase alpha1 subunit increases Na+� K+-ATPase
function in A549 cells, American Journal of Respiratory Cell and Molecular Biology, 18,
741–749.



108 CH05 ION AND FLUID TRANSPORT ACROSS AIRWAY SURFACES

Factor, P., Mutlu, G. M., Chen, L., Mohameed, J., Akhmedov, A. T., Meng, F. J., Jilling, T.,
Lewis, E. R., Johnson, M. D., Xu, A., Kass, D., Martino, J. M., Bellmeyer, A., Albazi, J. S.,
Emala, C., Lee, H. T., Dobbs, L. G., & Matalon, S. (2007) Adenosine regulation of alveolar fluid
clearance, Proceedings of the National Academy of Sciences of the U.S.A., 104, 4083–4088.

Fang, X., Fukuda, N., Barbry, P., Sartori, C., Verkman, A. S., & Matthay, M. A. (2002) Novel role
for CFTR in fluid absorption from the distal airspaces of the lung, Journal of General Physiology,
119, 199–207.

Fang, X., Song, Y., Hirsch, J., Galietta, L. J., Pedemonte, N., Zemans, R. L., Dolganov, G., Verkman,
A. S., & Matthay, M. A. (2006) Contribution of CFTR to apical-basolateral fluid transport in
cultured human alveolar epithelial type II cells, American Journal of Physiology – Lung Cellular
and Molecular Physiology, 290, L242–L249.

Farinas, J., Kneen, M., Moore, M., & Verkman, A. S. (1997) Plasma membrane water permeability of
cultured cells and epithelia measured by light microscopy with spatial filtering, Journal of General
Physiology, 110, 283–296.

Gaillard, D., Hinnrasky, J., Coscoy, S., Hofman, P., Matthay, M. A., Puchelle, E., & Barbry, P. (2000)
Early expression of beta- and gamma-subunits of epithelial sodium channel during human airway
development, American Journal of Physiology – Lung Cellular and Molecular Physiology, 278,
L177–L184.

Huang, P., Lazarowski, E. R., Tarran, R., Milgram, S. L., Boucher, R. C., & Stutts, M. J. (2001)
Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at
the apical membrane of airway epithelial cells, Proceedings of the National Academy of Sciences of
the U.S.A., 98, 14120–14125.

Inglis, S. K., Brown, S. G., Constable, M. J., McTavish, N., Olver, R. E., & Wilson, S. M.
(2007) A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway
epithelial cells, American Journal of Physiology – Lung Cellular and Molecular Physiology, 292,
L1304–L1312.

Jain, L., Chen, X. J., Malik, B., Al Khalili, O., & Eaton, D. C. (1999) Antisense oligonucleotides
against the alpha-subunit of ENaC decrease lung epithelial cation-channel activity, American Journal
of Physiology, 276, L1046–L1051.

Ji, H. L., Su, X. F., Kedar, S., Li, J., Barbry, P., Smith, P. R., Matalon, S., & Benos, D. J. (2006) Delta-
subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel
(ENaC) via a physical interaction, Journal of Biological Chemistry, 281, 8233–8241.

Jiang, C., Finkbeiner, W. E., Widdicombe, J. H., McCray, P. B., Jr, & Miller, S. S. (1993) Altered
fluid transport across airway epithelium in cystic fibrosis, Science, 262, 424–427.

Johnson, L. G., Vanhook, M. K., Coyne, C. B., Haykal-Coates, N., & Gavett, S. H. (2004) Safety
and efficiency of modulating paracellular permeability to enhance airway epithelial gene transfer in
vivo, Human Gene Therapy, 14, 729–747.

Johnson, M. D., Widdicombe, J. H., Allen, L., Barbry, P., & Dobbs, L. G. (2002) Alveolar epithelial
type I cells contain transport proteins and transport sodium, supporting an active role for type I cells
in regulation of lung liquid homeostasis, Proceedings of the National Academy of Sciences of the
U.S.A., 99, 1966–1971.

Johnson, M. D., Bao, H. F., Helms, M. N., Chen, X. J., Tigue, Z., Jain, L., Dobbs, L. G., & Eaton, D. C.
(2006) Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in
lung ion transport, Proceedings of the National Academy of Sciences of the U.S.A., 103, 4964–4969.

Knowles, M., Murray, G., Shallal, J., Askin, F., Ranga, V., Gatzy, J., & Boucher, R. (1984) Bioelectric
properties and ion flow across excised human bronchi, Journal of Applied Physiology, 56, 868–877.

Knowles, M. R., Clarke, L. L., & Boucher, R. C. (1991) Activation by extracellular nucleotides of
chloride secretion in the airway epithelia of patients with cystic fibrosis, New England Journal of
Medicine, 325, 533–538.

Knowles, M. R., Paradiso, A. M., & Boucher, R. C. (1995) In vivo nasal potential difference: techniques and
protocols for assessing efficacy of gene transfer in cystic fibrosis, Human Gene Therapy, 6, 447–457.



REFERENCES 109

Knowles, M. R., Robinson, J. M., Wood, R. E., Pue, C. A., Mentz, W. M., Wager, G. C., Gatzy, J. T.,
& Boucher, R. C. (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as
compared to normal and disease-control subjects, Journal of Clinical Investigation, 100, 2588–2595.

Kotaru, C., Hejal, R. B., Finigan, J. H., Coreno, A. J., Skowronski, M. E., Brianas, L., & McFadden,
E. R., Jr. (2003) Desiccation and hypertonicity of the airway surface fluid and thermally induced
asthma, Journal of Applied Physiology, 94, 227–233.

Kreda, S. M., Mall, M., Mengos, A., Rochelle, L., Yankaskas, J., Riordan, J. R., & Boucher, R. C.
(2005) Characterization of wild-type and {Delta}F508 cystic fibrosis transmembrane regulator in
human respiratory epithelia, Molecular Biology of the Cell, 16, 2154–2167.

Kunzelmann, K., Milenkovic, V. M., Spitzner, M., Soria, R. B., & Schreiber, R. (2007) Calcium-
dependent chloride conductance in epithelia: is there a contribution by Bestrophin? Pflugers
Archive – European Journal of Physiology, 454, 879–889.

Lazarowski, E. R. & Boucher, R. C. (2000) UTP as an extracellular signaling molecule, News in
Physiological Sciences, 16, 1–5.

Lazarowski, E. R., Tarran, R., Grubb, B. R., van Heusden, C. A., Okada, S., & Boucher, R. C.
(2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis, Journal of
Biological Chemistry, 279, 36855–36864.

Leroy, C., Prive, A., Bourret, J. C., Berthiaume, Y., Ferraro, P., & Brochiero, E. (2006) Regulation
of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption
across alveolar epithelial cells, American Journal of Physiology – Lung Cellular and Molecular
Physiology, 291, L1207–L1219.

Li, T. & Folkesson, H. G. (2005) RNA interference for {alpha}ENaC inhibits rat lung fluid absorption
in vivo, American Journal of Physiology, 290, L649–L660.

Ma, H. P., Saxena, S., & Warnock, D. G. (2002) Anionic phospholipids regulate native and expressed
epithelial sodium channel (ENaC), Journal of Biological Chemistry, 277, 7641–7644.

Mall, M., Wissner, A., Schreiber, R., Kuehr, J., Seydewitz, H. H., Brandis, M., Greger, R., &
Kunzelmann, K. (2000) Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-)
secretion in human airway epithelia, American Journal of Respiratory Cell and Molecular Biology,
23, 283–289.

Mall, M., Gonska, T., Thomas, J., Schreiber, R., Seydewitz, H. H., Kuehr, J., Brandis, M., &
Kunzelmann, K. (2003) Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in
human normal and cystic fibrosis airway epithelia, Pediatric Research, 53, 608–618.

Mason, R. J. (2006) Biology of alveolar type II cells, Respirology, 11, S12–S15.
Mason, S. J., Paradiso, A. M., & Boucher, R. C. (1991) Regulation of transepithelial ion transport and

intracellular calcium by extracellular adenosine triphosphate in human normal and cystic fibrosis
airway epithelium, British Journal of Pharmacology, 103, 1649–1656.

Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W., & Boucher, R. C.
(1998a) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the
pathogenesis of cystic fibrosis airways disease, Cell, 95, 1005–1015.

Matsui, H., Randell, S. H., Peretti, S. W., Davis, C. W., & Boucher, R. C. (1998b) Coordinated
clearance of periciliary liquid and mucus from airway surfaces, Journal of Clinical Investigation,
102, 1125–1131.

Matsui, H., Davis, C. W., Tarran, R., & Boucher, R. C. (2000) Osmotic water permeabilities
of cultured, well-differentiated normal and cystic fibrosis airway epithelia, Journal of Clinical
Investigation, 105, 1419–1427.

Matsui, H., Verghese, M. W., Kesimer, M., Schwab, U. E., Randell, S. H., Sheehan, J. K., Grubb, B.
R., & Boucher, R. C. (2005) Reduced 3-dimensional motility in dehydrated airway mucus prevents
neutrophil capture and killing bacteria on airway epithelial surfaces, Journal of Immunology, 175,
1090–1099.

Matsui, H., Wagner, V. E., Hill, D. B., Schwab, U. E., Rogers, T. D., Button, B., Taylor, R. M., II,
Superfine, R., Iglewski, B. H., & Boucher, R. C. (2006) A physical linkage between CF airway



110 CH05 ION AND FLUID TRANSPORT ACROSS AIRWAY SURFACES

surface dehydration and P. aeruginosa biofilms, Proceedings of the National Academy of Sciences
of the U.S.A., 103, 18131–18136.

Matthay, M. A., Robriquet, L., & Fang, X. (2005) Alveolar epithelium: role in lung fluid balance and
acute lung injury, Proceedings of the American Thoracic Society, 2, 206–213.

Rochelle, L. G., Li, D. C., Ye, H., Talbot, C. R., & Boucher, R. C. (2000) Distribution of ion transport
mRNAs throughout murine nose and lung, American Journal of Physiology – Lung Cellular and
Molecular Physiology, 279, L14–L24.

Rooney, S. A., Young, S. L., & Mendelson, C. R. (1994) Molecular and cellular processing of lung
surfactant, FASEB Journal, 8, 957–967.

Rossier, B. C. (2004) The epithelial sodium channel: activation by membrane-bound serine proteases,
Proceedings of the American Thoracic Society, 1, 4–9.

Stutts, M. J., Canessa, C. M., Olsen, J. C., Hamrick, M., Cohn, J. A., Rossier, B. C., & Boucher, R. C.
(1995) CFTR as a cAMP-dependent regulator of sodium channels, Science, 269, 847–850.

Tarran, R., Grubb, B. R., Gatzy, J. T., Davis, C. W., & Boucher, R. C. (2001) The relative roles of
passive surface forces and active ion transport in the modulation of airway surface liquid volume
and composition, Journal of General Physiology, 118, 223–236.

Tarran, R., Button, B., & Boucher, R. C. (2005a) Regulation of normal and cystic fibrosis airway
surface liquid volume by phasic shear stress, Annual Review of Physiology, 68, 543–561.

Tarran, R., Button, B., Picher, M., Paradiso, A. M., Ribeiro, C. M., Lazarowski, E. R., Zhang, L.,
Collins, P. L., Pickles, R. J., Fredberg, J. J., & Boucher, R. C. (2005b) Normal and cystic fibrosis
airway surface liquid homeostasis: the effects of phasic shear stress and viral infections, Journal
of Biological Chemistry, 280, 35751–35759.

Tarran, R., Trout, L., Donaldson, S. H., & Boucher, R. C. (2006) Soluble mediators, not cilia,
determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia,
Journal of General Physiology, 127, 591–604.

Tong, Z., Illek, B., Bhagwandin, V. J., Verghese, G. M., & Caughey, G. H. (2004) Prostasin, a
membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis
airway epithelial cell line, American Journal of Physiology, 287, L928–L935.

Tsunenari, T., Sun, H., Williams, J., Cahill, H., Smallwood, P., Yau, K. W., & Nathans, J. (2003)
Structure–function analysis of the bestrophin family of anion channels, Journal of Biological
Chemistry, 278, 41114–41125.

Valentijn, J. A., Fyfe, G. K., & Canessa, C. M. (1998) Biosynthesis and processing of epithelial
sodium channels in Xenopus oocytes, Journal of Biological Chemistry, 273, 30344–30351.

Vallet, V., Chraibi, A., Gaeggeler, H. P., Horisberger, J. D., & Rossier, B. C. (1997) An epithelial
serine protease activates the amiloride-sensitive sodium channel, Nature, 389, 607–610.

Verkman, A. S. (2007) Role of aquaporins in lung liquid physiology. Respiratory Physiology and
Neurobiology, in press. DOI: 10.1016/j.resp.2007.02.012.

Widdicombe, J. H. (2002) Volume of airway surface liquid in health and disease, American Journal
of Respiratory and Critical Care Medicine, 165, 1566.

Yue, G., Russell, W. J., Benos, D. J., Jackson, R. M., Olman, M. A., & Matalon, S. (1995) Increased
expression and activity of sodium channels in alveolar type II cells of hyperoxic rats, Proceedings
of the National Academy of Sciences of the U.S.A., 92, 8418–8422.

Yue, G., Malik, B., Yue, G., & Eaton, D. C. (2002) Phosphatidylinositol 4,5-bisphosphate (PIP2)
stimulates epithelial sodium channel activity in A6 cells, Journal of Biological Chemistry, 277,
11965–11969.



6
Structure and Function of Cilia
Andreas Schmid and Matthias Salathe
Division of Pulmonary and Critical Care Medicine, University of Miami Miller School
of Medicine, Miami, Florida, USA

6.1 Introduction

In general, the mucociliary apparatus serves several important functions in the airway. The
major function is to provide a mechanical barrier for trapping particulates in the surface
liquid covering the airway epithelium and clearing them from the tracheobronchial tree
by ciliary action, a mechanism called mucociliary clearance. Cilia are the motors for this
transport while mucus (see Chapter 7) serves as the transport vehicle for foreign substances.

Cilia are restricted to the conductive airway proximal of the respiratory bronchioles. While
the size of the total alveolar surface of a normal human lung is approximately 85 m2, the
ciliated surface measures only about 0�15 m2. This ciliated area, however, is responsible for
propelling all particles deposited onto the airway surface to the pharynx. Cilia beat in a low-
viscosity, aqueous environment called the periciliary liquid layer. This layer is covered by
mucus, which binds and entraps deposited particles for transportation out of the airway. For
mucociliary transport to be effective, several epithelial functions need to properly interact
with each other, including epithelial water and ion transport (see Chapter 5), mucin secretion
(see Chapter 7), and ciliary action. If mucociliary clearance fails, airway and lung disease
ensue as illustrated by diseases such as chronic bronchitis, cystic fibrosis or primary ciliary
dyskinesia. This chapter will focus on the motor aspect of this transport, namely the cilia,
including their structure and function as well as the relation of their functional failure to
diseases.

6.2 Structure

Each motile human cilium is approximately 6–7 �m long and 0�2–0�3 �m in diameter.
Structurally, the cilium consists of a microtubular axoneme surrounded by a membrane
that is in continuation with the plasma membrane of the cell but seems to contain specific
proteins otherwise not found in the apical membrane and vice versa. The axoneme is
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made up of microtubules, dynein arms, radial spokes and interdoublet links (Figure 6.1).
The ultrastructure of axonemes has been preserved throughout evolution and has been
well characterized by electron microscopy. In addition, recent advances in proteomics have
enabled delineation of a catalogue of ciliary proteins. Pazour et al. identified 360 proteins
with high confidence and an additional 292 proteins with moderate confidence in flagella of
Chlamydomonas rheinhardii (Pazour et al., 2005), while Ostrowski et al. identified more than
200 proteins and over 200 expressed sequence tags (ESTs) in human axonemes (Ostrowski
et al., 2002). Such catalogues make clear that the axoneme is an incredibly complex structure
and remind us that we are still far from understanding its structure–function relationship
completely. This section can only provide a brief overview of the complexity of the ciliary
structure and function.

Figure 6.1 Structure of respiratory cilia. (A) Transverse section by transmission electron microscopy
through an ovine cilium with a schematic and explanations below. Bar is 0�3�m. (B) Single airway
epithelial cell by scanning electron microscopy. Bar is 5�m. (C) Surface of ciliated ovine airway
epithelium by scanning electron microscopy. Magnification ×2000

6.2.1 Membrane

Until recently, there has been little information available on the composition and function
of human airway ciliary membrane proteins. In the proteomic analysis by Pazour et al.
mentioned above, 39 of the identified 360 proteins were known to be membrane components
(Pazour et al., 2005). The identified proteins included six ion pumps or channels, three plasma
membrane Ca2+-ATPases and four closely related proteins that have 8 to 12 transmembrane
helixes, and a domain that is a sensory motif involved in detecting such diverse stimuli as
light, oxygen, redox state and small ligands (Taylor and Zhulin, 1999). Identification of the
latter proteins suggests that the ciliary membrane performs an important sensory and signal
transduction function. This is a relatively new concept for motile cilia, even though it has been
known that cilia can increase their beating force when adjusting to the changes in the outside
environment such as increasing viscosity of the periciliary fluid layer (Johnson et al., 1991).
Thus, signalling molecules could be expressed on the ciliary membrane. In support of this
hypothesis, recent publications describe expression of the tyrosine kinases Tie-1 and Tie-2
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(Teilmann and Christensen, 2005), the transient receptor potential vaniloid 4 (TRPV4) cation
channel and polycystin-1 and polycystin-2 (Teilmann et al., 2005) on motile cilia of the
oviduct in mice and humans. TRPV4 has been shown to regulate ciliary beat frequency (CBF)
in hamster oviduct in response to increasing viscosity by allowing Ca2+ influx (Andrade
et al., 2005). Thus, an increasing number of publications suggest that the ciliary membrane is
important in regulating CBF and beating force. Other functions may also be attributed to the
ciliary membrane as a recent publication reveals expression of the organic cation/carnitine
transporter N2 (OCTN2) at this location (Horvath et al., 2006).

6.2.2 Axoneme

The axoneme is the detergent-resistant, membrane-stripped structure of the cilium. The
ultrastructure of motile axonemes is typically described as a 9 + 2 arrangement of doublet
microtubules as seen in transmission electron microscopy studies (Figure 6.1). But besides
microtubules, cilia also contain a large number of other structural elements including inner
and outer dynein arms (the motors of movement), radial and circumferential spokes and
interdoublet links (Satir and Sleigh, 1990).

The outer microtubular doublets consist of an A and B subfibre, both assembled from
� and � tubulin heterodimers (Nogales et al., 1999) with the polymerizing �+� end at the
ciliary tip. There, the doublets simplify to single tubules (subfibre A) which insert into a
disc that usually forms the cytoplasmic surface of a transmembrane complex, called the
ciliary crown (Satir and Sleigh, 1990). At the base, the axoneme ends on a centriole, called
a basal body, where cytoplasmic microtubules also attach, thereby stabilizing the ciliary
machinery on the cytoskeleton. There seems to be a ‘gate’ at the ciliary base, controlling
what is allowed to enter the cilium. While small molecules can likely enter the cilium by
diffusion (calcium and cAMP for instance), others need to be transported via intraflagellar
transport, a feature immensely important for proper assembly and function of cilia (Scholey
and Anderson, 2006; Rosenbaum and Witman, 2002).

Radial and circumferential linkages integrate the individual microtubules into a func-
tioning axoneme (Satir and Sleigh, 1990). The T-shaped radial spokes connect the doublet
microtubules to the central pair complex. They usually are arranged in groups of three
along subfibre A and extend the entire ciliary length with a 96-nm period (McEwen et al.,
1986). Studies of Chlamydomonas revealed that radial spokes contain at least 23 distinct
polypeptides (Yang et al., 2001; Piperno et al., 1981), with a combined molecular mass of
approximately 1200 kDa. Many of these identified proteins are predicted to contain domains
associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains
(Yang et al., 2006). These studies show that radial spokes are far more than just connectors
between microtubules, at least in Chlamydomonas, but likely also in mammalian cilia (even
though the regulation of beating is somewhat different between the two).

Interdoublet links were termed nexins (Stephens, 1970). Nexins are arranged along the
doublets every 86 nm between adjacent subfibres A and B (Warner, 1976). Recent studies
using cryoelectron tomography (Nicastro et al., 2006) interpret nexin as a major part of
the dynein regulatory complex (see below) with connection to the A subfibre, close to
the attachment of the second radial spoke, and the adjacent B subfibre. This arrangement
suggests that nexins may mediate regulatory signals between radial spokes and inner and
outer dynein arms. The initially predicted elastic character of the protein (Warner, 1976) is
supported by its zigzag structure (Nicastro et al., 2006).
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Dyneins are the force-producing molecular motors that cause the doublet microtubules to
slide with respect to one another (Satir and Christensen, 2006). Outer and inner dynein arms
are attached to the dynein regulatory complex (Nicastro et al., 2006). All outer dynein arms
have the same structure in electron microscopy studies. In mammalian tracheal cilia, the
outer dynein arm is a two-headed bouquet-like molecule with a molecular size of 1–2 million
Da (Hastie et al., 1988). Each head contains a heavy chain ATPase of 400 000–500 000 Da.
During ciliary beating, these dynein heavy chains interact with adjacent microtubules and
move the microtubules relative to each other. According to studies in Chlamydomonas, the
outer dynein arm is the frequency-regulating center of the cilium (Brokaw and Kamiya,
1987), and some limited studies in patients who suffer from respiratory illnesses due to
missing outer dynein arms seem to confirm this notion (Chilvers et al., 2003). Further
sophisticated analysis of beating patterns are now under way to evaluate whether these data
can be confirmed in a large population (C. William Davis, personal communication).

Inner dynein arms are structurally and functionally more complex than outer dynein arms.
In Chlamydomonas, at least eight different inner-arm dynein heavy chains are organized
with various dynein intermediate and light chains into seven distinct complexes: one two-
headed dynein and six single-headed isoforms (Kamiya, 2002). By electron microscopy one
double-headed and five single-headed inner dynein arm complexes could be shown (Nicastro
et al., 2006).

As already exemplified by the assembly of nexins and radial spokes, cilia are built as
repetitive ‘modules’ along the ciliary axis. The basic module is 96 nm in length, consisting
of four outer dynein arms, three inner dynein arms, three radial spokes and one pair of
interdoublet links (Satir and Sleigh, 1990).

6.3 Function

6.3.1 Beat pattern of single cilia

After an effective stroke in the direction of mucus transport, the cilium goes through a
recovery stroke by swinging almost 180� horizontally backward more closely to the cell
surface and in a plane perpendicular to that surface. Extended almost to full length, the
effective stroke reaches a maximal velocity of 1 mm s−1 at the ciliary tip describing an arc
of approximately 110�, thereby propelling the mucus towards the pharynx. The effective
stroke is approximately two to three times faster than the recovery stroke (Sanderson and
Dirksen, 1985). These early studies suggested that the cilium rests shortly after completing
the effective stroke before resuming motion into the recovery and effective strokes. Recent
data, however, have started to cast doubt on the resting phase of the cilium (P. Sears and
C. William Davis, personal communication).

Dyneins are the motor molecules and they produce sliding of the microtubules relative
to each other. Since the motor activity is restricted to a single polarity, the movement can
only go in one direction. In order to achieve three-dimensional motion, some asynchrony of
the arm activity must therefore be present. A hypothesis for how this asynchrony may work
was provided by the switch point theory (Satir and Sleigh, 1990). This hypothesis states that
half of the doublets of the axoneme have active arms when the axoneme is moving through
its effective stroke and that the other half has active arms during the return stoke. When a
switch is blocked, the cilia will come to rest in one specific position, no matter where in the
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beat cycle the block is applied. Blocking the second switch will lead to ciliary arrest in a
second position (Satir and Sleigh, 1990). As shown in mussel gill cilia, one arrest position
is near the beginning of the effective stroke and the second is near the beginning of the
recovery stroke (Wais-Steider and Satir, 1979). The overall movement, however, is more
complicated and more work is needed to really understand how dynein arms can bring about
a complex motion in their arrangement in the axoneme.

6.3.2 Coordination of ciliary beat

Cilia are oriented to beat in the same, or at least similar, direction within a plane roughly
perpendicular to the epithelial surface. How cilia align during development to beat in the
same direction remains a mystery. The coordination between beating cilia gives rise to the
metachronal wave. The wavelength of a metachronal wave has been measured to be around
5–9 �m. The wave propagation has been reported at different angles (likely depending on
the length of the measurement field) and up to 125� clockwise to the direction of the
effective stroke (Gheber and Priel, 1994; Wong et al., 1993). The mechanisms of how cilia
are coordinated to create these waves are not well understood. Cilia on single cells seem
to beat together (personal unpublished observations and Gheber and Priel, 1989), but this
is not necessarily true for cilia on different cells if the cilia of these cells are farther apart
than about 10 �m (Gheber and Priel, 1989). These findings thus imply that the close spatial
relationship between cilia is important for their coordination. Furthermore, the environment
in which cilia beat consists at least in part of fluid; thus, significant hydrodynamic forces
must exist between beating cilia. These hydrodynamic interactions are believed to be the
most important factor for ciliary coordination on epithelial surfaces (Gheber et al., 1998)
and may explain why the lengths of metachronal waves are limited (Gheber and Priel, 1989;
Sanderson and Sleigh, 1981a).

6.3.3 Regulation of CBF

CBF changes are modulated by changes in the phosphorylation state of ciliary targets, the
intracellular calcium concentration ��Ca2+	i�, intracellular pH �pHi� as well as changes in
�HCO−

3 /CO2	i, independent of pH changes (Figures 6.2 and 6.3).

cAMP-dependent modulation of CBF

It is well accepted that axonemal beating can be stimulated by cAMP in different mammalian
species (Sanderson and Dirksen, 1989; Salathe et al., 1993a; Wyatt et al., 1998, 2005; Di
Benedetto et al., 1991). Sources of cAMP in airway epithelial cells are usually thought to
be the G-protein coupled, transmembrane adenylyl cyclases (tmAC). However, the pres-
ence of soluble adenylyl cyclase (sAC) has been described as well (Schmid et al., 2005)
and cAMP from this source could be important for ciliary beating. Therefore, the cell
has multiple possibilities to regulate CBF via increases in cAMP: through stimulation
of G-protein-coupled receptors (e.g., �2- or A2b receptors, Salathe, 2002; Morse et al.,
2001), direct calcium activation of tmACs, and activation of sAC by CO2/HCO3

− (Schmid
et al., 2005).

Phosphodiesterases are strategically localized around the areas where cAMP is produced
to create micro-domains with high concentrations of cAMP that is not allowed to diffuse
freely throughout the cell. It seems that the effects of cAMP on the axoneme and thus on
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Figure 6.2 Diagram of signalling pathways that increase CBF. See text for details

ciliary beating are mainly mediated by protein kinase A (PKA), which is phosphorylating
an outer arm dynein light chain. This target was originally described in Paramecium but it
is also found in several mammalian cilia including the human airway axoneme.

Calcium

Whereas cAMP-dependent regulation of CBF seems to be similar between unicellular organ-
isms and mammals, the regulation of CBF by Ca2+ is, at least in some aspects, different. In
mammals, elevation of �Ca2+	i is always associated with an increase of CBF. The regulation
of CBF by Ca2+ occurs within one beat cycle and only small changes in �Ca2+	i are needed
to change CBF (Salathe and Bookman, 1999; Lansley and Sanderson, 1999; Zhang and
Sanderson, 2003a). The mechanism of the Ca2+-mediated regulation of CBF is debated.
Even though some reports indicated the involvement of kinases in the CBF response to initial
Ca2+ changes, others have provided clear evidence that Ca2+ acts directly on a ciliary target
(Salathe and Bookman, 1999; Zhang and Sanderson, 2003a). It is also clear, however, that
transient Ca2+ increases can activate additional pathways that have an effect on CBF such
as cAMP and cGMP pathways (Zhang and Sanderson, 2003a, 2003b; Lieb et al., 2002).
Whether or not the initial Ca2+ response requires a baseline level of cyclic nucleotides
(Ma et al., 2002) remains unclear.
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Cyclic GMP modulation of CBF

cGMP is produced by activation of either soluble or membrane-bound guanylyl cyclase.
The membrane-bound form is stimulated by c-type natriuretic peptide and atrial natriuretic
peptide and the soluble form by nitric oxide (Padayatti et al., 2004). cGMP is described to
elevate CBF in mammalian airway cells, involving the activation of PKG (Wyatt et al., 1998,
2005; Geary et al., 1995). In bovine axonemes, CBF increases are similar upon stimulation
of comparable concentrations of cAMP and cGMP, but the highest stimulation was achieved
with a combination of cAMP and cGMP (Wyatt et al., 2005). cGMP has been shown to
regulate CBF in rabbit airway in both a Ca2+-dependent and an independent manner. Since
the cGMP-PKG signalling pathway is not required for rapid, calcium-dependent increases in
CBF, cGMP seems to act independently of Ca2+ (Zhang and Sanderson, 2003b). However,
calcium can also activate the cGMP-dependent pathway (Zhang and Sanderson, 2003b).

pHi-dependent modulation of CBF

CBF in human airway epithelial cells is also regulated directly by pHi. Changes in extra-
cellular pH per se (without influencing pHi) seems to have only minimal effects on CBF,
unless the pH becomes extreme and likely changes pHi (Clary-Meinesz et al., 1998; Kienast
et al., 1994). On the other hand, small changes in pHi have profound effects on CBF
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(Sutto et al., 2004). Alkalization increases CBF whereas acidification decreases CBF and
these changes are not related to PKA activation/inhibition or influences on other protein
kinases and phosphatases (Sutto et al., 2004). These findings therefore support a direct
effect of pHi on CBF. In favour of this hypothesis, human spermatozoa lacking outer dynein
arms failed to exhibit higher beat frequency during mild alkalization in contrast to normal
spermatozoa (Keskes et al., 1998).

6.4 Ciliary dysfunction associated with disease

6.4.1 Primary ciliary dyskinesia (PCD)

Motile cilia play a crucial role in clearing mucus and debris from the airway. If cilia
are dysfunctional, airway disease ensues. This is clearly demonstrated in patients suffering
from primary ciliary dyskinesia or PCD (e.g., Mitchison et al., 2006; Moller et al., 2006).
A report of a patient with symptoms of bronchiectasis and situs inversus one hundred years
ago is likely the first account of PCD (Siewert, 1904). Kartagener added chronic sinusitis
to the syndrome that was then named after him. About thirty years ago, abnormalities in
the ultrastructural composition of motile cilia were finally recognized by Afzelius as the
cause of PCD (Afzelius, 1976). Many clinical features of PCD are thus related to impaired
mucociliary clearance and include rhinitis, sinusitis, otitis media, and chronic productive
cough. The loss of normal mucociliary function leads to bronchiectasis.

There is considerable heterogeneity of dynein arm abnormalities in these patients. A recent
study analysing the different defects reported that 43 per cent of PCD patients have outer
dynein arm defects, 29 per cent have inner dynein arm defects, and 24 per cent have defects
of both arms (Noone et al., 2004). However, anomalies of the central microtubular pairs,
radial spokes, or nexin links and abnormal alignment of the beating plane can also cause
abnormal ciliary beating and thus lead to PCD.

Genetic approaches have elucidated at least some of the heterogeneous molecular defects
underlying PCD (reviewed in Zariwala et al., 2006) by focusing on genetic linkage analysis
and candidate gene analysis. Linkage analysis has identified several PCD loci, including
DNAH5 on chromosome 5p15, CILD2 on 19q, and additional loci on 16p12 and 15q13–15.
Selection of candidate genes for mutational analysis has also proved successful with identi-
fication of mutations in DNAI1 on chromosome 9p13-p21 and DNAH11 on 7p15.

The reasons for situs inversus totalis in patients with PCD has been at least partially
elucidated. The cloning of an axonemal dynein heavy-chain gene, left/right-dynein, that was
mutated in a strain of mice with a 50 per cent incidence of situs inversus, was the first clear
indication that situs inversus was related to a ciliary defect (Supp et al., 1997). Then, cilia
were found in the embryonic node at the time of left–right asymmetry determination and
these cilia were motile despite their ‘9 + 0’ ultrastructure. This motility creates a directional
flow across the embryonic node that seems to determine left–right asymmetry (McGrath
et al., 2003; Hirokawa et al., 2006; Nonaka et al., 1998).

6.4.2 Other airway diseases associated with abnormal ciliary function

Bacteria, bacterial products, and viruses

Hemophilus influenzae, a bacterium commonly encountered in chronic bronchitis, can induce
epithelial cell damage (Dowling et al., 1998) and ciliary dysfunction (Wilson et al., 1985).
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In addition, bacterial products from Pseudomonas aeruginosa such as hydroxyphenazine,
pyocyanin, and a rhamnolipid as well as bacterial culture supernatants have been shown to
decrease CBF (Wilson et al., 1985, 1987, 1988; Jackowski et al., 1991; Hingley et al., 1986;
Kanthakumar et al., 1993; Wilson and Cole, 1988). While pyocyanin can lower cAMP and
ATP levels of cells (Kantar et al., 1994), pyocyanin and 1-hydroxyphenazine also stimulate
inflammatory cells to release reactive oxygen species (Jackowski et al., 1991). In fact,
high concentrations of radicals have been reported to decrease CBF (e.g., Min et al., 1999;
Burman and Martin, 1986; Kantar et al., 1994) and even lower concentrations �>10 �M� of
hydrogen peroxide reduce CBF (Jackowski et al., 1991; Kobayashi et al., 1992), possibly
by activating PKC (Kobayashi et al., 1992). In fact, the finding of decreased CBF upon
PKC activation has been consistent in all mammalian cilia examined (Kobayashi et al.,
1989; Wyatt et al., 2000; Wong et al., 1998), even though the mechanisms by which PKC
inhibits CBF are not fully understood. Whether or not a ciliary membrane phosphorylation
target for PKC found in ovine cilia (Salathe et al., 1993b) plays a role needs further
examination.

Mycoplasma pneumoniae (Biberfeld and Biberfeld, 1970) and viruses especially from
the influenza group (Camner et al., 1973a) can cause epithelial disruption and mucociliary
dysfunction if more than 50 per cent of ciliated cells are destroyed (Battista et al., 1972).

Chronic bronchitis

Mucociliary clearance is impaired at least during exacerbations of chronic bronchitis
(Svartengren et al., 1996; Dirksen et al., 1987; Vastag et al., 1985; Mossberg et al., 1976;
Santa Cruz et al., 1974) and COPD (Smaldone et al., 1993, Camner et al., 1973b). Whether
or not ciliary dysfunction is involved remains a subject of debate. However, there are
detrimental effects on cilia encountered in these diseases.

In chronic bronchitis, airway inflammation with neutrophils and bacterial infections are
common. The effects of bacterial products on cilia were discussed above. In addition,
neutrophil elastase causes abnormal ciliary function, possibly by disruption of epithelial
barriers (Amitani et al., 1991; Smallman et al., 1984; Tegner et al., 1979). Airway infec-
tion and inflammation can lead to acquired ciliary disorders including misalignments of
the central microtubules between adjacent cilia, compound cilia, and supernumerary micro-
tubules (Afzelius et al., 1983), all of which may contribute to mucociliary dysfunction.
Finally, airway acidification during COPD and bronchiectasis exacerbations (Kostikas et al.,
2002) may adversely affect cilia (see above).

Asthma

Mucociliary clearance is also dysfunctional during asthma exacerbations (Ahmed et al.,
1981). In vitro studies, however, showed that ciliary activity was not depressed upon allergen
challenge (Maurer et al., 1982b; Wanner et al., 1986). In fact, inflammatory mediators
usually stimulated ciliary beating (Maurer et al., 1982a; Tamaoki et al., 1991). There were
notable exceptions, however, that caused ciliary dysfunction including platelet activating
factor (Seybold et al., 1990; Ohashi et al., 1994; Ganbo et al., 1991), eosinophilic major basic
protein (that accumulates in the sputum of asthmatic patients) (Frigas et al., 1980, 1981),
and leukotriene C4 in the presence of gamma-glutamyl transpeptidase (Ganbo et al., 1996).
Furthermore, other serum proteins (including complement C3a and C5), released into the
airway lumen during inflammation, decrease CBF (Sanderson and Sleigh, 1981b; Kennedy
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et al., 1982). Airway acidification also occurs during exacerbations of asthma (Hunt et al.,
2000; Ojoo et al., 2005) and may affect CBF.

Cystic fibrosis

CBF of cells from patients suffering from cystic fibrosis (CF) has been reported to be
normal when measured in vitro (Rutland and Cole, 1981). However, multiple products
found in CF airway in vivo can cause ciliary dysfunction including bacterial products
and neutrophil elastase (see above). A decrease in the periciliary fluid level, expected at
least during exacerbations (Tarran et al., 2006), also will impede ciliary function (Matsui
et al., 1998; Mall et al., 2004; Trout et al., 2003). Finally, airway acidification during
exacerbations (Coakley and Boucher, 2001; Coakley et al., 2003) could again lead to ciliary
dysfunction.
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Composition and Function
of Airway Mucus
Duncan F. Rogers
National Heart & Lung Institute, Imperial College London, UK

Inhalation of ∼ 500 L of air an hour bombards the airway epithelium with up to 600 million
particles a day (Seaton et al., 1995). Cigarette-smoking more than doubles that amount
(Hollander and Stober, 1986; Lippmann et al., 1980). As a result, the airway epithelium
has developed ways to combat this onslaught of soot, dust, microbes and allergens. First-
line defence against an inhaled insult impinging on, and causing damage to, the epithelium
is the production of mucus. This mucus is a viscoelastic gel that forms a thin film that
overlies the internal surface of the airway (Figure 7.1). It is an important homeostatic defence
mechanism with a variety of functions (Table 7.1) that have evolved to reduce potential
epithelial damage by inhaled irritants. Under normal circumstances airway mucus protects
the epithelial lining by entrapping foreign debris, bacteria and viruses and clearing them
from the airway by ciliary movement (Rose and Voynow, 2006). In contrast, in clinical
conditions associated with airway mucus hypersecretion, for example asthma (Del Donno
et al., 2000), chronic obstructive pulmonary disease (COPD) (Houtmeyers et al., 1999;
Maestrelli et al., 2001) and cystic fibrosis (CF) (Robinson and Bye, 2002), the mucus shifts
from a protective role to one that contributes to respiratory disease. Excessive production
of airway mucus, termed mucus hypersecretion, and changes in the biophysical properties
of the mucus, can lead to decreased mucociliary clearance and accumulation of mucus in
the lungs (Figure 7.2), leading to difficulty in breathing, increased morbidity and, in severe
cases, increased mortality. The latter aspects are covered in the present chapter and are
introduced in the following sections.

7.1 Airway ‘mucus’

Airway mucus is a complex dilute aqueous solution of lipids, glycoconjugates and proteins.
It comprises salts, enzymes and anti-enzymes, oxidants and antioxidants, exogenous bacterial
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Figure 7.1 Visualization of airway luminal mucus and cilia. Upper plate: Scanning electron micro-
graph of human bronchus showing mucus ‘flakes’ or ‘rafts’ (M) resting on top of cilia (C) (courtesy of
P. K. Jeffery). Lower plate: Mucociliary clearance in bovine trachea. Mucus (M) sits on top of the cilia
(C), which are seen bent at different stages of the beat cycle (courtesy of K. Pritchard)

Table 7.1 Functions of airway mucus

Physical barrier to inhaled airborne organisms, particles and
other irritants, as well as to aspirated foods and liquids

Entrapment of organisms, particles and irritants
Formation of the vehicle on which irritants are transported by

mucociliary activity for clearance from the airway
Provision of a waterproof layer over the epithelium to limit

dehydration
Humidification of inspired air
Insulation
pH-buffering capacity
Lubrication
Neutralization of toxic gases
Selective macromolecular sieve
Source of antibacterial and other protective enzymes, and

provision of extracellular surface for their activity
Source of immunoglobulins, and provision of extracellular

surface for their activity
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Figure 7.2 Mucus obstruction of the airway in COPD and asthma. (A) Mucus obstruction (M) in an
intrapulmonary airway of a cigarette smoker. (B) Fatal interaction between bronchoconstriction and
luminal mucus. Intrapulmonary airway of a patient who died of an acute severe asthma attack showing
airway epithelium (E) thrown into folds by smooth muscle contraction, and occlusion of remaining
lumen by mucus (M)

products, endogenous antibacterial secretions, cell-derived mediators and proteins, plasma-
derived mediators and proteins, and cell debris such as DNA. Airway mucus is considered
to form a liquid bi-layer whereby an upper gel layer floats above a lower, more watery sol,
or periciliary liquid, layer (Knowles and Boucher, 2002). The functions of the sol layer are
debated, but are presumed to include ‘lubrication’ of the beating cilia. The gel layer traps
particles and is moved on the tips of the beating cilia. The inhaled particles are trapped
in the sticky gel layer and are removed from the airway by mucociliary clearance. When
the mucus reaches the throat, it is either swallowed and delivered to the gastrointestinal
tract for degradation or, if excessive, as in respiratory disease, it is coughed out (Rose and
Voynow, 2006).

Respiratory tract mucus requires the correct combination of viscosity and elasticity for
optimal efficiency of ciliary interaction. Viscosity is a liquid-like characteristic and is the
resistance to flow and the capacity to absorb energy when moving. Elasticity is a solid-like
property and is the capacity to store the energy used to move or deform it. Viscoelasticity
confers a number of properties to the mucus that allow effective interaction with cilia.
These properties have been variously described in terms of spinnability, adhesiveness and
wettability (Houtmeyers et al., 1999). An important characteristic of mucus is that it is
non-Newtonian: its viscosity decreases as the applied force increases (Sleigh et al., 1988).
Consequently, the ratio of stress to rate of strain is nonlinear, with the result that the more
forcefully the cilia beat, the more easily the mucus moves. Viscoelasticity is conferred
on the mucus primarily by high molecular weight mucous glycoproteins, termed mucins
(Figure 7.3).
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Figure 7.3 Schematic representation of a gel-forming mucin molecule. The mucin subunit (∼500nm
in length) comprises an amino acid backbone with highly glycosylated (linear) domains and folded
regions, stabilized via disulphide bonds, with little or no glycosylation. Glycosylation is via O-linkages
and is highly diverse. In secretions, the subunits are joined end-to-end by disulphide bonds (S—S)
to form long, thread-like mature mucin molecules

7.2 Respiratory tract mucins

In health, mucins comprise up to 2 per cent by weight of the airway mucus (Davies et al.,
2002). In the airway, mucins are produced by goblet cells in the epithelium (Rogers, 2003)
(Figure 7.4) and sero-mucous glands in the submucosa (Finkbeiner, 1999). Although the
emphasis of the present book is the pulmonary epithelium, submucosal glands will be
mentioned herein where relevant as a comparison with goblet cells.

Mucins are long, thread-like, complex glycoconjugates (Figure 7.3). They consist of
a linear peptide backbone (termed apomucin) encoded by specific mucin (MUC) genes
(see below), to which hundreds of carbohydrate side-chains are O-linked, but also with
additional N-linked glycans. The glycosylation pattern is complex and extremely diverse
(Hanisch, 2001), and is associated with complementary motifs on bacterial cell walls, thereby
facilitating broad-spectrum bacterial attachment and subsequent clearance (Dell and Morris,
2001; Moniaux et al., 2001). Within the main protein core are variable numbers of tandemly-
repeated serine- and/or threonine-rich regions which are unique in size and sequence for each
mucin (Rose and Voynow, 2006), and represent sites for mucin glycosylation. These complex
glycoproteins are polydisperse, linear polymers that can be fragmented by reduction to give
monomers termed ‘reduced subunits’ (Sheehan et al., 1991, Thornton et al., 1990, 1991,
1994). There are at least two structurally and functionally distinct classes of mucin, namely
the membrane-associated mucins (Table 7.2) and the secreted (gel-forming or non gel-
forming) mucins (Tables 7.3 and 7.4). Membrane-tethered mucins, which have a hydrophobic
domain that anchors the mucin in the plasma membrane, contribute to the composition of
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Figure 7.4 Airway goblet cells. (A) Goblet cell (GC) and ciliated cell (CC) in human bronchial
epithelium. MG = mucin granule, L = lumen. Transmission electron micrograph after gluteraldehyde
fixation and post-fixation in osmium tetroxide. (B and C) Exocytosis of mucin (M) by guinea-pig
tracheal goblet cell, visualized after tannic acid incubation, demonstrating ‘omega’ profile formed
by fusion of intracellular granule and apical membrane: ultrathin section (B) and freeze-fracture
replication (C). L = lumen

Table 7.2 Human MUC genes producing membrane-associated mucins

Gene Tissue distribution

MUC 1 Lung, cornea, salivary glands, oesophagus, stomach, pancreas, large intestine,
breast, prostate, ovary, kidney, uterus, cervix, dendritic cells

MUC 3A Thymus, small intestine, colon, kidney
MUC 3B Small intestine, colon
MUC 4 Lung, cornea, salivary glands, oesophagus, small intestine, kidney, endocervix
MUC 11 Lung, middle ear, thymus, small intestine, pancreas, colon, liver, kidney, uterus,

prostate
MUC 12 Middle ear, pancreas, colon, uterus, prostate
MUC 13 Lung, conjunctiva, stomach, small intestine, colon, kidney
MUC 15 Conjunctiva, tonsils, thymus, lymph node, breast, small intestine, colon, liver,

spleen, prostate, testis, ovary, leukocytes, bone marrow
MUC 16 Conjunctiva, ovary
MUC 17 Intestinal cells, conjunctival epithelium
MUC 18 Prostate
MUC 20 Lung, liver, kidney, colon, placenta, prostate
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Table 7.3 Human MUC genes producing secreted, cysteine-rich (gel-forming) mucins

Gene Tissue distribution

MUC 2 Lung, conjunctiva, middle ear, stomach, small intestine, colon, nasopharynx, prostate
MUC 5AC Lung, conjunctiva, middle ear, stomach, gall bladder, nasopharynx
MUC 5B Lung, middle ear, sublingual gland, laryngeal submucosal, glands, oesophageal

glands, stomach, duodenum, gall bladder, nasopharynx
MUC 6 Stomach, duodenum, gall bladder, pancreas, kidney
MUC 19 Lung, salivary gland, kidney, liver, colon, placenta, prostate

Table 7.4 Human MUC genes producing secreted, cysteine-poor
mucins

Gene Tissue distribution

MUC 7 Lung, lachrymal glands, salivary glands, nose
MUC 8 Oviduct
MUC 9 Submandibular glands

the cell surface (Rose and Voynow, 2006). Secretory mucins are stored intracellularly in
secretory granules and are released at the apical surface of the cell in response to stimuli. It
would appear that mucus production is such a fundamental homeostatic process that virtually
all acute interventions examined trigger airway mucin secretion (Table 7.5). In addition,
many of these same mediators when administered more chronically not only induce mucin
secretion but also upregulate mucin gene expression, with concomitant increases in mucin
synthesis: the latter is associated with goblet cell hyperplasia (Table 7.5).

Table 7.5 Inducers of airway mucus secretion, goblet cell hyperplasia and mucin
(MUC) synthesis/gene expression

Stimulation Secretion Hyperplasia MUC

Cytokines
Interleukin (IL)-1� + NP NP
IL-6 + NP Yes
IL-9 NP NP Yes
IL-13 (IL-4) + Yes Yes
TNF� ++ Yesa Yesa

Gases
Irritant gases (e.g. cigarette smoke) ++ Yes Yes
Nitric oxide −ve/+ NP NP
Reactive oxygen species 0/+ NP NP

Inflammatory mediators
Bradykinin + NP NP
Cysteinyl leukotrienes ++ NP NP
Endothelin 0/+ NP NP
Histamine + NP NP
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PAF + Yesa Yesa

Prostaglandins 0/+ NP NP
Proteinases + + + Yes NP
Purine nucleotides ++ NP NP

Neural pathways
Cholinergic nerves ++ NP NP
Cholinoceptor agonists ++ Yes NP
Nicotine ++ Yes NP
Tachykininergic nerves + NP NP
Substance P ++ NP NP
Neurokinin A + NP NP

Miscellaneous
EGF (+ TNF�) NP Yes Yes
Sensitization followed by challenge + Yes Yes

+++ highly potent, ++ marked effect, + lesser effect, 0 minimal effect. NP, effect not
published.
a Effect only observed with PAF (platelet activating factor) and tumour necrosis factor-� (TNF�) in

combination.

EGF, epidermal growth factor; IL, interleukin.

7.3 Mucin genes and gene products

Twenty human mucin (MUC) genes have so far been identified (Tables 7.2–7.4). Of these,
only nine, namely MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC7, MUC8, MUC11
and MUC13, are expressed in the human respiratory tract (Rose and Voynow, 2006). Of
these, only MUC2, MUC5AC and MUC5B, the classic gel-forming mucins, are found in
airway secretions. However, only MUC5AC and MUC5B glycoproteins, localized adjacent
to each other on chromosome 11p15.5, are considered the major gel-forming mucins in
both normal respiratory tract secretions as well as in airway secretions from patients with
respiratory diseases (Hovenberg et al., 1996b, 1996a; Sheehan et al., 1999; Thornton et al.,
1996, 1997; Wickstrom et al., 1998). Small amounts of MUC2 may, however, be found in
secretions from ‘irritated’ airway (see below).

In general, the MUC gene products are poorly characterized biochemically and biophys-
ically (Davies et al., 2002). The predicted sequences of the MUC1, 3, 4, 8, 11 and 13
gene products suggest they are membrane-bound, with an extracellular mucin domain and a
hydrophobic membrane-spanning domain (Table 7.2). In contrast, MUC2, 5AC, 5B, 6 and
7 gene products are secreted mucins (Table 7.3). The technology for studying the contri-
bution to physiology and pathophysiology of the individual MUC gene products lags well
behind that of investigation of gene expression (Rose and Voynow, 2006). MUC1, 2, and
8 genes are expressed in both the epithelium and submucosal glands, whereas MUC4, 5AC
and 13 are expressed primarily in the epithelium. In contrast, MUC5B and MUC7 genes
are expressed primarily in the glands. Use of currently available antibodies confirms that
the MUC5AC gene product is a goblet cell mucin, whilst MUC5B predominates in the
glands, albeit that some MUC5AC and MUC7 is also usually present (Davies et al., 2002).
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Interestingly, MUC4 mucin localizes to the ciliated cells. The mucin content of secretions
from patients with hypersecretory respiratory diseases may differ from normal (see below).

7.4 MUC5AC

MUC5AC mucin, initially isolated as a tracheobronchial mucin (Guyonnet et al., 1995),
is found in airway secretions pooled from healthy individuals (Hovenberg et al., 1996b;
Thornton et al., 1996). Increased levels of MUC5AC protein have also been shown to be
present in the airway of patients with asthma (Ordonez et al., 2001), which suggests that
this mucin may contribute to the pathophysiology of asthma. MUC5AC is the main mucin
produced by the goblet cells in the tracheobronchial surface epithelium. However, MUC5AC
can be found highly expressed not only in human bronchial epithelium, but also in bronchial
submucosal glands, nasal mucosa, gastric epithelium, endocervix epithelium and submucosal
glands. This mucin has been found to be highly oligomerized, which makes it an ideal gel-
forming molecule. The expression of many genes, such as MUC5AC, in airway epithelial
cells is regulated by various neurohumoral factors and inflammatory mediators (Table 7.5).

7.5 MUC5B

MUC5B mucins are also a major component of tenacious mucus plug from the lungs of a
patient who died in status asthmaticus (Sheehan et al., 1995; Thornton et al., 1997) and in
sputum from patients with chronic bronchitis (Wickstrom et al., 1998), which suggests that
MUC5B is a major component of lung mucus from patients with obstructive lung diseases
(Rose et al., 2001). MUC5B mucin exists as differently charged glycoforms (termed the
low-charge and high-charge glycoforms) and is secreted primarily by the mucous cells in the
bronchial submucosal glands (Desseyn et al., 1998; Hovenberg et al., 1996a; Sharma et al.,
1998; Thornton et al., 1997). However, it has been shown that MUC5B mucins are also
synthesized by goblet cells (Wickstrom et al., 1998), and are expressed in the tracheal and
bronchial glands, salivary glands, endocervix, gall bladder and pancreas. MUC5B is unique
in that it does not appear to be polymorphic.

From the above, it appears that, in healthy individuals, MUC5B is mainly expressed
in the airway submucosal glands, which are restricted to the more proximal, cartilaginous
airway. In contrast, MUC5AC expression is generally restricted to goblet cells in the upper
and lower respiratory tracts (Audie et al., 1993; Reid et al., 1997). Thus, the composition
of normal mucus can be altered depending on the relative contribution to the secretions of
these different cellular sources (Kirkham et al., 2002). In respiratory diseases associated
with airway mucus hypersecretion, such as asthma, COPD and CF, further changes in the
composition of the mucus, and in the mucus secretory phenotype in general, are observed,
as discussed below.

7.6 Airway mucus hypersecretory phenotype in COPD

COPD comprises three overlapping conditions, namely chronic bronchitis (airway mucus
hypersecretion), chronic bronchiolitis (small airway disease) and emphysema (airspace
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enlargement due to alveolar destruction) (Global Initiative for Chronic Obstructive Lung
Disease, 2006). The following discussion considers the ‘bronchitic’ component of COPD.
The airway of patients with COPD contain excessive amounts of mucus (Reid, 1954), which
is markedly increased above that in control subjects (Aikawa et al., 1989; Steiger et al.,
1994). The excessive luminal mucus is associated with increased amounts of mucus secreting
tissue. Goblet cell hyperplasia is a cardinal feature of chronic bronchitis (Reid, 1954), with
increased numbers of goblet cells in the airway of cigarette smokers either with chronic
bronchitis and chronic airflow limitation (Saetta et al., 2000) or with or without productive
cough (Mullen et al., 1987). Submucosal gland hypertrophy also characterizes chronic bron-
chitis (Aikawa et al., 1989; Reid, 1954, 1960; Restrepo and Heard, 1963), and the amount
of gland correlates with the amount of luminal mucus (Aikawa et al., 1989).

The number of ciliated cells and the length of individual cilia is decreased in patients with
chronic bronchitis (Wanner, 1977). Ciliary aberrations include compound cilia, cilia
with an abnormal axoneme or intra-cytoplasmic microtubule doublets, and cilia enclosed
within periciliary sheaths (McDowell et al., 1976). These abnormalities coupled with mucous
hypersecretion are presumably associated with reduced mucus clearance and airway mucus
obstruction in the bronchitic component of COPD.

7.7 Airway mucus hypersecretory phenotype in asthma

Asthma is a chronic inflammatory condition of the airway characterized by variable
airflow limitation that is at least partially reversible, either spontaneously or with treatment
(American Thoracic Society, 1987; British Thoracic Society, 1997). It has specific clinical
and pathophysiological features (Eapen and Busse, 2002), including mucus obstruction of
the airway (Rogers, 2004). The latter is particularly evident in a proportion of patients who
die in status asthmaticus, where many airway are occluded by mucus plugs (Dunnill, 1960;
Houston et al., 1953; Saetta et al., 1991). The plugs are highly viscous and comprise plasma
proteins, DNA, cells, proteoglycans (Bhaskar et al., 1988) and mucins (Bhaskar et al., 1988;
Dunnill, 1960; Sheehan et al., 1995). Incomplete plugs are found in the airway of asthmatic
subjects who have died from causes other than asthma (Dunnill, 1975), which indicates that
plug formation is a chronic, progressive process. There is also more mucus in the central
and peripheral airway of both chronic and severe asthmatics compared with control subjects
(Aikawa et al., 1992). Analysis of asthmatic sputum indicates that the mucus comprises
DNA, lactoferrin, eosinophil cationic protein, and plasma proteins such as albumin and
fibrinogen (Fahy et al., 1993b, 1993a; Lopez-Vidriero and Reid, 1978b), as well as mucins
(Fahy et al., 1993b; Lopez-Vidriero and Reid, 1978a; Ordonez et al., 2001). The increased
amount of luminal mucus reflects an increase in amount of airway secretory tissue, due
to both goblet cell hyperplasia (Aikawa et al., 1992; Ordonez et al., 2001) and submucosal
gland hypertrophy (Dunnill, 1960), although the latter is not characteristic of all patients
with asthma (Aikawa et al., 1992).

Airway epithelial fragility, with epithelial shedding in extreme cases, is a significant
feature of asthma (Bousquet et al., 2000). Shedding includes loss of ciliated cells, with
presumably a concomitant reduction in mucus clearing capacity. As in COPD above, abnor-
malities in airway ciliated cells and cilia have been described in asthma. The ciliated cells
themselves may be damaged, with loss of cilia, vacuolization of the endoplasmic reticu-
lum and mitochondria, and microtubule damage (Beasley et al., 1989; Carson et al., 1994;
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Laitinen et al., 1985). These abnormalities could be caused by some of the inflammatory
mediators generated in the airway of asthmatic patients, for example eosinophil major basic
protein (Gleich et al., 1983). A variety of other ciliostatic and ciliotoxic compounds are also
present in asthmatic airway secretions (Del Donno et al., 2000).

In summary of this section, the combination of an increased amount of mucus-secreting
tissue, with associated mucus hypersecretion, the production of viscid mucus, and abnormal
ciliary function leads to reduced mucus clearance and the development of airway mucus
obstruction in asthma.

7.8 Mucociliary clearance in asthma and COPD

Clearance of mucus from the airway is impaired in patients with a variety of respiratory
diseases, including asthma and COPD (Wanner et al., 1996). However, it should be noted
that there are often discrepancies in results between studies that are invariably due to
differences in methodology (Clarke and Pavia, 1980; Pavia et al., 1983), but may also be
due to observations made at different stages of disease.

7.8.1 COPD

Mucus clearance is generally considered to be impaired in patients with COPD (Wanner
et al., 1996). However, the validity of these studies is dependent upon patient selection
and the exclusion of patients with asthma. For example, patients classified as having
obstructive chronic bronchitis and with a bronchial reversibility of less than 15 per cent
had slower lung mucus clearance than patients with reversibility greater than 15 per cent
and who, therefore, were likely to be asthmatic (Moretti et al., 1997). Nevertheless,
mucus clearance is significantly reduced in heavy smokers (Goodman et al., 1978) and
in patients with chronic bronchitis (Agnew et al., 1982). Lung mucus clearance differs
between patients with chronic airway obstruction, with or without emphysema (van der
Schans et al., 1990). Both groups of patients were smokers or ex-smokers and had
productive cough, but lung elastic recoil pressure was reduced in the emphysema group.
Mucus clearance from central airway was similar. In contrast, clearance from the periph-
eral lung was faster in the emphysema group than in the patients without emphysema.
Importantly, forced expirations and cough markedly increased peripheral clearance in
the non-emphysema group but not in the emphysema group. Comparable findings in a
subsequent study led to the suggestion that cough compensates relatively effectively for
decreased mucus clearance in patients with chronic bronchitis (Ericsson et al., 1995).
Conversely, cough is not so effective in COPD patients with impaired lung elastic recoil.

7.8.2 Asthma

Airway mucociliary clearance is well documented as being impaired in asthma (Del Donno
et al., 2000). Clearance is impaired even in patients in remission (Pavia et al., 1985) and
in those with mild stable disease (Bateman et al., 1983). Mucus clearance is proportionally
reduced in symptomatic asthmatics (Foster et al., 1982) and during exacerbations (Messina
et al., 1991). In addition, the normal slowing of mucus clearance during sleep is more
pronounced in asthmatic patients (Bateman et al., 1978; Pavia et al., 1987), and this could
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be a contributory factor in nocturnal asthma. The mechanisms underlying the reduced mucus
clearance in asthma are not clearly defined, although airway inflammation is considered to
be a major contributor (Del Donno et al., 2000).

7.9 Mechanisms of airway goblet cell hyperplasia

Airway goblet cell hyperplasia is a predominant feature of COPD, asthma and CF (see
above), and is an often-used end-point in animal models of respiratory disease (Rogers,
1997). The cellular composition of the airway epithelium can alter both by cell division and
by differentiation of one cell into another (Ayers and Jeffery, 1988). There are at least eight
cell types in the airway epithelium of the conducting airway. Of these, the basal, serous and
Clara cells are considered progenitor cells with the capacity to undergo division followed
by differentiation into ‘mature’ ciliated or goblet cells. In specific experimental conditions,
for example exposure to cigarette smoke, goblet cell division contributes in part to the
hyperplasia. However, differentiation of non-granulated airway epithelial cells is a major
route for production of new goblet cells (Ayers and Jeffery, 1988; Nadel and Burgel, 2001;
Rogers, 1994). In experimental animals, production of goblet cells is usually at the ‘expense’
of the progenitor cells, most notably serous and Clara cells, which decrease in number as
goblet cell numbers increase. Serous-like cells and Clara cells are found in macroscopically
normal bronchioles in human lung (Rogers et al., 1993). Whether there is a reduction in
number in respiratory disease is not reported, but merits investigation. Reduction in the
relative proportion of serous and Clara cells has pathophysiological significance because
they produce a number of anti-inflammatory, immunomodulatory and antibacterial molecules
vital to host defence (Basbaum et al., 1990; Singh and Katyal, 2000). For example, serous
cells produce lysozyme, lactoferrin, secretory IgA, peroxidase and at least two protease
inhibitors. Clara cells produce Clara cell 10-kDa protein, also known as uteroglobulin, Clara
cell 55-kDa protein, Clara cell tryptase, �-galactoside-binding lectin, possibly a specific
phospholipase, and surfactant proteins A, B, and D. Thus, in respiratory diseases associated
with airway mucus hypersecretion it seems that not only is there goblet cell hyperplasia,
with associated mucus hypersecretion, but also a reduction in serous and Clara cells, with
concomitant impaired potential for host defence.

7.10 Differences in mucus hypersecretory phenotype
between asthma, COPD and CF

In order to develop appropriate models of airway mucus obstruction and develop drugs to
aid mucus clearance, it is necessary to understand the similarities and differences in the
features of mucus obstruction for different hypersecretory conditions. There are a number
of differences in the pathophysiology of impaired mucus clearance between asthma, COPD
and CF (Figure 7.5). Firstly, although the underlying pulmonary inflammation of asthma and
COPD shares many common features, there are specific characteristics unique to each condi-
tion (Djukanovic, 2002; Jeffery, 1999; Saetta et al., 2001). Asthma is almost invariably an
allergic disease that affects the airway, rather than the lung parenchyma, and is characterized
by Th2-lymphocyte orchestration of pulmonary eosinophilia. The reticular layer beneath the
basement membrane is markedly thickened and the airway epithelium is fragile, features not



138 CH07 COMPOSITION AND FUNCTION OF AIRWAY MUCUS

Normal MUC5AC + MUC5B

Goblet
cell

Ciliated
cell

Mucous
acini

Serous
acini

Epithelium I II

COPD

Inflammation

MUC5AC << MUC5B

I

Plasma
exudation

Asthma MUC5AC < MUC5B

Inflammation

I I

CF MUC5AC << MUC5B >>> MUC2

CFTR

Inflammation

CFTR

Figure 7.5 Putative differences in pathophysiology of airway mucus obstruction in COPD, asthma and
CF. Compared with normal, in COPD, there is airway inflammation, increased luminal mucus, goblet cell
hyperplasia, submucosal gland hypertrophy (with an increased proportion of mucous to serous acini),
an increased ratio of mucin MUC5B to MUC5AC above that in asthma, and a susceptibility to infection.
In asthma, there is airway inflammation, increased luminal mucus, with an increased ratio of MUC5B
to MUC5AC, epithelial ‘fragility’ with loss of ciliated cells, marked goblet cell hyperplasia, submucosal
gland hypertrophy (although without a marked increase in mucous to serous ratio), ‘tethering’ of
mucus to goblet cells, and plasma exudation. In CF, there is airway inflammation, increased luminal
mucus, goblet cell hyperplasia, submucosal gland hypertrophy, an increased ratio of MUC5B to MUC5AC,
small amounts of MUC2 present in the mucus, and a marked susceptibility to infection. Many of these
observations require confirmation (or otherwise) by data from greater numbers of subjects

usually associated with COPD. The bronchial inflammatory infiltrate comprises activated
T-cells (predominantly CD4+ cells) and eosinophils. Neutrophils are generally sparse in
stable disease. In contrast, COPD is currently perceived as predominantly a neutrophilic
disorder governed largely by macrophages and epithelial cells. It is associated primarily
with cigarette-smoking. Three conditions comprise COPD, namely mucous hypersecretion,
bronchiolitis and emphysema. The latter feature is not associated with asthma. In addition,
and in contrast to asthma, CD8+ T-lymphocytes predominate and pulmonary eosinophilia is
generally associated with exacerbations.

Both asthma and COPD have a characteristic ‘portfolio’ of inflammatory mediators and
enzymes, many of which differ between the two conditions (Barnes et al., 1998; Barnes,
2002). At a very simplified level, histamine, interleukin (IL)-4 and eotaxin are associated
with asthma, whilst IL-8, neutrophil elastase and matrix metalloproteinases are associated
with COPD. Thus, there are specific differences between asthma and COPD in their airway
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inflammation and remodelling. These differences may in turn exert different influences on
the development of airway mucus obstruction in the two conditions (Figure 7.2).

Airway mucus in asthma is more viscous than in COPD or CF, with the airway of
asthmatic patients tending to develop, and subsequently become blocked by, gelatinous
‘mucus’ plugs (Liu et al., 1998). Whether or not mucus in asthma has an intrinsic biochemical
abnormality is unclear. In general terms, sputum from patients with asthma is more viscous
than that from patients with chronic bronchitis or bronchiectasis (Charman and Reid, 1972;
Lopez-Vidriero and Reid, 1978b; Shimura et al., 1988). Mucus plugs in asthma differ from
airway mucus gels in chronic bronchitis or CF in that they are stabilized by non-covalent
interactions between extremely large mucins assembled from conventional-sized subunits
(Sheehan et al., 1995). This suggests an intrinsic abnormality in the mucus due to a defect
in assembly of the mucin molecules, and could account for the increased viscosity of the
mucus plugs in asthma. Plug formation may also be due, at least in part, to increased airway
plasma exudation in asthma compared with COPD (Rogers and Evans, 1992). In addition,
in direct contrast to COPD, exocytosed mucins in asthma are not released fully from the
goblet cells, leading to ‘tethering’ of luminal mucins to the airway epithelium (Shimura
et al., 1996). This tethering may also contribute to plug formation. One explanation of mucus
tethering is that proteases from neutrophils, the predominant inflammatory cell in COPD
(Pauwels et al., 2001), cleave goblet cell-attached mucins. In asthma, the inflammatory cell
profile, predominantly airway eosinophilia (Eapen and Busse, 2002), does not generate the
appropriate proteases to facilitate mucin release.

Different MUC gene products, or at least different proportions of these mucins, appear to
be present in respiratory tract secretions in COPD, asthma and CF. MUC5AC and a low-
charge glycoform of MUC5B are the major mucin species in airway secretions from patients
with COPD, asthma or CF (Hovenberg et al., 1996b; Kirkham et al., 2002; Sheehan et al.,
1999; Thornton et al., 1996; Wickstrom et al., 1998). There is significantly more of the
low-charge glycoform of MUC5B in the respiratory diseases than in normal control secre-
tions (Kirkham et al., 2002). An interesting difference between the disease conditions is that
there is a proportional increase in the MUC5B mucin over the MUC5AC mucin in airway
secretions from patients with CF or COPD compared with secretions from patients with
asthma (Thornton et al., 1996). These data above require confirmation in more samples. The
significance of the change in MUC5B glycoforms between the different diseases in unclear.
However, it may relate to differences in propensity of bacterial colonization of the lungs. It
is noteworthy that it is COPD and CF, both diseases in which patients are prone to infection
(Davis, 2001; Pauwels et al., 2001), that share the same proportional reduction in serous cells,
rather than asthma, a condition in which patients are not so notably prone to chest infection.

In contrast to normal airway, goblet cells in the airway from patients with COPD contain
not only MUC5AC but also MUC5B (Chen et al., 2001; Wickstrom et al., 1998) and MUC2
(Davies et al., 2002; Davies and Carlstedt, 2001). This distribution is different from that
in the airway of patients with asthma or CF, where MUC5AC and MUC5B show a similar
histological pattern to normal controls (Groneberg et al., 2002a, 2002b). It is noteworthy
that although MUC2 is located in goblet cells in irritated airway, and MUC2 mRNA is
found in the airway of smokers (Steiger et al., 1994), MUC2 mucin is either not found in
airway secretions from normal subjects or patients with chronic bronchitis (Hovenberg et al.,
1996b), or is found only in very small amounts in asthma, COPD or CF (Davies et al., 1999;
Kirkham et al., 2002). The significance of the above combined observations is unclear, but
suggests that there are differences in goblet cell phenotype between asthma, COPD and CF.
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Another notable difference between asthma and COPD is in the bronchial submucosal
glands (Glynn and Michaels, 1960). In asthma, although hypertrophied, the glands are
morphologically normal with an even distribution of mucous and serous cells. In contrast,
in chronic bronchitis, gland hypertrophy is characterized by a markedly increased number
of mucous cells relative to serous cells, particularly in severe bronchitis. The reduction in
number of gland serous cells may have clinical significance. The serous cells are a rich source
of antibacterial proteins, such as lysozyme and lactoferrin (Finkbeiner, 1999). Thus, the
airway mucus layer in COPD patients may have a reduced antibacterial capacity compared
with that in asthma. This reduction, coupled with the change in MUC5B glycoforms in
COPD (see above), could further explain, at least in part, the much higher incidence of
bacterial chest infections in COPD compared with asthma.

Finally, it is not clear whether or not there are differences in the airway ciliary abnormal-
ities between COPD, asthma or CF (see above). However, epithelial fragility and shedding
are features of asthma rather than COPD (Jeffery, 1999), which suggests that there may be
greater loss of, and damage to, the ciliated cells in asthma compared with COPD or CF.

From the above, it may be seen that there are theoretical and actual differences in the
nature of airway mucus obstruction between COPD, asthma and CF. How these relate to
pathophysiology and clinical symptoms in the three conditions is, for the most part, unclear.
However, these dissimilarities indicate that different treatments are required for effective
treatment of airway mucus obstruction in different respiratory diseases.

7.11 Conclusions

Production of airway mucus is a vital homeostatic mechanism that protects the respiratory
tract from a barrage of inhaled insult. Precise interaction between cilia, the periciliary layer
and mucus is required for optimal mucociliary clearance. However, abnormal production
of mucus can contribute to respiratory disease. Airway obstruction by mucus is a common
feature of a number of severe respiratory conditions, including asthma, COPD and CF. These
diseases share pulmonary inflammation and remodelling as a pathophysiological character-
istic. They also each have a number of unique features that characterize their airway mucus
obstruction. For example, plasma exudation, mucus plug formation, and mucus tethering are
features of asthma, whereas submucosal gland hypertrophy with a disproportionate increase
in the ratio of mucous to serous cells is a significant feature in COPD. Understanding of
the relative importance of the differences and similarities in the pathophysiology of the
different mucus hypersecretory phenotypes between different respiratory diseases should
lead to rational development of pharmacotherapeutic interventions. However, it should be
noted that these interventions may have unexpected and unwanted side-effects. For example,
airway goblet cell hyperplasia is a notable feature of COPD, asthma and CF (see above).
Consequently, a reasonable therapeutic aim might be to inhibit or reverse the increase in
goblet cell number. However, airway goblet cells, as well as producing mucins, produce a
variety of anti-inflammatory and immunomodulatory molecules. For example, sheep goblet
cells produce in abundance a lactoperoxidase that potently scavenges hydrogen peroxide,
an important mediator of oxidative stress and associated inflammation (Forteza et al., 2001;
Salathe et al., 1997), whilst hyperplastic goblet cells in a rat model of allergic asthma produce
the anti-inflammatory and immunomodulatory molecule surfactant protein (SP)-D (Kasper,
2002). Thus, goblet cell secretions are a combination of mucins and host defence molecules.
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Figure 7.6 Hypothesis for airway goblet cell hyperplasia as a hypersecretory and anti-inflammatory
process. Left-hand panel: Normal epithelium is covered by a thin layer of mucus and comprises ciliated,
goblet, serous and Clara cells. Goblet cells secrete mucins (dark arrows) that contribute to formation
of the mucus layer. Goblet cells, serous cells and Clara cells produce antibacterial, anti-inflammatory
and immunomodulatory molecules (e.g. surfactant proteins, peroxidases and lysozyme) that contribute
to airway defence (light arrows). Right-hand panel: Goblet cell hyperplasia. Inhaled irritants induce
goblet cell hyperplasia, which leads to mucus hypersecretion and production of a thicker mucus layer
(to protect the epithelium from inhaled ‘insult’). The increased number of goblet cells is at the
‘expense’ of serous and Clara cells. However, goblet cells also produce host defence molecules, which
means that the airway inflammatory ‘shield’ is balanced despite loss of serous and Clara cells

The implication of this is that the reduced anti-inflammatory ‘shield’, as a result of goblet
cells replacing serous and Clara cells, is compensated for by the increase in host defence
molecules in hyperplastic goblet cells (Figure 7.6). Consequently, any therapeutic interven-
tion to reduce goblet cell number would presumably need to replace goblet cell-derived
anti-inflammatory and immunomodulatory molecules to be entirely effective.
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8.1 Overview

Pulmonary surfactant exists as a lipoprotein complex within alveoli and is essential for
normal lung homeostasis. Surfactant serves two main functions; to decrease the work of
breathing by reducing surface tension at the air–liquid interface, and to contribute to the
host’s innate defence system within the alveolar environment. In this chapter we will discuss
the composition of surfactant, the intracellular and extracellular metabolism of surfactant,
and review both the biophysical and immuno-modulatory functions of this material. Finally,
we will discuss alterations to the surfactant system in lung disease and the functional
consequences of these changes in conditions such as acute lung injury (ALI) and the acute
respiratory distress syndrome (ARDS), as well as the future potential use of exogenous
surfactant administration as a possible treatment for patients with lung injury.

8.2 Surfactant Composition

Surfactant is a lipoprotein complex synthesized and secreted by type II alveolar epithelial
cells. Pulmonary surfactant, which can be obtained from the lung for analyses via lung
lavage, consists of approximately 90 per cent lipid and 10 per cent surfactant associated
proteins, designated SP-A, B, C, and D (Goerke, 1998; Persson et al., 1989; Possmayer,
1988). The composition of surfactant, as described below and represented schematically
in Figure 8.1, is remarkably similar among mammalian species as determined from lavage
analyses from humans, bovine and rat species (Shelley et al., 1984). Within the lipid
component of surfactant, approximately 85 per cent consists of phospholipids (PL), which
are amphipathic, meaning that these molecules have both hydrophobic and hydrophilic
components with class determining polar head groups and fatty acyl tails. The most abundant
PL species is phosphatidylcholine �∼ 60 per cent�, of which 30–50 per cent is comprised of
the disaturated species dipalmitoylphosphatidylcholine (DPPC). The second most abundant
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Figure 8.1 Schematic representation illustrating the major surfactant components in their relative
proportions

PL is phosphatidylglycerol (PG), which makes up 7–15 per cent of total PL. The remaining
PL components are minor compounds such as phosphatidylinositol, phosphatidylserine,
sphingomyelin, and phosphatidylethanolamine. In addition to the phospholipids, surfactant
also contains approximately 5 per cent neutral lipids; the majority of which is cholesterol
(Veldhuizen and Possmayer 2004). Although the phospholipid profile is relatively conserved
among species, it should be noted that some differences in composition are present within the
fatty acid acyl chains of the specific phospholipids. Specific discussion of these differences,
and their implications for surfactant function, is beyond the scope of this chapter, but is
reviewed in detail by Postle et al. (2001).

The four surfactant-associated proteins (SP) represent approximately 10 per cent of total
surfactant by weight. SP-A, SP-B, SP-C, and SP-D can be classified into two general cate-
gories: (1) the small hydrophobic proteins SP-B, and SP-C, and (2) the two larger multimeric,
hydrophilic glycoproteins SP-A, and SP-D (Haagsman and Diemel, 2001; Hawgood and
Shiffer, 1991). Both SP-B and SP-C are tightly associated with the lipids of surfactant and
are predominantly formed within type II cells (Yu et al., 1987). In fact, these proteins
remain associated with these lipids even during extraction with an organic solvent such
as chloroform. SP-B is present within the lung as an 18 kDa homodimer (Hawgood et al.,
1998). Although, SP-C is smaller, it is the most hydrophobic protein within the mammalian
proteome and exists as a 4.2 kDa monomer. Adding to the hydrophobicity of this protein are
the two palmitoylated adjacent cystine residues near the N-terminus (Curstedt et al., 1990;
Johansson 1998).

The two remaining surfactant associated proteins SP-A and SP-D are both large
hydrophilic proteins that have been identified as members of the collagen-like lectin
(collectins) superfamily of immuno-modulatory proteins (Crouch et al., 2000; Kuroki and
Sano, 1999; McCormack and Whitsett, 2002). These proteins share collagen-like triple
helical sections linked to calcium-dependent regulatory domains that share structure with a
number of mammalian lectins. The SP-A monomer is a 26- to 36-kDa protein synthesized
within type II cells and Clara cells. SP-A is present within the lung as an octodecamer made
up of six trimers in a ‘flower bouquet’ shape (Haagsman et al., 1987; McCormack, 1998).
The SP-D monomer is a 42-kDa protein, but is typically found in a multimeric, cruciform
structure within the lung (Crouch, 1998). Apart from being expressed in conducting airway
(Clara cells) and alveolar type II cells in the lung, SP-D is also found in various other tissues
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and cell types throughout the body, predominantly in mucosal surfaces such as the intestinal
wall and nasal passages (Crouch, 1998). In contrast to SP-A, however, the majority of SP-D
in fluid isolated via alveolar lavage is unassociated, or weakly associated, with surfactant
lipids.

8.3 Surfactant Function

8.3.1 Biophysical function – physiological implications

The primary function of surfactant is to reduce surface tension forces exerted by water
molecules at the air–liquid interface within the alveoli of the lung. While molecules in the
bulk phase of the water layer experience equal attractive forces from other water molecules
and thus exert a net force of zero within the liquid, surface tension arises at the interface.
This is due to the unequal attractive forces between water and air molecules, whereby a net
‘downward’ force exists on the water molecules at the air–liquid interface. This unequal force
on water molecules at the respiratory surface results in a cohesive surface layer forming the
smallest surface area possible. Indeed surface tension accounts for approximately two-thirds
of the contractile properties of the lungs, with the elastic tissue properties representing the
remaining factor contributing to contraction. The physiological relevance of these forces can
be explained by Laplace’s Law which states that the pressure ��P� across the surface of a
spherical structure (i.e. the alveolus) is equal to two times the tension �2�� at the surface
divided by the radius �r� of the sphere ��P = 2�/r�. Therefore, the effort (or pressure)
required to open a very small sphere (such as an alveolus prior to inhalation) would be
extremely great if the surface tension values of the alveolus were high. Furthermore, given
this relationship, the impact of surface tension on respiratory effort (or �P) is greater
for alveoli with smaller radii, which would tend to completely collapse at the end of
exhalation if surface tension did not change in accordance with respiration. This collapse and
subsequent ‘tearing open’ of alveoli upon inhalation damages the epithelium of these distal
airway, resulting in lung injury and impaired lung function. To resolve this issue, pulmonary
surfactant is synthesized and secreted by alveolar type II cells and subsequently adsorbs to
and spreads along the air–liquid interface. There, it displaces the water molecules present at
the interface and prevents them from experiencing a net attractive force into the bulk phase,
thus dramatically reducing the surface tension within the alveolus (see Figure 8.2). This
reduction in surface tension confers stability to the alveolus, thus preventing alveolar collapse
and reducing the work required to breathe. This is especially apparent during the exhalation
phase of respiration, when alveolar radii are decreasing. It is during this decreasing radius of
the alveolus, that surfactant molecules are compressed and the surface film ‘purified’, thus
rendering it more effective at reducing surface tension. As a result, surface tension values
are reduced in accordance with decreasing alveolar radius to prevent collapse at low lung
volumes (see Figure 8.3).

The clinical relevance of these physiological concepts is reflected in the reduced lung
function observed when there is a primary deficiency of surfactant. In humans, premature
birth maybe associated with surfactant deficiency, as first described by Mary Allen Avery
(Avery, 2000; Avery and Mead, 1959). This condition is termed ‘neonatal respiratory distress
syndrome’ (NRDS) and has been successfully treated and prevented via the administration
of exogenous surfactant, as will be discussed in more detail subsequently.
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Figure 8.2 Air–liquid interface. (A) Interface without surfactant surface film. Water molecules
(represented as the grey spheres) at the air–liquid interface experience a net downward force into
the bulk phase of the water hypophase, as indicated by the large black arrow, creating high surface
tension. (B) Interface with surfactant surface film (circles with two parallel lines represent the
surfactant phospholipids). Displaced water molecules experience no net attractive forces, as indicated
by equivalent arrows in all four directions, and thus surface tension is low
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Figure 8.3 Schematic representation of the Law of LaPlace. �P = change in pressure across the
sphere, � = surface tension, and r = sphere radius. (A) The black line represents the epithelial layer of
an individual alveolus, the grey layer is representative of the aqueous hypophase and �r� indicates the
radius of the air space. As the radius of an alveolus without surfactant decreases, the surface tension
remains the same and the change in pressure across the alveolus is great, thus leading to alveolar
collapse. (B) The presence of a surfactant film (circles with two parallel lines indicate the surfactant
phospholipids) reduces surface tension in accordance with decreasing radius, which stabilizes the
pressure across the alveolus and maintains a patent airspace

An animal model of surfactant deficiency can be induced by repetitive whole lung saline
lavage of adult animals or via premature delivery of pregnant animals. (Brackenbury et al.,
2002; Yamada et al., 1990). In these models, reduced lung compliance and low blood
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oxygenation is observed, similar to infants with NRDS. Maintaining appropriate blood
oxygenation, and consequently survival, is dependent on the use of mechanical ventilation
(MV), although outcomes are not always favourable. Administration of a biophysically active
exogenous surfactant preparation into these surfactant-deficient lungs is very effective at
restoring lung function. Thus, both human observations and animal experimental modelling
indicate that surfactant is essential for normal lung function.

8.3.2 Biophysical function – molecular mechanisms

The molecular mechanisms by which surfactant reduces the surface tension at the air–liquid
interface have been extensively studied. A variety of techniques, including the pulsating and
captive bubble surfactometers, have been specifically developed to test the surface tension
reducing activity of surfactant preparations in vitro (Enhorning, 1977; Schurch et al., 1989).
Utilizing these techniques in combination with in vivo experiments, involving reconstitution
studies using purified surfactant proteins and lipids in various combinations, has led to a
better understanding of the role of each of the specific surfactant components in surface film
formation and surface tension reduction (Veldhuizen and Haagsman, 2000).

The main components of surfactant responsible for surface tension reduction are the
phospholipids. When spread at an air–liquid interface these amphipathic molecules align
themselves with their polar head group in the aqueous phase and their hydrophobic acylchains
projecting into the air. This effectively displaces water molecules at the surface and, with
sufficient phospholipids present, reduces the surface tension to an equilibrium value of
approximately 23 mN/m. Depending on the specific composition of the phospholipid mono-
layer, subsequent compression of the film can further reduce the surface tension to extremely
low values. For example, it has been shown that monolayers containing the main component
of surfactant lipid, DPPC, can be compressed and achieve surface tension values near to
zero, as would be required in the lung. These findings, and the abundance of DPPC in
natural surfactant suggest that the surfactant film reduces surface tension, in part, by forming
monolayers of DPPC within the lung (Yu and Possmayer, 1992). Although other compo-
nents of surfactant appear to be responsible for aiding in the purification of this lipid film
of DPPC during the compression phase (Veldhuizen et al., 2000), over the last few years, it
has become obvious that this concept of a monolayer is an oversimplification.

Two aspects of the proposed monolayer-model have been recently revised. First, several
lines of evidence, including electron microscopic studies of the surface film within the lung
tissue have demonstrated that the surface film is, in fact, a bilayer, or in some areas a
multilayer (Bachofen et al., 2005; Bastacky et al., 1995; Schurch et al., 1995). The multiple
layers of surfactant present underneath the surface film layer represent what has been called
the ‘surface associated reservoir’ (Schurch et al., 1995). In vitro studies suggest this material
can be rapidly inserted into the surface film upon expansion of the alveolar surface. It has
also become clear that direct evidence for the proposed enrichment in DPPC within the
surface film is lacking, and recent studies using techniques to image the surface of the film
indicate that it may be the organization of the different lipids within surfactant that allows
for surface tension be reduced to achieve low values (Piknova et al., 2001, 2002). This latter
concept requires further study.

The role of the surfactant proteins in the above processes can be described in terms of
the film formation, stabilization and maintenance. For example, when added to purified
lipids, both SP-B and SP-C enhance the speed of the formation of a surface film, suggesting
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that both proteins play a role in the adsorption of lipids to the air–liquid interface (Yu
and Possmayer, 1990, 1992). SP-B also enhances surface tension reduction during film
compression thereby stabilizing the surface film. Some in vitro studies have demonstrated
a similar activity for SP-C, although to a lesser extent than SP-B. SP-C is believed to
be more important in formation of the surface-associated reservoir by embedding in one
bilayer with the two palmitic acids anchoring that bilayer to a parallel bilayer (Qanbar &
Possmayer 1995).

Of the two hydrophilic proteins, only SP-A has been reported to contribute to the biophys-
ical role of surfactant (Cockshutt et al., 1990). Although adding SP-A to pure surfactant
phospholipids does not enhance surfactant function, in the presence of SP-B and phospho-
lipids, SP-A does enhance the formation of a surface film. Furthermore, in vitro studies
have shown that SP-A increases the surface tension reducing activity of surfactant at
low concentrations, and in the presence of inhibitory substances such as serum proteins
(Cockshutt et al., 1990; Rodriguez-Capote et al., 2003; Strayer et al., 1996). These obser-
vations suggest that SP-A may be more important biophysically, in situations in which the
surfactant system is compromised, such as lung injury, rather than normal lung homeostasis.

In addition to the in vitro studies, information supporting the important role of surfactant
proteins in lung function has also been obtained from knockout animals (Weaver and Beck,
1999). The most severe phenotypic abnormality observed in this setting is the SP-B knockout
model. These animals died from severe respiratory failure shortly after birth (Tokieda et al.,
1997). This provides strong evidence for the critical role of SP-B for surfactant function
and, indeed, lung function in vivo. SP-C-deficient animals also have pulmonary phenotypic
abnormalities; however, these abnormalities appear to be dependent on the specific genetic
strain of the mice (Glasser et al., 2001, 2003). Although this intriguing finding requires
further study, at this stage it can be assumed that SP-C is not essential for surfactant function
in murine lungs. As suggested above, SP-A knockout animals are phenotypically normal
under stable conditions (Korfhagen et al., 1998), although this is not the case in stressed
situations, as will be described in more detail in subsequent sections.

8.3.3 Innate host defence

The respiratory system, with its continuous exposure to the external environment, is
constantly subjected to inhaled or ingested pathogens, particles, and toxins. To protect against
these harmful substances, the lung has a highly developed innate host defence system that
assists in rapidly clearing or detoxifying inhaled particles and pathogens; the pulmonary
surfactant system is an important component of this system (LeVine and Whitsett, 2001;
Zaas and Schwartz, 2005; Zhang et al., 2000).

Pulmonary surfactant participates in the pulmonary defence system through various roles
including: (i) providing a physical barrier between the atmosphere and pulmonary circulation,
(ii) directly interacting with inhaled particles deposited in the distal lung, and (iii) through
interactions with other components of the pulmonary host defence system such as alveolar
macrophages. Surfactant also contributes to host defence through regulating mucociliary
clearance, optimizing fluid homeostasis across the alveolar-capillary barrier, directly partic-
ipating in the destruction of foreign pathogens present within the airspace, and participating
in the regulation of acquired host defence systems. While these properties all function to
maintain normal pulmonary health throughout life, and in particular the collectin proteins,
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alterations in surfactant may also represent important contributors to the pathophysiology of
various lung diseases.

Role of hydrophobic surfactant components in host Defence

Currently, the main role by which the surfactant lipids, SP-B, and SP-C contribute to the
pulmonary defence system is felt to be via indirect functions of their biophysical properties
in forming the surface film as described above. This surface film provides a physical barrier
for inhaled particles and/or pathogens and facilitates removal of these particles through
mucociliary transport. Although it is difficult to attribute a relative importance to the different
aspects of the complex host defence system, it is likely that this particular mechanism is
responsible for the clearance of a large percentage of inhaled particles from the alveolar
spaces.

Beyond the contribution of the surface film, other host defence functions of the
hydrophobic surfactant components are less well established, with the majority of the
evidence stemming from in vitro experiments. For example, high concentrations of an SP-
B-like peptide have been shown to kill bacteria in vitro (Kaser and Skouteris, 1997) and
SP-C has been shown to bind LPS (Ryan et al., 2006) (Augusto et al., 2001). The biolog-
ical significance of these observations requires further investigation, although recent studies
demonstrated that SP-C deficient mice were highly susceptible to Pseudomonas aeruginosa
pneumonia (Glasser et al., 2005). The specific mechanisms involved in rendering these mice
susceptible to bacterial infection are currently unknown.

Role of SP-A and SP-D in host Defence

The two pulmonary collectins, surfactant proteins A and D, are the pattern-recognition
molecules of the pulmonary innate immune system (Crouch and Wright, 2001; Whitsett,
2005). Many in vitro and in vivo studies have shown that SP-A and SP-D play critical
roles in the defence against viral, fungal, and bacterial pathogens (Crouch and Wright, 2001;
Whitsett, 2005). A variety of mechanisms by which these proteins provide this protection
have been established. For example, collectins can bind to microbes via their carbohydrate
recognition domains (CRD), which in turn enhances the aggregation, opsonization, and
clearance of these organisms via alveolar macrophages (Barr et al., 2000; Kuan et al., 1994).
SP-A has also been reported to directly kill bacteria by enhancing the membrane permeability
of the bacterial wall (Wu et al., 2003). Other mechanistic pathways include the interactions
of SP-A and/or SP-D with CD14 and Toll-like receptors which in turn may regulate NF-�B
expression, an important initial signalling event that determines gene expression of various
inflammatory mediators within alveolar macrophages and recruited polymorphonucleocytes
(Antal et al., 1996; Arias-Diaz et al., 2000; Murakami et al., 2002; Sano et al., 2000; Senft
et al., 2005).

The numerous in vitro studies demonstrating these properties are supported by animal
models of SP-A and SP-D deficiency. As noted previously, SP-A knockout (-/-) mice
are phenotypically normal with respect to surfactant homeostasis and respiratory function;
however, they display a significant defect in host defence properties when challenged with
various microbes (Korfhagen et al., 1998). SP-A -/- animals display delayed clearance of
organisms after administration of various bacterial and viral pathogens into their lungs and
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the uptake of these pathogens via alveolar macrophages was shown to be significantly
reduced compared to similarly challenged wild-type animals (LeVine et al., 1998, 1999,
2002). SP-A also appears to prevent bacterial spread from the lungs into the systemic
circulation, since bacterial dissemination to the spleen was significantly increased in SP-
A -/- mice after intratracheal administration of group B Streptococcus as compared to
wild-type animals (LeVine et al., 1997). SP-A also possesses distinct anti-inflammatory
functions. SP-A knockout mice exhibited increased levels of pro-inflammatory cytokines
such as TNF-alpha and IL-6 in isolated lavage fluids compared to wild-type animals after
microbial challenge, with mitigation of cytokine production and bacterial clearance via
intratracheal administration of exogenous recombinant SP-A (Borron et al., 2000; LeVine
et al., 2002).

Phenotypically, mice lacking SP-D demonstrate features similar to that of patients with
pulmonary alveolar proteinosis (PAP), typified by an accumulation of foamy alveolar
macrophages, and an increase in both alveolar and cellular pools of surfactant phospholipids
(Botas et al., 1998; Wert et al., 2000). These studies indicate that SP-D is required for
normal surfactant metabolic processes as it regulates surfactant uptake and clearance via
alveolar macrophages and possibly type II cells. Furthermore, unlike SP-A -/- mice, these
phenotypic abnormalities in SP-D -/- animals make interpretation of studies involving bacte-
rial or viral challenges more difficult. Nevertheless, when challenged with Haemophilus
influenzae, group B Streptococcus, or influenza A virus inoculations, alveolar macrophages
of SP-D knockout mice ingest fewer microbes than normal mice (LeVine et al., 2001, 2004)
and exhibit significantly greater levels of pro-inflammatory cytokines compared to wild-
type animals. These findings are similar in general to the SP-A -/- mice. Moreover, these
abnormalities can be readily corrected by exogenous replacement with SP-D, suggesting a
specific role of this material in host defence despite the phenotypic alterations observed prior
to the insult.

Overall, there is overwhelming evidence both in vitro and in vivo suggesting important
host defence functions for the surfactant system. These properties, in addition to other
components of defence such as alveolar macrophages, neutrophils and other proteins involved
in the recognition, clearance and or killing of pathogens, such as defensins (Cole and Waring,
2002; Schnapp and Harris, 1998) and lysozymes (Kalfa and Brogden, 1999), protect the lung
and ensure optimal lung function. Nevertheless, there are numerous examples in which the
host defence system is breached and lung injury ensues. The role of pulmonary surfactant
in those situations will be discussed in subsequent sections.

8.4 Normal surfactant metabolism

As can be deduced from the descriptions of the biophysical and host defence properties of
surfactant, maintaining a functional surfactant system is crucial to maintaining a healthy,
optimally functioning, lung. The metabolic cycle of surfactant is responsible for maintaining
this functional surfactant system and includes both intracellular and extracellular aspects.

8.4.1 Intracellular surfactant metabolism: synthesis and secretion

Although other cell types have been reported to produce some surfactant components, the
alveolar type II cell is predominantly responsible for the synthesis, intracellular storage,
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secretion and reuptake of pulmonary surfactant (Batenburg, 1992; Haagsman and Van
Golde, 1991; Van Golde et al., 1987). Phospholipid substrates such as choline, glucose,
and fatty acids are taken up from the vasculature by the type II cell and subsequently
enter the de novo pathway for phospholipid synthesis. This process itself does not produce
the specific molecular species of surfactant phospholipids, as extensive intracellular remod-
elling occurs to produce the high amount of dipalmitoylphosphatidylcholine present in
surfactant (Post et al., 1983; Van Golde et al., 1987). Bilayers of these phospholipids
are then packaged into the cytosolic storage form of surfactant called lamellar bodies
(LB) prior to secretion into the alveolar space (Schmitz and Muller, 1991; Weaver
et al., 2002).

SP-B, which is also synthesized within the type II cell, is first produced as a pro-peptide
(40–42 kDa) and subsequently proteolytically cleaved at both termini to produce the active
18 kDa peptide (Voorhout et al., 1992; Weaver, 1998). SP-C is synthesized as a 21-kDa
pro-peptide and similarly proteolytically cleaved to a 4.2-kDa monomer (Beers and Fisher,
1992; Weaver, 1998). Both of these hydrophobic proteins are routed through the Golgi
apparatus and similar to the PLs are packaged into the LB structures.

Most of the hydrophilic proteins SP-A and SP-D are synthesized within the type II cell
and undergo substantial post-translational modifications, including glycosylation, within the
endoplasmic reticulum (McCormack, 1998). Although some reports suggest that SP-A is
an initial component of LB, there also appears to be secretory pathways for this protein
independent of LBs (Bakewell et al., 1991; Froh et al., 1990; Oosterlaken Dijksterhuis et al.,
1991). As noted previously, SP-D synthesis is not unique to alveolar type II cells, although
it is preferentially synthesized here and undergoes post-translational modifications prior to
secretion (Crouch, 1998).

A number of different hormonal and extracellular signaling mediators (i.e. �-adrenergic
agonists) may initiate surfactant secretion into the airspace (Mason and Voelker, 1998;
Rooney, 2001). Within a healthy adult lung, however, physical stretch of the type II cells
(such as that which occurs during normal respiration with inhalation) has been identified as
an important signal for surfactant secretion (Edwards, 2001; Massaro and Massaro, 1983).
To move surfactant from inside the type II cell into the airspace, exocytosis of LBs, or
fusion between the apical membrane of the cell with the perimeter membrane of the LB,
occurs (Chander and Wu, 1991).

8.4.2 Extracellular metabolism

Upon entering the aqueous hypophase of the airspace, LB structures unravel from the
typical organized multi-lamellar storage structures to a lattice-like structure called tubular
myelin (TM) and other larger organized lipid-protein structures (Sanders et al., 1980).
Interestingly, SP-A has been shown to have lipid aggregation properties which, in part,
is responsible for the formation and stability of structures such as TM (Suzuki et al.,
1989; Voorhout et al., 1991). In fact, transgenic mice deficient in SP-A demonstrate a
lack of TM structures present within the airspace, although these animals display normal
surfactant homeostasis and respiratory function under non-stressful conditions (Korfhagen
et al., 1998). This finding would imply that TM has a relatively minor biophysical role
in the normal lung and is not essential for the formation of a surface film in this setting.
Experimentally, it has been impossible to obtain pure preparations of TM. Instead researchers
have utilized differential centrifugation or density gradient centrifugation techniques of lung
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lavage material in order to separate subfractions of surfactant enriched in TM structures
(Gross et al., 2000). It has been shown that two major structural forms of alveolar surfactant
have been identified using these techniques; large surfactant aggregates (LA) and small
surfactant aggregates (SA). LA are the heavier components and comprise the organized lipid
structures, such as LB and TM, as well as the surfactant-associated proteins SP-A, SP-B, and
SP-C (Putman et al., 1996; Veldhuizen et al., 1994). SA are less dense and smaller vesicular
lipids that contain smaller amounts of surfactant proteins (Brackenbury et al., 2002; Putman
et al., 1996).

Using these centrifugation techniques to purify surfactant subfractions, in combination
with pulse-chase studies utilizing radioactive lipid precursors, it has been established that
LA represent the freshly secreted forms of surfactant (Baritussio et al., 1984; Magoon
et al., 1983). Moreover, isolated LA are capable of reducing surface tension to very low
values when tested in vitro, and improve lung function when instilled into the lungs of
surfactant-deficient animals (Brackenbury et al., 2002; Putz et al. 1994; Yamada et al.,
1990). LA are therefore considered the biophysically active component of alveolar surfactant
and are believed to be the precursor of the surface film in vivo. Unfortunately, procedures
currently available do not allow for the specific isolation of the surfactant surface film.
Based on the pulse chase studies mentioned above, it has also been shown that during
respiration LA are ‘converted’ into SA (Baritussio et al., 1984; Magoon et al., 1983).

TYPE II CELL

Recycled
LB

AM

Degraded

Small
Aggregates

Large
Aggregates

TM

Surface film

Figure 8.4 Surfactant metabolism. Within the alveolar type II cell, the concentric circles represent
phospholipids and the small grey and black circles represent surfactant-associated proteins. ‘LB’
indicates lamellar bodies, the cytosolic storage form of surfactant. Once LBs enter the aqueous
hypophase, they undergo morphological changes to form tubular myelin (TM) and adsorb to the
surface film at the air–liquid interface. These components are the large aggregates and are considered
the functional subfraction of surfactant. Area compression of the surface film converts LA into their
non-functional form, the SA, which are cleared from the airspace by the alveolar macrophage (AM)
and degraded or taken up by the type II cell for recycling
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This conversion process has been studied both in vitro, using a technique called surface
area cycling, and in vivo, using radioactive LA phospholipids instilled into animal lungs
(Gross and Narine, 1989; Veldhuizen et al., 1996, 1997, 1999). Both techniques indi-
cate that one of the critical factors for aggregate conversion within the alveolar space
is a continuously changing surface area. For example, based on extensive experimental
observations, it is believed that in normal lungs, LA form the surface film during inhala-
tion, when alveolar surface area increases. Subsequently SA are formed during exhalation
when the surface area is decreasing and the film is compressed. Further in vitro studies
have indicated that this conversion is also mediated via the activity of a carboxylesterase
molecule named convertase. The clinical relevance of convertase for surfactant metabolism
has not yet been established in vivo, however (Barr et al., 1998; Gross, 1995; Gross and
Schultz, 1990; Krishnasamy et al., 1997). In general, these processes result in metabol-
ically active but relatively consistent proportion of LA and SA in normal lungs at any
one time.

Following the formation of SA, these structures are then cleared from the airspace either
by the alveolar macrophages or by being taken back up into the type II cell (Poelma et al.,
2002; Rider et al., 1992). Alveolar macrophages are primarily responsible for the degradation
of SA whereas the uptake by type II cells results in the recycling of SA phospholipids
back into the formation of new LB. Figure 8.4 illustrates the overall metabolic process from
synthesis of LB to the reuptake and/or degradation of the SA.

8.5 Summary: surfactant in normal lungs

As discussed above, the maintenance of a functional pulmonary surfactant system is critical
for normal lung function through the reduction of surface tension at the air–liquid inter-
face of the alveoli. Furthermore, through its host defence functions, surfactant protects the
lung from inhaled particles and infectious agents. It can be deduced from these surfactant
functions that alterations of surfactant may lead to a breach in pulmonary host defence,
altered lung compliance, or poor gas exchange. These pathological situations are discussed
below.

8.6 Surfactant in lung injury

Numerous lung injuries and diseases are known to be associated with changes to the
pulmonary surfactant system, both structurally and functionally (Frerking et al., 2001;
Griese, 1999). Some very common pulmonary diseases such as cystic fibrosis, asthma, and
bronchiolitis have been shown to have alterations in surfactant isolated from these patients’
lung lavage samples (Banerjee and Puniyani, 2000; Griese et al., 1997; Heeley et al.,
2000; Hohlfeld et al., 1999). However, to what extent these alterations contribute to the
pathophysiology of those diseases is largely unknown and requires further study. This section
will focus on two pulmonary conditions for which there is much stronger evidence that the
pulmonary surfactant system plays an active role in disease severity and progression, namely
neonatal respiratory distress syndrome (NRDS) and acute respiratory distress syndrome
(ARDS)
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8.7 NRDS

Surfactant deficiency associated with premature delivery is the main cause of respiratory
dysfunction in neonates and has been termed ‘neonatal respiratory distress syndrome’.
The discovery of the important role of surfactant in NRDS was made in the 1950s by
Avery and Mead (Avery, 2000; Avery and Mead, 1959). They observed that infants born
at less than 35 weeks’ gestation had significant difficulty initiating their first breath of air
(i.e. opening up the lung and establishing an air–liquid interface). Subsequent collapse of
the lung with exhalation and reopening during spontaneous breathing required increasing
efforts. These infants ultimately fatigued and died due to complications from hypoxemia
and hypercarbia. Post-mortem examinations revealed the formation of hyaline membranes
within the alveolus – indicative of extreme physical forces within the lung creating severe
pulmonary edema and proteinaceous debris covering the alveolar surface. Avery was the
first to establish that the repetitive alveolar collapse causing stiff and very non-compliant
lungs was primarily due to high surface tension forces as a result of surfactant deficiency.

These findings resulted in major research efforts around the world focused on pulmonary
surfactant administration. Several decades of work culminated in the development of
exogenous surfactant therapy for these infants with NRDS (Enhorning et al., 1985;
Robertson, 1989; Robertson and Halliday, 1998). This therapy involves the instillation of
an exogenous surfactant preparation into the airway of the neonate, either immediately prior
to, or shortly after, birth with immediate improvements in lung function typically observed.
This therapeutic intervention has had a tremendous impact on infant mortality and is now
used routinely throughout the Western world (Jacobs et al., 2000; Jobe and Ikegami, 2000;
Kresch and Clive, 1998).

8.8 ARDS

Unlike the impressive success of surfactant therapy in NRDS, this therapeutic approach
for patients with acute respiratory distress syndrome (ARDS) has had inconsistent results.
This is due to the complex pathophysiology of this disorder, and the wide range of patients
encompassing the clinical definition of ARDS.

In 1967, Ashbaugh first described the adult respiratory distress syndrome in 12 patients
who died of respiratory failure (Ashbaugh et al., 1967). This condition was subsequently
termed acute respiratory distress syndrome (ARDS) and is clinically characterized by hypox-
emia �PaO2/FIO2 ratio below 200 mmHg), and decreased lung compliance with no evidence
of heart failure (Bernard et al., 1994). ARDS represents the most severe manifestation of
acute lung injury (ALI), and poses a significant burden of illness in the intensive care setting
(Bellamy and Oye, 1984; Carson and Bach, 2002). The incidence of ARDS has been esti-
mated to be 5–15 per 100 000 cases of ALI per year, if not higher, with a high mortality
rate ranging from 25 to 50 per cent (Arroliga et al., 2002; Bersten et al., 2002; Goss et al.,
2003; Villar and Slutsky, 1989).

The physiological consequences of this disease, specifically the reduced lung compli-
ance and decreased blood oxygenation, as well as its similarity to NRDS pathologically,
initially suggested that the surfactant system in these patients may be altered (Ashbaugh
et al., 1967). This was subsequently confirmed via analysis of lung lavage material obtained
from patients with ARDS (Gregory et al., 1991; Gunther et al., 1996; Hallman et al., 1989;
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Pison et al., 1987; Veldhuizen et al., 1995). Compared to surfactant from non-ARDS patients,
these patients had altered phospholipid composition, decreased amounts of surfactant-
associated proteins and relatively low amounts of LA. In addition, these patients had
increased amounts of serum proteins in the lavage – proteins that have been shown to inhibit
surfactant function when tested both in vitro and in vivo. Together, these alterations of
surfactant composition and the accumulation of serum proteins within the airspace resulted
in an impaired ability of the surfactant isolated from patients with ARDS patients to reduce
surface tension to low values when tested in vitro using the bubble surfactometer. These
findings, together with the success of exogenous surfactant therapy in infants with NRDS,
initiated investigations into the use of exogenous surfactant administration in patients with
ARDS. Despite promising animal studies and a substantial number of clinical trials, exoge-
nous surfactant therapy has yet to be shown to improve the mortality associated with this
disorder (Davidson et al., 2006; Lewis and Veldhuizen, 2003). In the final section of this
chapter, the present and future of surfactant therapy in ALI/ARDS will be discussed.

8.9 Exogenous surfactant therapy – current status
and future potential

As noted, exogenous surfactant administration is now routine therapy for infants born prema-
turely. Although similar approaches for patients with ALI and ARDS have been somewhat
disappointing to date, there is hope for the future. For example, a recent large, multi-centred,
randomized clinical trial evaluated the efficacy of a recombinant SP-C-based surfactant
(Venticute) in patients with severe ARDS caused by various aetiologies (Spragg et al.,
2003). No overall improvement in mortality was observed although a post hoc analysis
revealed that a subgroup of patients with ‘direct’ lung injuries caused by pneumonia and/or
aspiration did have a significantly lower mortality when treated with surfactant compared to
the control group. Moreover, these results were similar to those recently reported by Willson
et al. in paediatric patients with direct ARDS given the natural bovine surfactant, Infasurf
(Willson et al., 2005). Together, these results have led to an ongoing prospective clinical
trial addressing the efficacy of exogenously instilled Venticute in adult patients with acute
lung injury induced by direct pulmonary insults.

Based on the clinical trials to date, and the extensive preclinical data available, it is
becoming evident that for exogenous surfactant to significantly impact mortality and be
a cost-effective therapy in this patient population, several other factors, in addition to the
aetiology of the lung injury, need to be addressed (Lewis and Veldhuizen, 1995). For
example, the timing of surfactant administration has been shown to affect the outcome of
animals with lung injury with earlier delivery resulting in superior outcomes (Ito et al.,
1996; Krause and Hoehn, 2000). Although this may be a challenge clinically, there is
some evidence in vivo that exogenous surfactant mitigates the progression of injury thereby
rationalizing the potential of administering surfactant shortly after the onset of mechanical
ventilation in patients at risk of developing ALI.

It is also possible that the specific compositional components of the administered surfactant
preparation may impact outcome (Cummings et al., 1992). There is abundant data suggesting
that SP-A may down-regulate inflammation in its role in host defence (Crouch and Wright,
2001; McCormack, 1998), however, there is no available surfactant preparation containing
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this protein. Indeed, the major goal of surfactant administration previously has been to
improve lung function via optimizing the biophysical properties within the airspace, and SP-
A was therefore not felt to be necessary. If one of the future goals of surfactant administration
is to decrease or prevent the host’s inflammatory response from becoming overwhelming,
more attention should be focused on manufacturing recombinant forms of this protein, and
even SP-D potentially.

In summary, pulmonary surfactant is a unique substance within the lung with functional
properties necessary for normal lung homeostasis. Alterations of the endogenous surfactant
system have important consequences, both from a biophysical and host defence perspective.
Administration of exogenous surfactant to preterm infants has significantly improved infant
mortality, attesting to its biophysical relevance. While this functional role of the exogenous
surfactant may also benefit patients with ALI and ARDS, it is likely that the host defence
properties of a particular surfactant preparation may also be relevant in this setting. Ongoing
and future research efforts should focus on which surfactant components are necessary for
optimal outcomes in this patient population, as well as techniques to deliver the material in
an efficient and cost-effective manner.
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9.1 Introduction

The pulmonary epithelium is a key component of the host’s innate immune defences against
microbial pathogens. Airway epithelial cells are equipped with an array of factors that
collectively act as a sentinel system that can rapidly and effectively detect and respond
to microbial insults. The ability to sense pathogens is the principal property of pattern
recognition receptors (PRRs). Epithelial cells within the lung utilize a variety of PRRs to
maximize their capacity to recognize, respond to and ultimately control pulmonary invasion
by microbes. There is a growing repertoire of functional PRRs, which is now known to
include both transmembrane and cytosolic receptors belonging to a number of distinct
families. The Toll-like receptor (TLR) family represents the most significant component of
pulmonary PRRs and this dynamic family of transmembrane proteins can recognize and
discriminate a diverse array of microbial antigens. A number of non-TLR transmembrane
receptors such as complement receptors also are adjunct in pulmonary innate immune
responses and the recently emergent cytosolic PRRs also fulfil an essential role in effective
microbial recognition by epithelium.

9.2 TLRs – identification and structure

The TLR family constitutes an important unit of the innate immune system and although
most commonly considered to be associated with immune cell responses, TLRs are also
known to be functionally expressed on a variety of other cell types including airway epithelial
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cells. These cells represent a large percentage of the cellular content of the airway, provide
a barrier to infection and an active defence mechanism against invading microbes. Their
contribution to the inflammatory response in the lung is significant.

TLRs were first identified in the fruitfly Drosophila melanogaster. Drosophila or dToll
was initially characterized as a protein with an important role in regulating embryogenesis
and was subsequently found to act as a key receptor regulating antimicrobial defence in
the adult fly (Lemaitre et al., 1996). The seminal discovery of structural and functional
similarities between dToll and the mammalian Type I interleukin-1 receptor (IL-1RI) (Gay
and Keith, 1991), an important receptor in innate immunity, led to a flurry of research in this
area, culminating in the identification and partial characterization of 10 human TLRs, each
having sequence similarity to the cytosolic signalling domain of IL-1RI. TLRs are germ-line
encoded pattern recognition receptors, and each is implicated in the innate immune response
(Akira and Hemmi, 2003). Their expression is widespread and includes, but is not limited
to, cells of myeloid and lymphoid origin, endothelial and epithelial cells.

TLRs are type I transmembrane receptors, each with an extracellular leucine-rich repeat
(LRR) ligand recognition domain and an intracellular signalling domain integrating the
functional signature motif of TLRs, a TIR (Toll/interleukin-1 receptor) domain. The cytosolic
TIR domain is a conserved region of approximately 200 amino acids (O’Neill and Greene,
1998; O’Neill, 2002) essential for signalling, while the external LRR motifs are thought
to be the regions that confer specificity to TLRs with respect to their pattern recognition
properties, and may also be involved in TLR dimerization (Bell et al., 2003). TLR4 was the
first mammalian TLR to be identified and is the best characterized to date. Its identity as
the mammalian LPS receptor initially came from studies on the LPS hypo-responsive mouse
strain C3H/HeJ (Poltorak et al., 1998). These mice have a dominant-negative Pro712His
mutation in the TIR domain of their TLR4 and consequently can withstand challenge with
lethal doses of LPS.

9.3 TLR agonist recognition and specificity

The principal role of TLRs is to facilitate the recognition and discrimination of invading
microbes, and to induce an appropriate immune response. TLRs become activated by specific
agonists derived from diverse species including bacteria, viruses, mycoplasma, yeasts and
protozoa (Figure 9.1). TLR4 is the principal receptor for bacterial lipopolysaccharide (LPS)
and, for example, on airway epithelial cells it is known to contribute to the recognition
of Haemophilus influenza (Wang et al., 2002). TLR4 can also recognize other microbial
agonists including the pneumococcal virulence factor pneumolysin (Malley et al., 2003),
Hsp60 from Chlamydia pneumoniae, flavolipin, murine retroviruses and fusion protein from
respiratory syncytial virus (RSV) (Gomi et al., 2002; Kurt-Jones et al., 2000; Rassa et al.,
2002; Sasu et al., 2001).

Of all the TLRs, TLR2 recognizes the broadest repertoire of agonists and is a functionally
important PRR expressed by the bronchial epithelium, which can respond to lipoteichoic
acid, peptidoglycan and Mycoplasma pneumoniae (Armstrong et al., 2004; Chu et al., 2005;
Gon et al., 2004). TLR2 can heterdimerize with other TLRs to confer responsiveness to a
diverse array of agonists (Wetzler, 2003). In conjunction with TLR1, it recognizes triacylated
lipopeptides, Gram-positive lipoteichoic acid and Streptococcus pneumoniae (Schmeck et al.,
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Figure 9.1 Principal microbial TLR agonists. LTA, lipoteichoic acid; Pam3CSK4, triacylated lipopep-
tide; PTG, peptidoglycan; MALP-2, diacylated lipopeptide; dsRNA, double-stranded RNA; LPS,
lipopolysaccharide; Fla, flagellin; ssRNA, single-stranded RNA; uCpG, unmethylated CpG dinucleotide
motifs; UPEC, uropathogenic Escherichia coli; hTLR, human TLR; mTLR, murine TLR. TLR10 is an orphan
receptor; hTLR11 is depicted as truncated and non-functional

2006) amongst others, whereas with TLR6, it can respond to diacylated lipopeptides such
as MALP-2 from mycoplasma.

TLR3 has a role in recognition of viral nucleic acids, specifically double-stranded (ds)RNA
(Alexopoulou et al., 2001; Hewson et al., 2005; Ritter et al., 2005) a by-product of viral
replication in infected cells. TLR3 has been shown to participate in lung epithelial cell
recognition of rhinovirus (Hewson et al., 2005) and influenza A virus (Guillot et al., 2004a)
and contributes to innate immune responses induced by RSV (Rudd et al., 2006). Flagellin
is the protein monomer of bacterial flagellae expressed on Gram-negative bacteria. Flagellin
induces TLR5-dependent signalling (Hayashi et al., 2001) on lung epithelial cells in response
to Pseudomonas aeruginosa, Legionella pneumophila and Bordetella bronchispetica (Hawn
et al., 2003; Lopez-Boado et al., 2005; Sadikot et al., 2005; Zhang et al., 2005). Interestingly
TLR4 has been implicated in some TLR5 responses (Honko and Mizel, 2005) whilst TLR2
has a role in recognition of Pseudomonas flagellin by TLR5 (Adamo et al., 2004). This is
not altogether unexpected given TLR2’s known ability to heterodimerize with other TLRs
and respond to multiple agonists.

Although expression of TLRs 7 and 8 on lung epithelium has not been well characterized
to date, these receptors are known to have a role in the anti-viral response (Hemmi et al.,
2002; Jurk et al., 2002). Guanosine- and uridine-rich single-stranded (ss)RNA found in
many viruses, represent the major agonists for murine TLR7 and human TLR8 (Diebold
et al., 2004; Heil et al., 2004). Microbial DNA characterized by unmethylated CpG (uCpG)
dinucleotide motifs activate TLR9 (Hemmi et al., 2000). These occur frequently in bacterial
but not mammalian DNA. Human TLR10 is an orphan member of the TLR family (Hasan
et al., 2005). It has been postulated that TLR10, which is encoded by a highly polymorphic
gene, may be a potential asthma candidate gene (Lazarus et al., 2004). The most recently
identified member of the TLR family is TLR11. In mice TLR11 responds to a surface-
exposed factor on uropathogenic E. coli and protozoan profilin (Zhang et al., 2004; Lauw
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et al., 2005); however, full length TLR11 expression in humans is prevented due to a stop
codon mutation.

9.4 Airway epithelial cells, PRR polymorphisms and
inflammatory lung disease

Bacteria or viruses responsible for acute airway infections such as pneumonia, rhinitis or
exacerbations of chronic obstructive pulmonary disease (COPD) can trigger and activate
many TLRs expressed by respiratory epithelial cells. Ideally a rapid and effective innate
immune response is mounted, leading to recovery, elimination of the infective agent and
resolution of any tissue damage. Impaired TLR function due to inherited genetic defects may
lead to more severe disease and more devastating sequelae such as sepsis. The incidence of
sepsis is predominantly associated with Gram-negative infection (Wenzel, 1992). Mutations
in the TLR4 gene, e.g. (Asp299Gly), have been identified that are associated with a decreased
airway response to inhaled LPS and an increased risk of Gram-negative infection and sepsis
(Agnese et al., 2002; Child et al., 2003; Schwartz, 2002).

A number of TLR polymorphisms have been investigated with respect to inflammatory
lung disease. For example, TLR2 Arg753Gln is associated with an increased TB risk (Ogus
et al., 2004), and is also a potential risk factor for staphylococcal infection. Thus, it may
have implications in cystic fibrosis (CF), as Staphylococcus aureus is commonly found
in the CF lung (Lorenz et al., 2000). Other organisms commonly involved in the patho-
genesis of pulmonary inflammation in CF are P. aeruginosa and Haemophilus influenza.
TLR5 392STOP enhances susceptibility to L. pneumophila (Hawn et al., 2003) while TLR6
Ser249Pro has been linked with asthma (Tantisira et al., 2004). The role of TLR4 and LPS in
asthma appears highly dependent on additional factors and conflicting reports exist regarding
the effect of the TLR4 Arg299Gly polymorphism on the overall incidence of asthma (Raby
et al., 2002; Werner et al., 2003; Yang et al., 2004). Similar controversy exists regarding
the role of TLR4 in infective tuberculosis (TB) (Branger et al., 2004; Shim et al., 2003).

9.5 TLR expression in airway epithelial cells

As one of the first lines of defence in innate immunity in the lung, many transmembrane
PRRs such as the TLRs are appropriately exposed on the mucosal surface of the airway
and, in contrast to other epithelia such as the gut, can be readily activated by superficial
exposure to microbial factors. Data from a variety of studies indicates that mRNA for
all TLRs is expressed by airway epithelial cell lines (Becker et al., 2000; Greene et al.,
2005; Muir et al., 2004). Studies using tracheal, bronchial and alveolar type II cell lines
or primary respiratory tract cultures have also studied TLR distribution. It is now apparent
that TLR subcellular expression differs between epithelial cells and immune cells. TLR2
protein is localized to the apical surface of these cells, whereas TLR4 and TLR5 have a more
basolateral distribution (Adamo et al., 2004; Hertz et al., 2003; Muir et al., 2004). TLR4
appears to reside intracellularly in primary bronchial epithelial cells (Guillot et al., 2004b).
TLRs 7, 8 and 9 reside in endosomes in macrophages and dendritic cells (Latz et al., 2004).
Cell surface expression of TLR9 has been detected by fluorescence microscopy on a CF
tracheal epithelial cell line and by flow cytometry on both immortalized and differentiated
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primary airway epithelial cells (Greene et al., 2005; Platz et al., 2004). In vivo both TLR4
and TLR2 surface expression on alveolar type II cells has been reported (Armstrong et al.,
2004; Droemann et al., 2003).

The predominant TLR expressed on the surface of bronchial and tracheal epithelial
cells in vivo appears to be TLR2, with other TLRs (TLR3, TLR4, TLR5) residing mainly
intracellularly or displaying only low-level surface expression. These TLRs can be mobilized
to the cell surface following stimulation with microbial factors. For example TLR5 and
TLR4 cell surface localization is promoted by flagellin and RSV infection, respectively
(Adamo et al., 2004; Monick et al., 2003). TLR2, the P. aeruginosa pilus protein receptor
asialo-GM1, caveolin-1, and the signalling molecules MyD88, IRAK-1, and TRAF6 exist
in complexes within lipid rafts on the apical surface of airway epithelial cells after infection
with P. aeruginosa (Soong et al., 2004). Similar multiprotein complexes involving TLR5
are evident in flagellin-treated airway epithelial cells (Adamo et al., 2004).

9.6 Intracellular signalling

Agonist-induced activation of TLRs leads to downstream signalling cascades resulting in
the activation of pro-inflammatory gene transcription. Successful TLR-mediated alterations
in gene expression are crucially dependent on the cytosolic TIR domain of TLRs (Akira and
Hemmi, 2003; Yamamoto et al., 2004). The TIR domain serves as a scaffold for a series of
protein–protein interactions specific to a number of signalling pathways, most notably those
leading to the activation of NF-�B, mitogen-activated protein (MAP) kinases and PI3 kinase
(Akira and Takeda, 2004).

An interesting feature of TLR signal transduction is that a conserved signalling pathway
is activated by different TLRs (Bowie and O’Neill, 2000; O’Neill and Greene, 1998) mainly
leading to transcription factor activation and changes in pro-inflammatory gene expression.
Activation of NF-�B, AP1 and the MAP kinases JNK, p38 and ERK1/2 (Schroder et al.,
2001) are other classical signals regulated by TLR signalling (Takeda and Akira, 2004).
The pathway from TLRs leading to NF-�B involves recruitment of TIR domain-containing
adaptor proteins which can associate with the cytosolic region of TLRs via TIR–TIR
domain interactions. Activating functions have been assigned to four TIR adaptors: MyD88
(Medzhitov et al., 1998), Mal (Fitzgerald et al., 2001; Horng et al., 2001), TRIF (Oshiumi
et al., 2003a; Yamamoto et al., 2002) and TRAM (Fitzgerald et al., 2003; Oshiumi et al.,
2003b; Yamamoto et al., 2003b). A fifth TIR adaptor, SARM, acts as a negative regulator
of TRIF-dependent TLR signalling (Carty et al., 2006).

Of all the TLRs, TLR4 is unique. In order to signal effectively it relies on two accessory
proteins: MD-2, a soluble glycoprotein on the outer surface of the cell membrane (Nagai et al.,
2002); and CD14, a glycophosphatidyl inositol-anchored receptor which binds to LPS–LPS-
binding protein complexes (Chow et al., 1999). Intracellular signalling by all TLRs, with the
exception of TLR3, involves MyD88. Once recruited, MyD88 interacts with IL-1 receptor-
associated kinase-4 (IRAK-4) (Suzuki et al., 2002) and transduces the signal via IRAK-1,
and tumour necrosis factor receptor-associated factor 6 (TRAF6) to transforming growth
factor-�-activated kinase-1 (TAK1) and TAK1-binding proteins, TAB1 and TAB2. Next, a
larger complex is formed with Ubc13 and Uev1A, catalysing the synthesis of a polyubiquitin
chain on TRAF6 (Deng et al., 2000) and triggering phosphorylation and activation of TAK1.
This leads to activation of the I�B kinase (IKK) complex, consisting of IKK�, IKK� and
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NEMO/IKK� (Wang et al., 2001), with subsequent phosphorylation, ubiquitination and
proteosomal degradation of I�B, and concomitant nuclear translocation of NF-�B.

TLRs 2 and 4 utilize both MyD88 and Mal, and other TLRs (TLR3 and TLR4) can engage
TRIF and TRAM under certain circumstances. NF-�B activation by MyD88 and Mal occurs
as described, while engagement of TRIF and TRAM by TLR3 or TLR4 can also trigger a
non-canonical signalling pathway, leading to expression of the type I interferons, involving
the alternative IKKs, TANK-binding kinase 1 (TBK1) and IKK�/IKKi. These pathways
culminate in activation of interferon regulatory factor (IRF) 3 and 7 (Figure 9.2) (Fitzgerald
et al., 2003; Kawai et al., 2001; Sharma et al., 2003; Yamamoto et al., 2003a) transcription
factors that regulate expression of IFN-� and IFN-�. In turn, expression of genes such as
IP-10 and RANTES are increased via activation of STAT1. Although LPS does not induce
expression of RANTES from BEAS-2B airway epithelial cells (Guillot et al., 2004b), TLR3

IKKα,β,γ
NFκB

IKKε,TBK1
IRF3/7

TLR4

TLR2

Proinflammatory
Cytokines

IFNβ/α IP-10, RANTES

TLR3Other TLRs 

MyD88

MAL TRAM

TRIF

IRAKs/TRAF6

Type I IFN Receptor

STAT1

Figure 9.2 TLR signalling pathways. Triggering of TLRs promotes interaction between the TIR
domains of TLRs and MyD88, Mal, Tram or TRIF as indicated. TLR2 and TLR4, or TLR3 activate the
IKK complex via MyD88/Mal, or TRIF, respectively, leading to classical NF-�B activation. TLR3 and
TLR4 also activate IKK� and TBK1 via TRIF (and TRAM for TLR4) leading to IRF3 and IRF7 activation
and production of interferon-� and -�. These are secreted and bind to the type I interferon receptor
triggering STAT1 activation and induction of interferon-inducible protein (IP-10) and RANTES
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agonists have been shown to signal via TRIF to induce epithelial cell secretion of RANTES
and IFN-� (Guillot et al., 2004a; Sha et al., 2004).

9.7 Functional responses to TLR activation in pulmonary
epithelium

TLRs expressed by airway epithelial cells contribute to the pulmonary immune response
by regulating the production and secretion of diffusible chemotatic molecules, antimicrobial
peptides and cytokines, and by enhancing cell surface adhesion molecule expression (Adamo
et al., 2004; Armstrong et al., 2004; Bachar et al., 2004; Becker et al., 2000; Gon et al., 2004;
Greene et al., 2005; Guillot et al., 2004a, 2004b; Hertz et al., 2003; Homma et al., 2004; Jia
et al., 2004; Monick et al., 2003; Muir et al., 2004; Platz et al., 2004; Sha et al., 2004; Soong
et al., 2004; Wang et al., 2003).

As would be expected, a plethora of pro-inflammatory cytokines are regulated by TLR
activation in airway epithelial cells. Tumour necrosis factor (TNF)-� and interleukin (IL)-6
can be induced by TLR2, TLR4 and TLR9 agonists to name but a few (Carroll et al., 2005;
Greene et al., 2005; Homma et al., 2004; Monick et al., 2003). IL-8 is a potent neutrophil
chemoattractant, and a widely studied reporter gene in TLR studies of airway epithelium.
Many reports using immortalized and primary respiratory epithelial cells have demonstrated
that an extensive repertoire of TLR agonists can regulate IL-8 gene transcription and protein
production. The expression of other chemokines by airway epithelial cells is also regulated
by TLR agonists that activate TLRs 2–5. MIP-3 expression is increased in response to
zymosan, dsRNA, LPS, flagellin (Sha et al., 2004).

Human �-defensins (HBD) are antimicrobial peptides produced directly by epithelial cells.
HBD2 expression can be induced in response to Gram-negative and Gram-positive bacteria
or their components. TLR2 activation by bacterial lipoprotein enhances HBD2 expression in
tracheobronchial epithelium (Hertz et al., 2003) while lipoteichoic acid and peptidoglycan
are also known to induce TLR2-mediated increases in HBD2 expression in bronchial and
alveolar airway epithelial cells (Homma et al., 2004; Wang et al., 2003). Agonists of TLR4
similarly regulate HBD2 expression in immortalized and primary airway epithelial cells (Jia
et al., 2004).

An important event facilitating the transepithelial passage of leukocytes is enhanced
integrin ligand expression. Surface expression of intercellular adhesion molecule 1 (ICAM-1)
on airway epithelial is increased in response to triacylated lipopeptide, LPS and uCpG DNA
(Greene et al., 2005). dsRNA and influenza virus A are also potent inducers of ICAM-1 in
BEAS-2B epithelial cells (Guillot et al., 2004a).

9.8 Non-TLR transmembrane receptors

In addition to TLRs there are a number of other membrane-associated PRRs expressed by
airway epithelial cells involved in pathogen recognition and the innate immune response in
the lung. Lipoteichoic acid from S. aureus signals via platelet-activating factor receptor indi-
rectly to the Epidermal Growth Factor receptor without the involvement of TLRs (Lemjabbar
and Basbaum, 2002). Both Streptococcus pneumoniae and H. influenzae are also known to
utilize the PAF receptor (Cundell et al., 1995; Swords et al., 2000). Another factor expressed
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by S. aureus, the cell surface-anchored protein, protein A, can bind TNFRI and activate
airway epithelial cells, while CD44 and CFTR have been implicated in airway epithelial
responses to Streptococcus pyogenes and P. aeruginosa, respectively (Pier et al., 1996;
Schrager et al., 1998). Complement receptors C3aR and C5aR are expressed on airway
epithelium (Fregonese et al., 2005) and have important roles as anaphylatoxin receptors,
most notably in asthma. Interestingly, complement itself has an immunological role in pneu-
monia. Type II alveolar epithelial cells can recognize Klebsiella pneumoniae via opsonic
complement factor 3 (C3) fragments and the transmembrane receptor CD46 (de Astorza
et al., 2004), without the involvement of CR1, CR2 or CR3. Thus non-classical transmem-
brane PRRs have an important role in microbial recognition by pulmonary epithelium. This
phenomenon is not only limited to bacterial pathogens as the SARS coronavirus is known to
bind angiotensin-converting enzyme 2 (ACE2) and utilize Type1a (AT1a) or Type 2 (AT2)
angiotensin receptors expressed on the epithelial surface (Imai et al., 2005; Kuba et al., 2005).

9.9 Intracellular PRRs

The innate immune system comprises a dual system of surveillance encompassing extra-
cellular sensing by transmembrane PRRs and intracellular sensing by cytosolic PRRs. The
intracellular PRRs (icPRRs) are the cytosolic counterparts of TLRs and act as a second
sentinel system that responds to invading pathogens. In the lung, organisms that can invade
and replicate in airway epithelium include some streptococci (Cundell et al., 1995; Opitz
et al., 2004), L. pneumophila (Cianciotto et al., 1995; Mody et al., 1993) and members of
the Chlamydia genus (Jahn et al., 2000; Krull et al., 2005). Many viruses also have the
capacity to replicate inside epithelial cells in the lung and these too can be sensed by a
particular subset of icPRRs. Two families of icPRRs exist, the Nod-like receptors (NLRs)
and the RNA RIG-like helicases (RLHs). These have roles in recognition of bacteria and
viruses, respectively.

9.9.1 NLRs

The NLRs are modular proteins composed of a ligand recognition LRR carboxy terminal
domain, a core Nod or NACHT region with ATPase activity, and an NH2-terminal effector
domain consisting of a baculoviral IAP repeat (Bir) or caspase-recruitment domain (CARD)
(Figure 9.3). Other NLRs have an NH2-terminal pyrin domain. Over 23 members of the
NLR family have been identified to date. Thus far, however, most is known about Nods 1
and 2, Naip and IPAF in airway epithelium.

Nod proteins sense the presence of intracellular muropeptides (Chamaillard et al., 2003;
Girardin et al., 2003). Nod1 responds to muramyl tri- and tetra-peptide diaminopimelic acids;
Nod2 senses muramyl dipeptide. Mutations in Nod1 are associated with increased suscepti-
bility to asthma (Hysi et al., 2005), whilst Nod2 mutations are linked with granulomatous
disease, in particular early-onset sarcoidosis (Kanazawa et al., 2005). Expression of both
Nod1 and Nod2 has been detected in human lung epithelium (Opitz et al., 2004) with each
implicated as having a role in pulmonary infection by P. aeruginosa and Mycobacterium
tuberculosis, respectively (Ferwerda et al., 2005; Travassos et al., 2005).

Naip and IPAF sense intracellular bacterial flagellin independently of TLR5 (Franchi et al.,
2006; Molofsky et al., 2006). Naip5 deficient mice have a higher than normal susceptibility
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Figure 9.3 Structure of NLRs. NLRs consist of an N-terminal CARD or BIR domain, a central NACHT
domain and a C-terminal LRR domain. The Nods are also characterized by a NAD region (NACHT-
associated domain)

to pneumonia following Legionella infection. Together with IPAF, Naip can respond to
adventitious motile pathogens. Sensing by NLRs can lead to activation of NF-�B via RIP2
and the caspase-1 inflammasome (reviewed in Fritz et al., 2006).

9.9.2 RLHs

Retinoic acid-inducible protein I (RIG-I) and melanoma differentiation-associated gene 5
(Mda-5) are member of the RNA helicase family that survey and respond to cytosolic viruses.
RIG-I reportedly recognizes flavo-, paramyxo-, ortho- and rhabdoviruses, while Mda-5
has been implicated in the antiviral defence against picornaviruses. The process of viral
replication can generate dsRNA. Until recently both helicases were believed to recognize
dsRNA and, accordingly, behave as cytosolic homologues of TLR3. It is now suggested
that RIG-I specifically recognizes viral genomic ssRNA bearing uncapped 5′-triphosphates,
a motif absent in viruses known to be detected by Mda-5 (Hornung et al., 2006; Pichlmair
et al., 2006).

The antiviral response induces type I interferon production and it is known that expres-
sion of dominant-negative RIG-I in lung epithelial cells can inhibit IFN� gene expression
(Matikainen et al., 2006). Furthermore RIG-I-deficient mice readily succumb to influenza
virus infection highlighting the importance of this icPRR in immune surveillance in the lung
(Kato et al., 2006).

9.10 Host-derived PRR agonists

It is not only microbial agonists that can activate PRRs but also a number of host-
derived factors. Endogenous molecules including proteases (neutrophil elastase), heat shock
proteins (Hsp60, Hsp70 Gp96), surfactant protein A, tissue matrix components (fibrinogen,
fibronectin), hyaluronan oligosaccharides and antimicrobial molecules (defensins, ROS) can
behave as TLR4 and TLR2 agonists (Biragyn et al., 2002; Ohashi et al., 2000; Okamura et al.,
2001; Taylor et al., 2004; Vabulas et al., 2002a, 2002b; Frantz et al., 2001; Guillot et al.,
2002; Walsh et al., 2001). Stimulation of TLRs by these agents suggests that a mechanism
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exists whereby TLRs can recognize molecular patterns of displaced factors or inflammatory
mediators, become activated and enhance the immune response. Exactly how these endoge-
nous agonists, or indeed the microbial agonists, interact with TLRs is unknown, but it has
been postulated that accessory proteins may facilitate the process (Chaudhuri et al., 2005).
As yet, little is known regarding activation of non-TLR and icPRRs by host-derived factors.

9.11 Conclusion

As a major portal of entry for microbes, the lung and its pulmonary epithelium represent a
key component of the innate immune system. Airborne pathogens encounter a number of
efficient defence mechanisms designed to neutralize potential damage, prevent colonization
and safeguard against invasion by pathogens. The existence of both membrane-associated
and intracellular PRRs equips the epithelium with a number of non-redundant mechanisms
to control microbial infection and modulation of PRR function has obvious important impli-
cations for a variety of inflammatory lung diseases and the exacerbations thereof. Enhancing
PRR responses using targeted approaches directed at TLR3 or RNA helicases, for example,
could potentially accelerate anti-viral responses, while promoting uCpG/TLR9 signalling is
known to enhance the Th1 response (Krug et al., 2001). On the other hand suppression
of responses, by the use of neutralizing antibodies or inhibitors of intracellular signalling,
may serve to reduce excessive inflammation in chronic inflammatory lung diseases. Thus,
new therapeutics designed to selectively activate or inhibit PRR function specifically and
reversibly represent powerful tools for the prevention and treatment of inflammatory diseases
in the lung.
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The Netherlands

Epithelial cells of the lung are exposed daily to large amounts of inhaled gases and substances,
including lung pathogens. Despite this high exposure to pathogens, severe lung infections
are rare in otherwise healthy individuals. This apparent discrepancy is partly explained
by the innate immune activity of epithelial cells, that enables these cells to maintain a
sterile environment even without recruiting phagocytes. Although this recruitment of phago-
cytes is an important defence mechanism, most microbial challenges are dealt with in the
absence of such recruitment. A variety of mechanisms is employed by epithelial cells in host
defence against infection, including barrier formation, mucociliary clearance and secretion of
antimicrobial molecules. These molecules are especially important in the clearance of those
micro-organisms that have penetrated the mucus layer and that have not been removed by
mucociliary clearance (mucus and mucociliary clearance are discussed in Chapters 6 and 7).
The nature of epithelial antimicrobial molecules is diverse, ranging from large proteins, such
as lactoferrin, to small ones such as nitric oxide. In this chapter, an overview is provided of the
various classes of antimicrobial molecules that are produced by the lung epithelium, including
antimicrobial peptides and proteins, and reactive oxygen and nitrogen intermediates.

10.1 Antimicrobial peptides and proteins

Most organisms produce gene-encoded antimicrobial peptides and proteins (AMPs) as
part of their innate defence against colonization and infection by microbial pathogens
(Zasloff, 2002). AMPs are expressed in bacteria, plants and animals, indicating that this
defence mechanism is evolutionary conserved. Several databases provide information about
the hundreds of AMPs that have been characterized: AMSDb (http://www.bbcm.units.it/
∼tossi/pag1.htm), ANTIMIC (http://research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC) and
APD (http://aps.unmc.edu/AP/main.html).

AMPs display marked broad-spectrum antimicrobial activity against a range of bacte-
rial, fungal and (enveloped) viral pathogens, and neutralize microbial toxins such as
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lipopolysaccharide (LPS) that is produced by Gram-negative bacteria (Bals and Hiemstra,
2004; Ganz, 2003; Zasloff, 2002). Most AMPs were isolated using a biochemical approach
based on screening fractions for antimicrobial activity, but more recently genome-wide
searches for molecular motifs that are characteristic for AMPs also have led to the discovery
of novel AMPs. Despite their name, antimicrobial activity is certainly not their only activity.
Recent studies have shown that AMPs also contribute to host defence through their effects
on inflammation, immunity and wound repair.

Although the structure and mode of action of these molecules is diverse, many AMPs
share cationic and amphipathic features that allow them to interact with the microbial
membrane. The initial interaction between the positively charged AMPs and the negatively
charged surface molecules on the target organism is thought to be dependent on electrostatic
interactions. After this initial interaction with the microbial membrane, subsequent events
lead to permeation of the membrane of the target organism, resulting in death. Several
mechanisms have been described to mediate this membrane permeation, including formation
of pores or channels in the target membrane (barrel-stave and aggregate channel models),
and lysis through a carpet-like mechanism, where the microbial membrane is covered by a
carpet of AMPs that result in formation of holes.

10.1.1 Families of AMPs

Based on their molecular mass, AMPs can be divided in antimicrobial peptides and proteins.
In Table 10.1, an overview is provided of AMPs that are produced by the respiratory epithe-
lium. The main families of antimicrobial peptides expressed in the lung are the defensins
and the cathelicidins.

Table 10.1 Antimicrobial molecules secreted and/or generated by human
respiratory epithelial cells

Antimicrobial peptides
�-defensins (HD-5)
�-defensins (hBD-1-4)
cathelicidin (hCAP-18/LL-37)

Antimicrobial proteins
lactoferrin (and derived peptides?)
lysozyme
cationic serine proteinase inhibitors (SLPI, elafin)
surfactant proteins
antimicrobial chemokines
C3a and C3a-desArg (proteolytic products of complement C3)
PLUNC proteins (?)

Small molecules
hypothiocyanite �OSCN−� (from H2O2)
NO
peroxynitrite �ONOO−� (from NO)

Defensins

Human defensins (HD) are small (3–5 kDa) cationic peptides that are non-glycosylated,
and that are produced as preproproteins (Ganz, 2003; Schutte and McCray, 2002; Selsted



10.1 ANTIMICROBIAL PEPTIDES AND PROTEINS 189

and Ouellette, 2005). The mature peptides contain a �-sheet structure and six cysteine
residues that form three intramolecular disulfide bridges. Defensins are divided into three
families based on their overall molecular structure and the spacing and connectivity of the
disulfide bridges. In humans, members of two defensin families are expressed: �-defensins
and �-defensins. The third family of circular minidefensins, the �-defensins, are expressed in
rhesus monkeys. Due to the presence of a stopcodon in the human gene, these defensins are
not expressed in humans. Human neutrophil defensins (human neutrophil peptides [HNP]
1–4) are �-defensins expressed in neutrophils. The only �-defensin that appears to be
expressed in airway epithelium is HD-5 (Frye et al., 2000). In contrast, airway epithelial
cells express several �-defensins, including human �-defensin-1, -2, -3 and -4 (hBD-1, -2,
-3 and -4). In addition, a splice variant of the human epididymis secretory protein (HE2)
gene, HE2�1, encodes a cationic peptide that structurally resembles �-defensins, and that is
expressed in bronchial epithelial cells (Jia et al., 2001).

Cathelicidins

Cathelicidins constitute a family of peptide antibiotics that contain a highly conserved signal
sequence and pro-region, and marked heterogeneity in the C-terminal domain that encodes
the mature cathelicidin peptide (Bals and Wilson, 2003; Tjabringa et al., 2005; Zanetti, 2004).
Human (h)CAP-18 is the precursor protein of LL-37, which is the only cathelicidin peptide
expressed in humans. hCAP-18/LL-37 is a cationic �-helical peptide that is mainly expressed
in neutrophils, but also in epithelial cells and other cell types. Proteolytic processing of
hCAP-18 results in the release of the active peptide. In neutrophils, this cleavage is mediated
by proteinase 3, whereas prostate-derived gastricsin generates the related ALL-38 peptide
from hCAP-18 that is produced in the epididymis. The proteolytic machinery that processes
hCAP-18 in airway epithelial cells is unknown. Studies in skin have shown that kallikrein
is involved in the process of generating small antimicrobial peptides derived from hCAP-18
that are present in skin and sweat (Yamasaki et al., 2006).

Lactoferrin

Lactoferrin is an approximately 80-kDa iron-binding glycoprotein that kills micro-organisms
by sequestering iron that is required for microbial survival (Arnold et al., 1977). In addition,
it also displays direct antimicrobial activity (Arnold et al., 1982) as demonstrated by small
lactoferrin-derived peptides (lactoferricidin) that lack iron-binding properties. In addition
to this antimicrobial activity against planktonic bacteria, lactoferrin inhibits formation of
biofilms (Singh et al., 2002). Biofilms are structured communities of bacteria adherent to
surfaces and encapsulated in a self-produced matrix, and bacteria in biofilms are largely
resistant to antibiotic treatment and endogenous host defence mechanisms.

Lysozyme

Lysozyme was first discovered in nasal secretions based on its ‘bacteriolytic activity’ by
Alexander Fleming (Fleming, 1922). It is a 14-kDa muramidase enzyme that degrades
peptidoglycan leading to rapid cell death of Gram-positive bacteria. In addition to using
enzymatic mechanisms, it also kills a range of bacteria via non-enzymatic mechanisms. A
recent study in mice using muramidase-deficient recombinant lysozyme confirmed that the
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enzymatic activity is not required for antimicrobial activity in vivo (Nash et al., 2006). In
the lung, lysozyme is mainly produced by the serous cells in the submucosal glands and to
a lesser extent by the surface epithelial cells (Dubin et al., 2004).

Cationic epithelial proteinase inhibitors – secretory leukocyte protease
inhibitor (SLPI) and elafin

SLPI and elafin are cationic inhibitors of serine proteinases, such as neutrophil elastase that
is released by neutrophils. This proteinase inhibitory activity led to their discovery, and was
the main focus of research in the first years after their discovery. Later it was observed
that these molecules also display antimicrobial activity, which is likely partly based on their
cationic nature (Hiemstra et al., 1996; Simpson et al., 1999; Williams et al., 2006).

Surfactant proteins

Surfactant proteins (SP) A and SP-D are relatively abundant in respiratory secretions, and
contribute to host defence by increasing uptake of micro-organisms by phagocytes, aggrega-
tion of micro-organisms and by direct antimicrobial activity (Wright, 2005). These surfactant
proteins are produced by type II alveolar cells, but also by airway cells (Clara cells and
cells of the submucosal glands). For a detailed discussion of surfactant proteins and their
antimicrobial activity, see Chapter 8.

Antimicrobial chemokines

Several chemokines, including chemokines that are produced by airway epithelial cells,
have been shown to display antimicrobial activity. These include members of the interferon-
inducible ELR-CXC chemokines family (Cole et al., 2001), as well as CCL20 (Starner
et al., 2003). Both their cationic nature and structural homology with �-defensins have been
implicated in this antimicrobial activity.

Fragments from activated complement component C3

Complement activation is known to result directly in microbial killing through the formation
of the membrane-attack complex, a pore-like structure formed in the membrane of the target
cell. Recently it also was shown that the biologically active fragments of C3, C3a and
its degradation product C3a-desArg, which are formed during complement activation, are
directly antimicrobial to a range of bacteria (Nordahl et al., 2004).

PLUNC proteins

Palate lung nasal clone (PLUNC) was first discovered in nasal epithelium of the mouse
embryo and in tracheal and bronchial epithelium of the adult mouse lung. Subsequent studies
demonstrated the presence of a family of PLUNC proteins that is also expressed in humans,
and that can be divided into short (SPLUNC) and long (LPLUNC) PLUNC. SPLUNC1
is a major secretory product of airway epithelial cell cultures, and is mainly expressed in
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mucous cells and ducts of the submucosal glands (Bingle et al., 2005). Although no direct
antimicrobial activity has yet been described, their pattern of expression, their homology
with LPS-binding proteins, such as bactericidal/permeability increasing protein (BPI), and
their intracellular colocalization with bacteria (Zhou et al., 2006) is highly suggestive of a
role in host defence against infection.

Peptidoglycan recognition proteins (PGLYRPs)

Peptidoglycan recognition proteins (PGLYRPs) form a class of proteins that bind pepti-
doglycan and that have recently been recognized as antimicrobial proteins (Dziarski and
Gupta, 2006). Although the expression of one of these (PGLYRP-2) is increased by bacterial
challenge of keratinocytes, their expression in respiratory epithelial cells has not yet been
reported.

10.1.2 Regulation of epithelial expression of AMPs

Epithelial cells constitutively produce a range of AMPs as a baseline defence mechanism,
although for some AMPs this baseline expression is very low. However, the expression of
various AMPs is inducible, and a variety of stimuli, including pro-inflammatory cytokines,
growth factors and a large range of microbial products, have been shown to increase epithelial
expression of antimicrobial molecules (Figure 10.1). Indeed, during inflammation and repair
processes, expression of AMPs has been found to be markedly increased.

Toll-like
receptors

Transcription factors

Production of
antimicrobial peptides

Cytokine and
Growth factor
receptors

Inflammation and repair Microbial exposure

NOD-like
receptors

RIG-like helicases

Intracellular TLRs

Figure 10.1 Regulation of the production of antimicrobial peptides and proteins during microbial
exposure, inflammation and repair. A variety of membrane-bound and intracellular pattern-recognition
receptors (involved in microbial recognition), cytokines and growth factors (involved in inflammation
and repair) is involved in the regulation of production of antimicrobial peptides and proteins by
epithelial cells. As discussed in the text, also other factors contribute to production of these epithelial
antimicrobials
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Epithelial cells employ various pattern-recognition receptors to sense microbial exposure,
resulting in marked increases in the release of these AMPs (see Chapter 9 for a detailed review
on microbial recognition by epithelial cells and the role of pattern-recognition receptors).
Microbes may also indirectly increase expression of these effector molecules of innate
immunity, by increasing the production of a range of pro-inflammatory cytokines from, for
example, macrophages, that subsequently serve to increase the antimicrobial shield provided
by AMPs. When the epithelial barrier is breached, a repair process follows that is associated
with, and mediated by, local production of growth factors. These growth factors not only
mediate wound repair, but also increase expression of AMPs and thus protect the underlying
partly exposed tissue from infection.

Interestingly, a range of other stimuli also have been shown to mediate expression of
AMPs. These include amino acids, butyrate and vitamin D. Expression of hCAP-18/LL-37
by phagocytes and epithelial cells has been shown to be regulated by vitamin D (Gombart
et al., 2005; Wang et al., 2004). Microbial exposure may increase the local availability
of active vitamin D3, as indicated by the recent observation that TLR2 ligands stimulate
enzymatic conversion of inactive pro-vitamin D3 (25D3) to the active form of vitamin D3
(1,25 dihydroxyvitamin D3; 1,25D3), which in turn results in increased hCAP-18/LL-37
expression in macrophages (Liu et al., 2006).

Conversely, other mediators decrease expression of AMPs. The Th2 cytokines IL-4 and
IL-13 suppress expression of AMPs such as hBD-3 in cultured keratinocytes (Nomura et al.,
2003). This suppression may at least partly explain the observation that expression of a
range of AMPs in keratinocytes in patients with atopic dermatitis is decreased (De Jongh
et al., 2005; Ong et al., 2002), which may underlie the increased susceptibility of patients
with atopic dermatitis to skin infections. Such a mechanism may also be operative in the
airway epithelium, as demonstrated by the ability of Th2 cytokines to suppress expression of
hBD-2 in bronchial epithelial cells exposed to Pseudomonas aeruginosa and the deficiency
of AMPs in mice with allergic airway inflammation (Beisswenger et al., 2006).

10.1.3 Activity of AMPs in airway secretions

Based on a quantitative analysis of AMPs present in airway secretions, it appears that
lysozyme, lactoferrin and SLPI are by far the most abundant in these secretions and display
synergistic antimicrobial activity (Travis et al., 1999). Nevertheless, the airway epithelium
produces a range of other AMPs that are present at lower concentrations. These AMPs
may act in concert (additive or synergistic) with lysozyme, lactoferrin, SLPI and other
antimicrobial molecules that are distinct from AMPs. Furthermore, these AMPs may be
active against a different range of micro-organisms, as well as display different activities in
inflammation, immunity and wound repair, than do lysozyme, lactoferrin and SLPI.

AMPs that are produced by epithelial cells in the airway are released into the airway
surface liquid (ASL). This ASL is composed of two layers: the periciliary layer around
the cilia and microvilli, and the overlying mucus layer (Randell & Boucher, 2006). Using
isolated components that are present in ASL of normal and inflamed lungs, it was shown that
the activity of AMPs in ASL in vivo is likely tightly controlled. Several components restrict
antimicrobial activity, including mucins (Felgentreff et al., 2006), bacterial polysaccharides
released by lung pathogens (Herasimenka et al., 2005), and DNA and F-actin that are
released from neutrophils and other inflammatory cells (Weiner et al., 2003). In addition,
proteinases that are associated with airway inflammation inactivate selected AMPs: the
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human �-defensins 2 and 3 (hBD-2 and -3) are inactivated by cysteine proteases (cathepsins
B, L and S) that are present in increased concentrations in the lungs of patients with
inflammatory lung diseases such as cystic fibrosis (Taggart et al., 2003).

In the past decade, many studies have focused on the possibility that AMPs may not act
optimally in patients with cystic fibrosis (CF). These patients suffer from increased suscepti-
bility to respiratory infections. It is the cycle of respiratory infections and inflammation that
finally results in the respiratory failure that develops in end-stage disease. This increased
susceptibility to infection appears to be related, in part, to a defective mucociliary clearance
system due to dehydration of the mucosal surface of the lung. In addition, impairment of
the activity of AMPs may restrict their activity in the CF lung. As discussed elsewhere in
this section, a range of molecules that are present in increased concentrations in ASL in CF,
including DNA from lysed inflammatory cells as well as cysteine proteinases, may impair
the activity of AMPs. In addition, the ionic environment may limit this activity. Antimi-
crobial activity of most AMPs is markedly restricted at isotonic and hypertonic conditions,
and optimal activity under laboratory conditions is observed at hypotonic conditions. It was
originally shown that the ASL that is secreted by cultured airway epithelial cells from CF
patients is deficient in antimicrobial activity as a result of increased salt concentrations
(Smith et al., 1996). Subsequent studies showed that the activity of antimicrobial peptides
such as �-defensins is salt-dependent and therefore may be reduced in ASL collected from
CF airway epithelial cells (Goldman et al., 1997). Whether this is also a relevant mechanism
in vivo remains to be determined, since the actual salt concentration of ASL in the lung is
very difficult to determine because of the low volume of ASL in the lung, and the fragility
of the mucosa during inflammation. Other studies revealed a salt-independent decrease in
antimicrobial activity of ASL collected in a bronchial xenograft system in CF epithelial cells
when compared to normal epithelial cells (Bals et al., 2001). Levels of various AMPs in
the ASL of both study groups were comparable suggesting active suppression of antimi-
crobial activity in a salt-independent fashion. Therefore, various mechanisms may restrict
the activity of AMPs in the lung in patients with CF, as well as other inflammatory and
infectious lung disorders.

10.1.4 In vivo evidence for the role of AMPs in host defence in the lung

The importance of AMPs for host defence against infection has been demonstrated both
in animal models and in human studies, showing that known clinical entities are associ-
ated with deficiencies (e.g. morbus Kostmann and Crohn’s disease (Putsep et al., 2002;
Wehkamp et al., 2005)) or polymorphisms (e.g. chronic obstructive pulmonary disease
(COPD) (Matsushita et al., 2002)) in the genes encoding these peptides. Possibly, genetic
variations contribute partly to defensin deficiency in selected individuals. Two studies
have demonstrated an association between polymorphisms in the gene encoding human
�-defensin-1 (DEFB1) and atopic asthma (Leung et al., 2006; Levy et al., 2005). Other
possible genetic associations between lung disease and antimicrobial peptides include vari-
able copy numbers in the �-defensin genes DEFB4, DEFB103, and DEFB104 (Hollox et al.,
2003). In cystic fibrosis, no association between DEFB4 (encoding hBD-2) copy numbers and
lung disease was reported. Whether lung disease is associated with aberrant copy numbers of
these genes remains to be determined. In Japanese and Chinese populations, an association
between two different hBD-1 (DEFB1) polymorphisms and COPD was observed (Hu et al.,
2004; Matsushita et al., 2002). By contrast, no association between four different hBD-1
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polymorphisms, or copy number variations in HNP-1/HNP-3, and lung function decline or
infection was observed in smokers (Wallace et al., 2006). In addition to genetic variations
in the genes encoding AMPs, genetic variation in other genes, such as pattern-recognition
receptors, may affect AMP expression.

Not only human studies, but also various animal studies, have shown the role of AMPs in
the protection against respiratory infections. Targeted deletion of the gene encoding mouse
�-defensin-1 (mBD-1) resulted in delayed clearance of Haemophilus influenzae from the
mouse lung (Moser et al., 2002). Conversely, overexpression of AMPs by gene transfer
increases resistance to respiratory infections with, for example, Pseudomonas aeruginosa,
as shown for hCAP-18/LL-37 and human elafin overexpression in mouse lung (Bals et al.,
1999; Simpson et al., 2001), and for rat �-defensin-2 (rBD-2) in rat lung (Shu et al., 2006).

10.1.5 Non-antimicrobial functions of AMPs

Antimicrobial activity is not the only activity displayed by AMPs, although this activity was
essential in the identification and characterization of most AMPs. Defensins and cathelicidins
are AMPs that activate a range of host cells through the use of endogenous receptors
(Oppenheim and Yang, 2005). The �-defensins hBD-1 and hBD-2 bind to the chemokine
receptor CCR6, allowing them to attract immature dendritic cells and memory T-cells, and
thereby bridge innate and adaptive immunity. LL-37 employs a range of cellular receptors
for activation, including the formyl-peptide receptor-like 1 (FPRL1). This interaction is
involved in the ability of LL-37 to attract neutrophils, eosinophils and monocytes, and to
activate mast cells and to stimulate angiogenesis (Tjabringa et al., 2005, 2006). Furthermore,
LL-37 may delay neutrophil apoptosis (Nagaoka et al., 2006) through tnteractions with
FPRL1 and purinergic receptors, and modulates differentiation of dendritic cells via an
unknown mechanism (Davidson et al., 2004). LL-37 is not only produced in limited amounts
by epithelial cells, but also activates airway epithelial cells employing transactivation of
the epidermal growth factor receptor resulting in increased production of, for example,
IL-8 (Tjabringa et al., 2003). Neutrophil �-defensins also increase IL-8 production in lung
epithelial cells, but this process appears to be dependent on activation of purinergic receptors
(Khine et al., 2006).

AMPs have also been implicated in wound repair. Both neutrophil �-defensins and LL-37
mediate epithelial proliferation and wound repair processes, because they display growth
factor activity (Aarbiou et al., 2004; Heilborn et al., 2003; Shaykhiev et al., 2005). The fact
that many AMPs are present in high concentrations in wound fluids is explained by increased
expression in injured epithelium, and the presence of inflammatory cells in wounds. These
peptides may, thus, contribute to wound repair by their activity as growth factors, and by
protecting the wound area from infection.

Other AMPs were discovered based on other activities, and only later found to display
antimicrobial activity. SLPI and elafin are an example of this category of AMPs; they were
discovered on the basis of their ability to inhibit serine proteinases, such as neutrophil
elastase, and only years after their discovery were found to display antimicrobial activity.
Fragments of complement factor C3 and surfactant proteins are other examples of this
category.

These data show that AMPs not only act as endogenous antibiotics, but may also be
regarded, for example, as chemoattractants, pro-inflammatory mediators and growth factors.
The relative importance of these various activities remains to be determined, but the
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observation that the local concentration of various AMPs in airway secretions is likely
below or near their antimicrobial concentration indicates that these other activities may be
important for our understanding of their role. In addition, these findings are highly relevant
for the development of novel therapeutics based on administration of peptides derived from
AMPs or enhancement of their production.

10.2 Reactive oxygen and nitrogen intermediates

The production of reactive oxygen intermediates and reactive nitrogen intermediates is
considered as an effective mechanism employed by innate immune cells in the defence
against microbial challenge. The production of these mediators by epithelial cells is discussed
in more detail in Chapter 16. The overview provided in this chapter is focused on their
antimicrobial function.

10.2.1 Reactive oxygen intermediates

Reactive oxygen intermediates (ROI) are an essential element of innate immunity and
their formation has been well characterized in phagocytes. The phagocyte NADPH oxidase
(PhoX), an enzymatic system to generate superoxide, is a central component of the antimi-
crobial function of neutrophils and macrophages. Hydrogen peroxide �H2O2� is produced
from superoxide, and this H2O2 is converted to the antimicrobial hypochlorous acid (HOCl)
by myeloperoxidase. Epithelial cells do not express myeloperoxidase, but the submucosal
glands do secrete the homologue lactoperoxidase (LPO) that has recently been shown to
contribute to formation of reactive oxygen intermediates in the airway surface liquid (ASL)
(Conner et al., 2002) (Figure 10.2). LPO uses H2O2 to cause oxidation of thiocyanate

Surface
epithelium

Submucosal
gland

H2O2 + SCN– OSCN– + H2O
thiocyanate hypothiocyanite

LPO

Duox 1 CFTR

Figure 10.2 Role of reactive oxygen intermediates in the killing of micro-organisms by epithelial
cells. The proposed role of Duox1 in generation of hydrogen peroxide �H2O2� and of the chloride
channel CFTR (that is defective in cystic fibrosis) in transport of thiocyanate to the apical surface
of surface epithelial cells is shown. Lactoperoxidase (LPO) derived from the submucosal gland cells
mediates the formation of hypothiocyanite from these compounds
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�SCN−� that is present in ASL, resulting in the generation of the strongly antimicrobial
hypothiocyanite �OSCN−�. Until recently, it was not clear whether epithelial cells produce
sufficient H2O2 to contribute to this antimicrobial system in ASL, but studies now have
demonstrated expression of homologues of gp91, the catalytic subunit of the phagocyte
NADPH oxidase PhoX, in airway epithelium (Geiszt et al., 2003). These epithelial dual
oxidases Duox1 and Duox2 were found to act as H2O2 sources, and, thus, contribute to
LPO-mediated antimicrobial mechanisms in ASL (Geiszt et al., 2003; Moskwa et al., 2007).
In addition to LPO and H2O2, the third component required for this LPO system is SCN−,
that is derived from the circulation. It was demonstrated that the chloride channel CFTR is
involved in transport of SCN− to the apical surface of epithelial cells, and that this mech-
anism is deficient in epithelial cells from patients with CF, due to CFTR mutations. As a
consequence, this oxidative antimicrobial system appears inactive in CF, and this deficiency
may contribute to increased sensitivity to infection in CF (Moskwa et al., 2007).

10.2.2 Reactive nitrogen intermediates

Nitric oxide (NO) is a molecule with a variety of actions in the lung, including antimicrobial
activity (reviewed in Bogdan et al., 2000; Ricciardolo et al., 2004). NO is produced by
various cell types in the lung, including epithelial cells, endothelial cells and inflammatory
cells (reviewed by Ricciardolo et al., 2004). Epithelial cells from the respiratory tract express
three different isoforms of the enzyme nitric oxide synthase (NOS): eNOS (NOS III), nNOS
(NOS I) and iNOS (NOS II). The inducible iNOS has been studied in particular detail in
the epithelium. NO has broad-spectrum antimicrobial activity against bacteria, fungi and
viruses. The antiviral activity of NO is partly explained by its ability to cause S-nitrosylation
of viral cysteine proteases that are essential for viral replication (Saura et al., 1999). NO
also interacts with a range of molecular targets in the lung resulting in the formation of
active substances. One of the most important is the interaction of NO with superoxide anion,
resulting in the formation of the highly antimicrobial and cytotoxic peroxynitrite �ONOO−�
(Radi et al., 1991).

Whereas NO may contribute to the antimicrobial action of epithelial cells, it may also block
some of its antimicrobial activity. Indoleamine 2,3-dioxygenase (IDO) causes tryptophan
depletion which serves as an antimicrobial mechanism. It was demonstrated that exogenous
NO blocks both IDO expression in epithelial cells, and the bacteriostatic action of interferon-
� stimulated epithelial cells against Staphylococcus aureus (Hucke et al., 2004).

10.3 Concluding remarks

The airway epithelium can be considered as a rich source of antimicrobial molecules. In view
of the strategic position of the airway epithelium at the interface between the environment
and the underlying tissue, this production of antimicrobial molecules is important to prevent
respiratory infections. The wide variety of molecules present in airway secretions and their
various spectra of activities and synergistic and additive interactions is important to meet a
wide range of microbial challenges. These molecules partly contribute through their direct
antimicrobial activity, but also by activating host cells directly and thereby affecting inflam-
mation, immunity and wound repair. Both the production of antimicrobial molecules and
their activity is subject to dynamic regulation, thus allowing the host to respond adequately to
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microbial exposure. The increasing number of studies in specific patient groups, as demon-
strated, for example, by studies in cystic fibrosis, have highlighted the role of antimicrobial
molecules in host defence against infection, inflammation and immunity and in wound repair.
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11.1 Introduction

The major function of the respiratory epithelium was once thought to be primarily that of a
physical barrier. However, for a number of reasons, there can be little doubt regarding the
importance of airway epithelial cells (AEC) in regulating many other processes including
inflammatory responses seen in respiratory diseases. The airway epithelium is continuously
exposed to a variety of inhaled and locally generated stimuli that are likely to have direct
influences on the nature of the immune response to inhaled antigens and allergens and the
development of inflammation of the airway and alveoli.

Although the epithelium has an important physical role in airway homeostasis, for
example, by regulating the composition and nature of the airway surface liquid and through
muco-ciliary clearance, the airway responses to injury highlight the complex nature of the
interactions of AEC with a wide range of cells and processes. In recent years, the partic-
ipation of AEC in immunoregulation has come under close scrutiny, and it is clear that
cytokines and growth factors produced by AEC, as well as the array of molecules expressed
on their surface, can contribute significantly to airway repair processes and to the regulation
of a variety of immune responses (Holgate et al., 2000). Specifically, AEC interact with,
and regulate, cells of the adaptive immune response (including T-cells, B-cells and dendritic
cells) and, as will be discussed in this chapter, these interactions are integral in determining
the immunological balance in the lung.

11.2 The pulmonary epithelium and dendritic cells

There is now clear evidence that local (airway) and systemic immune responses to inhaled
antigen are coordinated such that dendritic cells (DC) in the airway epithelium can be
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provoked to take up, process, and present antigens in situ. Alternatively, DC may differentiate
and migrate to draining lymph nodes to present antigen to systemic T-cells (Hayday and
Viney, 2000). The physical proximity of DC to AEC, and the range of proteins produced by
AEC and DC with the potential for reciprocal regulatory effects, suggest a central role for
interactions between AEC and DC in the airway responses to antigens.

11.2.1 Normal dendritic cell biology

Respiratory tract DC are recognized as having a vital role in the regulation of adaptive
immune responses to inhaled foreign antigens. They are ubiquitous throughout the respiratory
tract, forming a tight network of cells within the epithelium and submucosa of the conducting
airway, the lung parenchyma and the nasal mucosa. DC are actively endocytic (Stumbles
et al., 1998), making them ideally situated to sample environmental antigens and to function
as ‘sentinels of the immune system’.

Not only are DC major players in the initiation and amplification of immune responses,
they also regulate the qualitative nature of these events, and exert a significant influence
over Th1/Th2 polarization and the development of tolerance to inhaled innocuous antigens
(Akbari et al., 2001; Banchereau and Steinman, 1998; Holt and Upham, 2004; Huh et al.,
2003; Jahnsen et al., 2001; Lambrecht et al., 2000; McWilliam et al., 1996; van Rijt et al.,
2005). Even under steady-state conditions, there is a continuous turnover of lung DC, with
the recruitment of immature DC from circulating precursors, balanced by the exit of mature,
antigen-loaded cells to regional lymph nodes. Such DC turnover increases dramatically in
response to events occurring at the epithelial surface, especially exposure to inhaled irritants,
particulate matter, microbial stimuli, and soluble antigens or allergen (Jahnsen et al., 2001;
McWilliam et al., 1996; Upham et al., 2002).

The function of recently recruited DC is likely to be altered as a consequence of local
tissue factors. Freshly isolated lung DC exhibit a poor capacity for antigen presentation
and express only low levels of co-stimulatory molecules, but rapidly undergo spontaneous
activation when cultured ex vivo, even in the absence of added stimuli. This suggests that
the lung microenvironment provides inhibitory signals that counteract DC activation in vivo,
and this influence may remain even after DC have left the epithelium and migrated to
regional lymph nodes (Kalinski et al., 1998). Such a mechanism is likely to involve alveolar
macrophages and AEC, and is thought to be important for maintaining immune homeostasis.

It would seem entirely appropriate for the influence of the lung milieu to become more
‘permissive’ toward DC activation in the face of certain inflammatory stimuli, once a
threshold dose of stimulus has been applied. Whereas interstitial DC residing in non-
lymphoid organs usually do not express DC activation markers or the nuclear transcription
factor RelB (thought to play a key role in antigen presentation), activated DC in inflamed
rheumatoid synovium express nuclear RelB (Pettit et al., 2000). Though it is likely that
similar principles apply in the context of airway epithelial injury or inflammation, this has
not been examined in lung disease.

11.2.2 Epithelial cell regulation of dendritic cells

Concomitant with antigen acquisition in the airway mucosa, DC may be particularly receptive
to local signals derived from AEC, given the close proximity of these two cell types. The
extent of cross-talk between epithelial cells (EC) and DC has been most closely examined in
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the skin and gastro-intestinal tract. There is strong evidence from the dermatology literature
that EC-derived factors modulate the differentiation and function of dermal DC and the
specialized epidermal DC known as Langerhans cells (LC). Differentiation of skin LC
appears to be dependent on transforming growth factor beta (TGF�), as LC are absent
from the epidermis in TGF� knockout mice, and TGF� appears to be necessary for the
in vitro differentiation of monocytes and other DC precursors into LC (Borkowski et al.,
1996; Geissmann et al., 1998). Moreover, blood-derived DC precursors give rise to typical
epidermal LC when co-cultured with normal human keratinocytes (Regnier et al., 1998),
and ligation of E-cadherin on the surface of DC actively suppresses their maturation (Riedl
et al., 2000; Fujita et al., 2006).

In the gut, DC are able to open the tight junctions between EC, extending their processes
between adjacent EC in order to sample bacteria from the gut lumen without compromising
the integrity of the epithelial barrier (Rescigno et al., 2001). Formation of these trans-
epithelial dendrites is dependent on the chemokine receptor CX3CR1 (fractalkine receptor)
expressed on DC that interacts with its fractalkine ligand expressed by EC (Niess et al.,
2005). EC regulate DC activation, though this varies depending on whether the epithelium
is exposed to invasive or non-invasive bacteria.

There is less information available on the extent to which AEC regulate DC function.
Exposure of lung epithelial cell lines to the protease allergen Der p 1 increases chemokine
release and thereby facilitate DC chemotaxis (Pichavant et al., 2005). AEC can certainly
express a variety of adhesion molecules and soluble mediators (see Table 11.1) through which
they are likely to modulate DC function within the airway (Stick and Holt, 2003), though
the relative importance of each of these mediators has not been examined in any detail.

Table 11.1 Potential mechanisms by which pulmonary epithelial cells might regulate DC function

Molecules expressed by
lung epithelial cells

Effects on dendritic cells Reference

TGF�1 Selectively inhibits antigen presentation by
DC, and DC/T-cell interactions

(Geissmann et al., 1999;
Geissmann et al., 1998)

Prostaglandins PGE2 inhibits DC activation, favours Th2
responses
PGD2 alters DC migration and activation

(Gosset et al., 2003;
Kalinski et al., 1998)

Nitric oxide Inhibits maturation and antigen presentation (Lane et al., 2004;
Paolucci et al., 2000)

Thymic stromal
lymphopoietin (TSLP)

Acts directly on DC to induce allergic
inflammation by driving Th2 responses

(Soumelis et al., 2002;
Ying et al., 2005)

IL-10 Inhibits antigen presentation, DC activation (Moore et al., 2001)
Fractalkine Formation of trans-epithelial

dendrites
(Fujimoto et al., 2001;
Niess et al., 2005)

Defensins DC activation (Biragyn et al., 2002)
Heat shock proteins Inhibits DC differentiation from monocytes;

induces immature DC maturation
(Kuppner et al., 2001)

Secretory leukocyte
protease inhibitor
(SLPI)

Inhibits NF-�B activation and impairs TLR2
and TLR4 responses in monocytic cells
though specific effects on DC are not known

(Greene et al., 2004;
Henriksen et al., 2004)
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Table 11.1 (Continued)

Molecules expressed by
lung epithelial cells

Effects on dendritic cells Reference

Elafin Inhibits NF-�B activation; increases the
number and activation state of lung DC,
leading to enhanced Th1 immune responses
in an animal model

(Henriksen et al., 2004;
Roghanian et al., 2006)

Vascular endothelial
growth factor (VEGF)

Impairs DC maturation and antigen
presentation to T-cells

(Laxmanan et al., 2005)

E-cadherin Inhibits DC maturation and chemokine
production; promotes binding of DC at sites
of antigen deposition

(Fujita et al., 2006; Riedl
et al., 2000) (Carayol
et al., 2002)

Intercellular adhesion
molecule 1 (ICAM-1)

Promotes DC activation upon binding to
LFA-1

(Pichavant et al., 2006)

Granulocyte-macrophage
colony stimulating
factor (GM-CSF)

Promotes DC differentiation from precursors
and antigen presentation to T-cells

(Armstrong et al., 1994;
Christensen et al., 1995;
Tazi et al., 1993; Bleck
et al., 2006)

IL-4 Promotes DC differentiation and maturation
from monocytes in the presence of GM-CSF;
increases LPS-induced release of IL-12 thus
promotes Th1 immunity

(Hochrein et al., 2002)

IL-15 Promotes the differentiation of monocytes
into DC; enhances DC maturation

(Bykovskaia et al., 1999)

TNF�� IL-1�, IL-6 Promote maturation of immature DC (Gallucci et al., 1999)

Several studies have demonstrated the release by epithelial cells of chemokines capable
of influencing DC migration, maturation and activation. The observations by Reibman et al.
contribute a potentially important piece to this emerging jigsaw puzzle because they indicate
how environmental exposures might influence functional maturation of airway mucosal DC
and suggest a mechanism by which AEC might affect the dynamics of adjacent DC (Reibman
et al., 2003). The study examined the ability of primary cultures of AEC to synthesize
and secrete MIP-3/CCL20 (LARC, exodus-1). This CC chemokine is the unique ligand for
the CCR6 chemokine receptor that is expressed on some immature DC, but not on CD14-
positive DC precursors or mature DC. Human AEC were stimulated with pro-inflammatory
cytokines, or small size-fractions of ambient particulate pollution. Each of these stimuli
induced MIP-3/CCL20 gene and protein expression, suggesting a mechanism by which AEC
may facilitate recruitment of DC subsets to the airway mucosa. The ultimate effects of
such facilitated recruitment are likely to depend upon whether an individual is sensitized to
aeroallergens, and the maturational stage of the adaptive immune system.

Studies utilizing in vitro co-culture of AEC and DC are being performed in several
laboratories in order to examine the direct effects of epithelial cells on DC phenotype and
function. For example, exposure of AEC/ DC co-cultures to diesel exhaust particles induces
phenotypic and functional maturation of immature DC and this effect is partly due to the
actions of AEC-derived GM-CSF release (Bleck et al., 2006). Another group using the
AEC/DC co-culture methodology showed that, in the context of bacterial stimulation, AEC
were induced to express the chemokines CCL5 and CXCL10 that resulted in an increased
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recruitment of monocyte-derived DC (MDDC) precursors into the epithelial space (Pichavant
et al., 2006). AEC also promote the maturation of the MDDC precursors via a process that is
mediated by ICAM-1/LFA-1 interactions and AEC-derived GM-CSF. Conditioning of DC
by AEC also has downstream consequences leading to modification of T-cell cytokine output
in an autologous DC/T-cell co-culture. Such in vitro studies should assist in elucidating the
cellular and molecular mechanisms behind AEC regulation of DC and may, in turn, provide
potential therapeutic targets for treatment of a number of respiratory diseases.

11.3 The pulmonary epithelium and lymphoid cells

Organized secondary lymphoid tissues are associated with all organ systems in the body
and represent the primary sites for the initiation of T- and B-cell responses. As well as the
pulmonary lymph nodes, additional, anatomically distinct collections of lymphoid cells may
exist constitutively, or may be induced by infection or inflammation, to facilitate this process.
It is clear that EC within the lung can interact with lymphocytes and, thereby, modulate their
response to immune challenge. In addition, effector and memory lymphoid cells migrate
out of these specialized lymphoid structures and into areas of inflamed or infected tissue.
The following section outlines the organization of the lymphoid immune system in the lung,
and the cross-talk that occurs between the pulmonary EC and the lymphocytes within the
respiratory environment.

11.3.1 Organization of the lymphoid immune system in the lung

Bronchial-associated lymphoid tissue (BALT)

Bronchial-associated lymphoid tissue (BALT) refers to specially organized secondary
lymphoid tissue lying adjacent to the airway lumen. It consists of highly organized follicles
of B-cells surrounded closely by more diffuse lymphoid tissue known as the T-cell zone,
and by follicle-associated epithelium (Sminia et al., 1989). The majority of cells within the
BALT constitute B-cells that express surface IgA and IgM, with antibody-secreting plasma
cells located only at the periphery (Otsuki et al., 1989). M cells are specialized EC that
overlie the BALT and are derived from the basal stem cells of the respiratory epithelium.
They have the ability to phagocytose and pinocytose molecules within their environment,
and to deliver antigenic substrate to the underlying lymphoid tissue to generate immune
responses (Neutra et al., 1996). Although they are well-characterized in the gastrointestinal
tract mucosa, there are only a handful of studies identifying the presence of an M cell-like
cell in the lung. Their potential to deliver antigen to the underlying lymphoid tissue suggests
they may be crucial in developing an effective immune response in the respiratory tract
(Tango et al., 2000; Teitelbaum et al., 1999).

The existence of BALT within the adult human respiratory tract has been a matter of
debate. While animal models, particularly in rodents, have readily identified bona fide BALT
present under normal conditions, there seems to be a relative absence of this organized tissue
in the airway of healthy adult humans (Tschernig and Pabst, 2000). However, BALT has
been identified in the lungs of human fetuses and is retained during adolescence, where it
is thought to play a dominant role in the development of the pulmonary adaptive immune
response (Hiller et al., 1998). In adults, however, the majority of the literature suggests that
BALT is present only during periods of increased antigen exposure, such as chronic lung
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disease (Tschernig and Pabst, 2000). However, one study looking at the lungs of healthy
adult skiers showed that a high proportion of subjects displayed isolated aggregations of
lymphoid cells (IALC) that may indeed correspond to a smaller version of BALT (Sue-Chu
et al., 1998).

Isolated aggregations of lymphoid cells (IALC)

A recent study highlights a relatively novel variation of BALT that may be important in the
mucosal lymphoid system of the lung under normal and diseased conditions (Elliot et al.,
2004). IALC were defined as focal collections of greater than 50 lymphomononuclear cells
with a density greater than 10 times that of the surrounding airway tissue. Like BALT,
the lymphocytes in IALC were not randomly distributed but showed definite structural
organization, with the majority of cells belonging to the B-cell population with large numbers
of memory T-cells and small populations of antigen-presenting cells, macrophages and
granulocytes. In contrast to BALT, there were no specialized EC present and, rather than
being restricted to the upper airway, IALC appeared to be evenly distributed but were
generally located away from the mucosal surface. Whilst IALC are present in healthy
controls, numbers of these organized clusters were increased in the lungs of smokers and
asthmatics, suggesting that, like BALT, elevated antigen exposure or tissue inflammation
can drive their expansion. It was postulated that the role of IALC, both in healthy and
diseased lungs, may be to facilitate local priming of B-cells and T-cells within the airway
wall, rather than in the local draining lymph nodes.

11.4 The pulmonary epithelium and T-Cells

While priming of naive T-cells primarily occurs in the local lymph nodes of the lung,
effector and memory T-cells, upon entry into the lung tissue, can be conditioned by the
local environment, thus providing appropriate tissue-specific tuning of their responses. AEC
produce a vast array of soluble mediators and surface-bound molecules that have the potential
to influence T-cell function (reviewed in (Knight and Holgate, 2003)). They have been
shown to play a central role in driving both the influx of certain T-cell subsets into the
lung mucosa as well as the nature of the T-cell response once they are localized at the
effector site. Thus, the regulation of T-cell responses by AEC has been shown to be critical
in ensuring immune homeostasis of the lung tissue, as well as in initiating and maintaining
defence against microbial invasion. Some of the mediators and surface molecules released
by AEC that act on T-cells are shown in Figure 11.1.

Interleukin-6 (IL-6) is a pleiotropic cytokine that can have multiple effects on local T-cells.
Signalling via the IL-6 receptor present on T-cells apparently suppresses the function of
CD4+CD25+ T-regulatory cells in the lung (Hori et al., 2003). In addition, IL-6 skews a
T-cell response to a Th2 direction under certain circumstances, even in the absence of a
polarizing cytokine, whereas it impairs Th1 differentiation (Rincon et al., 1997). Thus, in
allergic diseases of the respiratory tract, AEC-derived IL-6 can contribute to the pathogenesis
of these conditions by creating a favourable environment for Th2 differentiation.

The arachidonic acid metabolite prostaglandin E2 �PGE2� is constitutively expressed at
low levels in AEC, but output of PGE2 is significantly increased upon inflammatory insult.
Associated with being a pro-inflammatory mediator in various disease states, PGE2 has
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Figure 11.1 Pulmonary epithelial cells modulate T-cell function via their vast array of soluble
mediators and surface-bound molecules

been shown to favour Th2 differentiation by inhibiting the production of IFN-� in CD4+

T-lymphocytes and, in the presence of IL-2, upregulating the production of IL-4 and IL-5
from these cells in vitro (Hilkens et al., 1995). However, inhalation of PGE2 prevents early
and late allergen-induced bronchoconstriction and decreases airway hyper-responsiveness
and inflammation in asthma, indicating that, in fact, it acts in an immunosuppressive fashion
(Gauvreau et al., 1999). T-cells are central to the late-phase response, and it has been shown
that PGE2 can limit this response by preventing the transendothelial migration of activated
T-cells by affecting their intrinsic mobility and enhancing the barrier function of airway
endothelial cells (Oppenheimer-Marks et al., 1994). In addition, despite the previously
mentioned in vitro findings, experiments in animal models have revealed that there is a
significant reduction in cells expressing IL-4 and IL-5 upon PGE2 pre-treatment, suggesting
that Th2 differentiation in vivo is inhibited (Martin et al., 2002).

Thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine produced primarily at
the bronchial epithelial interface (Soumelis et al., 2002). This cytokine has been shown
to drive a Th2-biased immune response, an effect mediated in part by the influence of
TSLP on local dendritic cells (Watanabe et al., 2004; Wang et al., 2006). TSLP has
also been shown to activate the release of a number of T-cell-attracting chemokines,
both by the AEC themselves and by other neighbouring cells, including endothelial cells,
neutrophils, macrophages, and mast cells. TARC/CCL17 and MDC/CCL22, levels of which
are significantly increased in response to TSLP, selectively attract Th2-cells bearing their
receptors. A study of asthmatic patients revealed higher levels of TSLP, and of both
TARC and MDC, that were linked to the recruitment of large numbers of Th2-cells
to the airway – a feature known to be important in the pathogenesis of this disease
(Ying et al., 2005).

AEC have been defined as the most important source of nitric oxide (NO) in the airway
(Donnelly and Barnes, 2002). Although some studies demonstrate that NO skews a T-cell
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response towards a Th2 bias, this is probably an oversimplification, as NO can modulate
both Th1 and Th2 subsets (Eriksson et al., 2005; Kolb and Kolb-Bachofen, 1998). It has
been proposed that IFN-� produced by Th1-cells feeds back on AEC, inducing nitric oxide
synthase 2 (NOS-2) that, in turn, leads to increased NO release. The NO then induces a
reversible growth arrest of both Th1 and Th2 cells by interfering with STAT5, a transcription
factor involved in the IL-2R cascade. Thus, evidence now exists that, rather than being a
disease-promoting mediator, AEC-derived NO has an important anti-inflammatory role in
the lung, particularly in the context of allergic diseases such as asthma. The higher levels of
NO observed in asthmatic lungs could thus reflect an active negative feedback mechanism
(Lane et al., 2004).

Transforming growth factor-beta �TGF�� and interleukin-10 (IL-10) are two molecules
released by AEC that have potent immunomodulatory effects on T-cells. By blocking the
transcription of IL-2, TGF� inhibits proliferation of all naive T-cell subsets, although it is
relatively ineffective on activated T-cells (Cerwenka and Swain, 1999; Cottrez and Groux,
2001). TGF� is also a potent inhibitor of T-cell differentiation into Th subsets by inter-
fering with the T-cell receptor (TCR) and co-stimulatory signalling pathways (Chen et al.,
2003a). In addition, TGF� regulates the differentiation of cytotoxic CD8+ T-lymphocytes,
as well as the induction of peripheral T regulatory cells (Tregs) (Chen et al., 2003b; Ranges
et al., 1987). Thus, AEC expression of TGF� primarily serves in the lungs to stringently
regulate adaptive T-cell responses. IL-10, a known anti-inflammatory agent, has been shown
to inhibit T-cell proliferation as well as their production of IL-2 and IFN-� (Taga and
Tosato, 1992). It is produced constitutively by normal human AEC, but its expression is
down-regulated in some respiratory diseases, such as cystic fibrosis, where an aberrant
regulation of T-cell responses contributes to the pathogenesis of this condition (Bonfield
et al., 1995).

�-defensins are an important part of the lung’s innate immune defence against microbial
invasion. There are four human �-defensins, and all have been shown to be expressed either
constitutively or inducibly by airway epithelia (Diamond et al., 1993). Despite their main
antimicrobial role, �-defensins also communicate with the adaptive immune system. They
have been shown to be chemotactic for cells expressing CCR6, such as memory T-cells
(Yang et al., 1999). Thus, via the release of these peptides, AEC can recruit effector T-cells
into the lung tissue to combat infection.

Interleukin-16 (IL-16) messenger RNA and protein is found in resting AEC and its expres-
sion is markedly increased in response to stimulation with a number of pro-inflammatory
factors, including histamine, IL-1� and TNF-� (Arima et al., 1999). This cytokine induces
the migratory response of CD4+ T-cells, increases intracellular calcium and inositol 1,4,5-
triphosphate levels, and induces the production of pro-inflammatory cytokines. High levels
of IL-16 are found in the sputum of asthmatics, as well as in the lungs of patients with
sarcoidosis, suggesting it has dual roles in both Th1 and Th2 respiratory disease.

Interleukin-15 (IL-15) is constitutively produced by AEC and is increased upon exposure
to several pro-inflammatory stimuli (Ge et al., 2004). IL-15 favours the chemotaxis of Th1
cells, which bear an effective IL-15 receptor (Agostini et al., 1996). It can also synergize
with IL-12 to promote the production of IFN-� from T-cells and NK cells, which suggest
that this cytokine drives a Th1-biased immune response (Seder, 1996). In this context, it
has been reported that there is elevated expression of IL-15 in the lungs of patients with
Th1-mediated inflammatory diseases compared to Th2-based conditions or healthy controls
(Muro et al., 2001). However, IL-15 has been shown to promote the production of IL-5 by
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Th lymphocytes, implying that it may play a role in allergic disease of the airway as well
(Mori et al., 1996).

There are a number of other chemokines released by AEC, either in a constitutive or
inducible fashion, that are important in the recruitment of T-cells into the airway. RANTES
(regulated on activation, normal T-cell expressed and secreted), via a dual signalling pathway
involving the CCR5 receptor, promotes the chemotaxis of T-cells. It also induces their
proliferation, and stimulates expression of a number of cytokines, including IL-2 and IL-5,
and cytokine receptors (Bacon et al., 1995). ICAM-1 cross-linking on the surface of AEC
has been shown to up-regulate the production of RANTES (Krunkosky and Jarrett, 2006).
CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC), are ligands for CXCR3 that are all
expressed by activated AEC (Sauty et al., 1999). The interaction of these molecules with
their receptor was shown to significantly diminish T-cell recruitment and lung pathology
in a model of idiopathic pneumonia syndrome (Hildebrandt et al., 2004). Ciliated human
AEC have been demonstrated to express IL-8 at baseline (Devalia et al., 1993), and levels
are increased in response to several stimuli, including viruses and diesel exhaust particles.
Although a major chemotactic factor for neutrophils, this molecule can also recruit T-cells
into inflamed areas (Baggiolini et al., 1994). Macrophage inflammatory peptide 1� (MIP-1�)
is constitutively present in the airway of both normal subjects, suggesting that it may regulate
T-cell trafficking under physiologic conditions (Holgate et al., 1997). Finally, monocyte
chemoattractant protein (MCP)-1/CCL2 is released by AEC upon stimulation and attracts
memory T-cells (Daly and Rollins, 2003). In murine models this molecule has been shown
to promote Th2-mediated immunity, although there is no evidence to date that this applies
in humans (Matsukawa et al., 2000).

Indoleamine 2,3-dioxygenase (IDO) is a rate-limiting, tryptophan-catabolizing enzyme
that is expressed in a variety of cells found in the respiratory environment, including AEC
upon stimulation with IFN-� (Zegarra-Moran et al., 2004). The expression of IDO is further
enhanced by ligand-induced activation of various toll-like receptors (Babcock and Carlin,
2000). The enzymatic actions of IDO lead to depletion of tryptophan in the local environment,
resulting in the inhibition of T-cell proliferation (Mellor et al., 2002). In addition, IDO
promotes the generation of a number of toxic tryptophan metabolites that can induce Th cell
death (Frumento et al., 2002). Thus, in the event of inflammation, AEC can contribute to
the regulation of the adaptive immune response in order to limit tissue damage.

11.4.1 Antigen presentation by airway epithelial cells

Dendritic cells (DC) have been established as the major class of antigen-presenting cell
(APC) in the airway, capable of taking up, processing and presenting antigen to CD4+

T-lymphocytes (Banchereau and Steinman, 1998). To a lesser degree, alveolar macrophages
also participate in the presentation of inhaled antigen, although they have also been shown
to down-regulate the APC properties of local DC in order to suppress immune responses
(Holt et al., 1993). The first evidence of EC possessing antigen presentation capabilities
arose from studies in the rat showing that intestinal EC could present antigen to lymph
node T-cells and stimulate their proliferation (Bland and Warren, 1986). Following these
observations in animals, human gastro-intestinal tract epithelial cells were demonstrated to
possess similar accessory cell function in in vitro studies using EC isolated from surgically
resected gut mucosa (Mayer and Shlien, 1987). More recent studies, focusing on AEC in
both animal and human models have demonstrated similar capacity for antigen presentation
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that, like their professional APC counterparts, is antigen-specific and can elicit an efficient
response in responder T-cells (Suda et al., 1995).

AEC can express several molecules involved in antigen presentation, including major
histocompatibility (MHC) class I and II, and a number of co-stimulatory molecules, although
there are conflicting reports about constitutive levels of these markers. Initial studies revealed
that both class I (HLA-A,B,C) and class II (HLA-DR) antigens were uniformly and strongly
expressed on the bronchiolar and alveolar epithelium (Glanville et al., 1989). In contrast,
another group demonstrated high levels of class I but undetectable levels of class II on both
primary AEC and cell lines (Papi et al., 2000). A third study showed that freshly isolated
alveolar EC constitutively express high levels of class II molecules, whereas cultured small
airway EC did not show detectable levels of this marker (Cunningham et al., 1997). These
inconsistencies may be explained by the presence of occult inflammation or injury at the time
of sampling, but the critical role of MHC molecules in antigen presentation by EC is generally
agreed upon. One group showed that both freshly isolated and short-term cultured AEC were
able to stimulate allogeneic T-lymphocytes in a mixed lymphocyte reaction (MLR), and this
could be completely inhibited by the addition of an anti-class II monoclonal antibody at the
onset of culture (Kalb et al., 1991). In addition, the alveolar EC line A549, which does not
express MHC class II molecules, cannot stimulate T-cell proliferation (Paine et al., 1992).

The antigen uptake and presentation capacities of AEC, like their professional APC
counterparts, are responsive to the local cytokine microenvironment. It has been demonstrated
in several studies that IFN-� and granulocyte–macrophage colony stimulating factor (GM-
CSF) can positively affect the magnitude and kinetics of this process in local AEC, and
several cell types in intimate contact with AEC can produce these two cytokines. IFN-�- and
GM-CSF-treated AEC exhibit increased antigen uptake and processing, which occurs at an
earlier time point than untreated cells (Oei et al., 2004). The presence of IFN-� was shown
to enhance surface expression of MHC II and Fc�R on AEC, whereas when this cytokine
was absent, there was a lack of persistent expression of MHC II on the cell surface (Salik
et al., 1999; Rossi et al., 1990).

Optimal activation of T-cells requires not only engagement of the TCR receptor, but
also co-stimulation by a number of different molecules expressed by APCs, which, when
absent, results in T-cell unresponsiveness or anergy (Mueller et al., 1989). In particular,
the B7-family of ligands has a central role in T-cell co-stimulation, with B7-1 (CD80) and
B7-2 (CD86) shown to be central to the activation of T-cells by DC through ligation of
the CD28 receptor on T-cells (Bugeon and Dallman, 2000; Chambers and Allison, 1997).
Studies of these B7-1 and B7-2 on airway epithelial cells have found an absence of their
constitutive expression in both freshly isolated and immortalized cells (Cunningham et al.,
1997; Kurosawa et al., 2003). In addition, unlike MHC Class II expression, the levels of
these co-stimulatory molecules on AEC were unchanged in response to IFN-� and GM-
CSF, as well as to a number of other immunomodulatory cytokines examined, including
IL-10, IL-5 and IL-4 (Oei et al., 2004). More recent identification of homologues of B7-
1 and B7-2 on AEC suggest that other co-stimulatory molecules may play a role in the
accessory function of these cells. One report identified the constitutive expression of B7-H1
(programmed death ligand 1 (PDL-1)), B7-H2 (inducible co-stimulatory molecule ligand
(ICOS-L)), B7-H3 and B7-DC (programmed death ligand 2 (PDL-2)), on both primary and
immortalized AEC. B7-H1 and B7-DC, ligands for PD-1, which is an inhibitory receptor
on T-cells, were up-regulated in response to stimulation with IFN-� and TNF-�, and were
shown to inhibit T-cell cytokine responses in a AEC/ T-cell co-culture. In contrast B7-H2
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and B7-H3, whose expression levels were considerably higher than those of B7-H1 and B7-
DC, can operate as activating co-stimulatory molecules in the same system, although they
have also been reported to exhibit some inhibitory activity under certain conditions (Kim
et al., 2005; Suh et al., 2003; Subudhi et al., 2005). In light of this data, it is anticipated
that AEC are intimately involved in the regulation of function and survival of T-cells within
the airway by virtue of their expression of these co-stimulatory molecules. In some circum-
stances, AEC enhance T-cell activation, while in other situations AEC can inhibit T-cell
responses.

Human AEC constitutively express intercellular adhesion molecule 1 (ICAM-1) (Papi
et al., 2000). Although this molecule is classically known as an adhesion receptor, it also
possesses co-stimulatory properties. Whilst the B7 family of molecules is critical for MHC
II-restricted antigen presentation, APC presenting MHC I-restricted antigens often do so
in the absence of B7 co-stimulation. It is under these conditions that ICAM-1 serves as a
source of co-stimulation to CD8+ T-cells through ligation of LFA-1 (Gaglia et al., 2000).
In addition, binding of LFA-1 and ICAM-1 has been shown to preferentially drive Th1
responses, a mechanism that may occur during viral infections (Smits et al., 2002).

Antigen uptake and trafficking processes in AEC have been examined in detail. Exogenous
antigen is taken up by AEC in a non-receptor mediated fashion, and follows a class II
endocytic pathway, as evidenced by co-localization of labelled antigen with various early
and late endosomal and lysosomal markers at different time-points (Salik et al., 1999). In
addition, a second group demonstrated the presence in freshly isolated AEC of a number
of cathepsins that are important for antigen processing (Oei et al., 2004). The same group
examined the expression of Fc�R on the surface of these cells and found that it was
upregulated by IFN-� and could serve to act as a channel for uptake of immunoglobulin G
(IgG) immune complexes by AEC.

The phenotype of the T-cells responding to antigen presentation by AEC has also been
investigated. One group showed that AEC induced the proliferation of both CD4+ and CD8+

T-cells bearing the memory phenotype �CD45RO+CCR7+�. In contrast, DC were able to
stimulate both naive �CD45RA+CCR7−� and memory T-cells (Oei et al., 2004). The authors
postulate that AEC may be able to provide the necessary signals for reactivation of memory
T-cells in the peripheral tissue, whereas DC may play a larger role in primary immune
responses and in systemic immune activation. In addition, in contrast to intestinal EC where
induction of a T-cell response is limited to the CD8+ subset, AEC activate both CD4+ and
CD8+ T-cells, which may reflect differences in the requirements of these cells to serve as
APC in their local mucosal environments (Kalb et al., 1997)

Viral infection of the respiratory tract has been demonstrated as the major cause of
asthma exacerbations in children and adults (Chapter 12). Infection of AEC by viruses
has been shown to modulate their expression of MHC and co-stimulatory molecules and,
accordingly, may play a role in the cellular and molecular mechanisms of viral-induced
asthma. Rhinovirus, which utilizes the intercellular adhesion molecule (ICAM)-1 as its
major receptor, selectively increases the expression of Class I but not Class II molecules
on immortalized lines and primary AEC upon infection (Papi et al., 2000). In addition, this
study also found that the expression of classic co-stimulatory molecules B7-1 and B7-2 is
induced upon respiratory tract viral infection. Respiratory syncytial virus (RSV), another
common cause of respiratory tract infection, has been shown to up-regulate the expression
of other B7-family co-stimulatory molecules B7-H1, B7-H2, B7-H3 and B7-DC (Stanciu
et al., 2006). As these molecules all possess T-cell inhibitory function, it is hypothesized that
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RSV can restrict effector T-cell activation upon infection of AEC, thereby evading detection
and elimination by the host immune system.

Therapeutic drugs target various aspects of the accessory APC function to down-regulate
immune responses in the lung. For example, sodium nedocromil, used widely in the treatment
of asthma, suppresses the expression of HLA-DR antigen and ICAM-1 molecule expression
on airway epithelial cells (Sacco et al., 1999). Fluticasone, a potent glucocorticoid, has been
shown to inhibit the induction of co-stimulatory molecules B7-H1 and B7-DC in BEAS-2B
cells (Kim et al., 2005). In addition, certain adjuvants in viral vaccines preclude the antigen
presentation of virus to cytotoxic CD8+ T-cells and thus enable them to avoid being killed by
virus-specific CTL, a favourable outcome in mucosal vaccination strategies (Rimmelzwaan
et al., 2004).

11.5 The pulmonary epithelium and gamma/delta T-cells

Although in relatively low numbers in the circulation, �	 T-cells constitute a major proportion
of the lymphocytes found within the respiratory epithelium (Augustin et al., 1989). These
cells arise from the same precursors in the thymus as their �� counterparts and home
to epithelia surfaces under the influence of various soluble factors and surface markers
(Sim et al., 1994). While their TCR repertoire is very limited compared to �� T-cells, it
is thought that �	 T-cells may recognize tissue-specific antigens and play a vital role in
maintaining lung homeostasis (Havran et al., 2005).

By virtue of their intimate contact with surrounding EC, �	 T-cells are vital in maintaining
the homeostasis of these cells in mucosal sites (as reviewed in Komori et al., 2006). A recent
study has revealed that stressed or damaged airway epithelium expresses ligands for the
NKG2D-activating receptor found on �	 T-cells. Triggering of the �	 T-cells within the
mucosal epithelium can lead to the efficient removal of the compromised cell, thus preventing
the chronic activation of the epithelium and avoiding a prolonged immune response. In the
absence of �	 T-cells, EC injury is more severe and there is increased risk for development
of chronic airway disease (Borchers et al., 2006). It is thought that �	 T-cells also promote
the production of specific growth factors and other inflammatory mediators by epithelial
cells to accelerate the repair of damaged tissue. Recent evidence from the skin shows a
direct role for �	 T-cells in inducing hyaluronan production by EC that in turn recruits
macrophages to the site of damage. It has been suggested that a similar scenario operates in
the lungs (Jameson et al., 2005).

11.6 The pulmonary epithelium, B-cells and IgA production

Secretory IgA (sIgA) is a crucial component of the immunological barrier factors of mucous
membranes. The production of sIgA is a multi-step process involving the heavy chain class-
switching of activated B-cells, and the subsequent differentiation of these IgA-dedicated
B-cells to antibody-secreting plasma cells. This process occurs locally within the mucosa and
is exquisitely sensitive to the local cytokine microenvironment. IgA-producing immunocytes
represent the dominant mature plasma cell in mucosal surfaces and, due to co-operation
between the mucosal lymphoid tissue and the surrounding epithelium, a continuous produc-
tion of polymeric sIgA is maintained (Pilette et al., 2001).
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Polymeric sIgA is the most abundant immunoglobulin in the secretions of the upper
respiratory tract and forms part of the first line of immune defense in the lung (Burnett,
1986). This specialized isotype exerts its protective effects in a number of ways, primarily by
the formation of complexes with micro-organisms that prevents binding to mucosal surfaces
and accelerates their clearance by other effector cells of the immune system (Lamm, 1997).
In addition, ligation of IgA receptors can generate a wide range of biological responses in
other effector cells of the immune system, such as antibody-dependent cellular cytotoxicity
(ADCC), release of cytokines and superoxide generation (as reviewed in Monteiro and Van
De Winkel, 2003).

The pleiotropic cytokine transforming growth factor beta-1 (TGF�1) has been ascribed
a number of immunosuppressive and anti-inflammatory roles, including its critical func-
tion in the induction of IgA responses in vivo. TGF� induces IgA switching in B-cells
by activating transcription through the C� locus, an effect that is apparent after only a
short exposure of uncommitted B-cells to TGF� (van Vlasselaer et al., 1992). Studies of
TGF�1-deficient and TGF� 1R-deficient have shown that these animals exhibit a partial
IgA deficiency (Cazac and Roes, 2000; van Ginkel et al., 1999). Likewise in studies of
humans, IgA deficiency is associated with reduced serum levels of TGF� (Muller et al.,
1995), whereas patients displaying IgA-mediated nephropathies exhibit increased levels
of TGF� mRNA (Lai et al., 1994). While TGF� production by AEC is significantly
increased in epithelial remodelling and repair (Howat et al., 2002), there is constitu-
tive expression of TGF that supports homeostatic paracrine interactions between normal
cells within the epithelial–mesenchymal unit (Wang et al., 1996). In addition, ligation
of CD40 on B-cells by CD40 ligand expressed on the AEC of normal subjects, trig-
gers switching to IgA1 and IgA2 via induction of endogenous TGF� (Vignola et al.,
2001; Zan et al., 1998). Hence, AEC support IgA production under normal conditions,
and in situations of inflammation or injury, this is enhanced by virtue of increased TGF�
expression.

In addition to TGF�, AEC produce a number of other cytokines that promote terminal
differentiation of mature IgA+-B-cells towards IgA-producing plasma cells. Although contro-
versial, interleukin-5 (IL-5) has been reported to be produced constitutively by both primary
and transformed AEC, and to be up-regulated under inflammatory conditions (Salvi et al.,
1999). It has been shown to play a vital role in the homeostatic proliferation and survival
of mature B-1 cells. This is the subset of B-cells that serves as an important source of
IgA-producing plasma cells at mucosal sites that can be activated independently of T-cell
help (Moon et al., 2004). IL-5 has a synergistic effect with TGF�. While the growth factor
targets the isotype switch process of activated B-cells to IgA, IL-5 acts downstream of this
process, driving the differentiation of the IgA+ effector plasma cells (Sonoda et al., 1989).
Similarly to IL-5, IL-6 has been shown to drive the process of transition of IgA-committed
B-cells to IgA-producing plasma cells. In contrast to the former, IL-6 drives expansion of
the B-2 subset of committed B-cells (Beagley et al., 1989).

Human IL-10 is known to induce the synthesis of IgG1, IgG3 and IgA in anti-CD40
Ab-activated naive B-cells (Hummelshoj et al., 2006). If these B cells are cultured in the
presence of TGF�, the production of IgA is increased further, suggesting a synergistic effect
of these two cytokines. IL-10 has also been shown to upregulate the expression of IL-2
receptors on the surface of B-cells (Fluckiger et al., 1993). In conjunction, AEC also release
IL-2 that operates on B cells to promote their initial activation and expansion prior to isotype
switching and downstream maturation.
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AEC may also benefit directly from sIgA production. EC act as conduits to transport
IgA produced within the lamina propria lining the airway to the lumen where it can exert
its effector function. Transcytosis of sIgA from the basal to apical surfaces of EC occurs
via a specialized receptor produced by the epithelium known as the secretory component
(SC). This receptor functions in two ways: firstly, to bind the IgA monomers together; and
secondly, to prevent proteolytic destruction of the antibody once inside the airway lumen
(Lindh, 1975). Thus, while successful transport and survival of secretory IgA in the airway
is intimately dependent on the existence of the AEC population, the epithelial cells can
exploit the IgA for their own protection.

11.7 Conclusions

The evidence outlined in this chapter collectively demonstrates that AEC are not a simple
barrier but, in fact, play an active role in the immune response. It is clear that by virtue of
a vast array of soluble mediators and surface molecules, they not only can participate in the
initiation of an adaptive immune response, but also can influence the nature and outcome of
that response.
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12.1 Introduction

Respiratory viral infections of the airway epithelium are responsible for significant morbidity
and mortality, especially in children. Emerging infections, such as severe acute respiratory
syndrome coronavirus and avian influenza, could have a significant impact on human health.
Yet, the influence of respiratory viral infections may be most strongly felt in individuals
with pre-existing airway diseases, particularly asthma and chronic obstructive pulmonary
disease (COPD). Newer, more sensitive techniques for the diagnosis of respiratory viral
infection, namely polymerase chain reaction (PCR), have pinpointed respiratory viruses,
particularly rhinoviruses, as the main cause of asthma exacerbations, and viral infection has
been associated with approximately half of all COPD exacerbations.

This chapter will describe the viruses responsible for clinically-important infections of
the respiratory tract, as well as those responsible for exacerbations of asthma and COPD.
Elements of the innate immune response of the lung will be reviewed, including the release of
antimicrobial substances and the induction of pro-inflammatory cytokines and chemokines.
Next, we will focus on the response of the airway epithelium to rhinovirus (RV), respira-
tory syncytial virus (RSV) and influenza. Evidence for the potential role of these viruses
in the development of asthma will be considered. Finally, we will discuss potential coop-
erative effects between viral infection and allergic sensitization, bacterial infection and air
pollution.
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12.2 Causes of bronchiolitis and community-acquired
pneumonia in infants, children and older adults

Bronchiolitis is the most common lower respiratory tract syndrome affecting young children.
In developed countries, the case fatality rate among previously healthy children is low, about
2 per 100 000 in the USA (Holman et al., 2003). However, in the USA, as many as 1 per cent
of all infants are hospitalized for bronchiolitis (Kim et al., 1973). More than 700 000 infants
visit USA emergency departments each year because of bronchiolitis, and approximately
one-third of these are admitted to the hospital (Leader and Kohlhase, 2003)

RSV is the most common underlying viral infection and has been isolated from 50 to 75
per cent of children younger than two years of age hospitalized with bronchiolitis (Glezen
et al., 1986). Other common respiratory viral pathogens, such as influenza, parainfluenza,
and adenovirus, have been isolated from children with bronchiolitis (Loda et al., 1968).
Recent investigations have shown that some infants with bronchiolitis may be infected with
RV (Korppi et al., 2004) or human metapneumovirus (Freymouth et al., 2003).

The causative agent of community-acquired pneumonia in children differs according to
the age of the patient. In neonates and infants up to three months of age, bacteria are the
most common pathogens, with Group B beta-haemolytic Streptococcus dominating in the
newborn period and Streptococcus pneumoniae predominant thereafter. Parainfluenza virus
3 and RSV are also included in this age group (McIntosh, 2002). Viruses are the predominant
pathogens in the 4 months to 4 years group, with RSV being the most common cause.
Parainfluenza viruses, influenza virus, adenovirus, and RV have also been isolated from
children with pneumonia of this age group (McIntosh, 2002).

Viral pneumonia is relatively uncommon during the re-infections of young adulthood.
However, with advancing age and the inevitable development of co-morbidities, viruses
once again cause serious illness and pneumonia. Although acute respiratory infection rates
steadily decrease with advancing age, rates of hospitalization and death increase substantially
in persons aged greater than 60 years. Multiple factors, such as declines in respiratory and
immune function, likely contribute. Immune dysfunction and may impair viral clearance,
allowing spread of the virus to lower airway, with increased inflammation.

Studies of community-acquired pneumonia in adults indicate a viral aetiology in up to one-
quarter of cases, with influenza virus being the most common virus (File, 2003). RSV is the
second-most common cause of viral pneumonia in older persons. Finally, metapneumovirus,
parainfluenza, coronavirus and RV have been identified (Falsey and Walsh, 2006).

12.3 Viruses implicated in the exacerbation of asthma
and COPD

Recent studies examining the association between viral infection of the upper respiratory
tract and exacerbations of chronic airway disease have benefited from the advent of PCR,
which is significantly more sensitive than viral culture in the diagnosis of infection. Epidemi-
ologic studies have uncovered a strong association between viral infections, especially those
caused by RV, and exacerbations of asthma and COPD. Viral infections trigger nearly
80 per cent of asthma exacerbations in children (Johnston et al., 1995) and adults (Nicholson
et al., 1993). In exacerbations of asthma in children aged 9–11 years over a 13-month period,
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viruses were detected in 77 per cent of episodes. Picornaviruses (i.e., RV) were detected in
65 per cent of these viral infections, coronaviruses in 17 per cent, influenza and parainfluenza
viruses each in 9 per cent and RSV in 5 per cent (Johnston et al., 1995). As expected, the
involvement of specific viruses may vary with the season, with a recent study detecting RV
in 82 per cent of all children admitted to an emergency room for acute asthma between the
months of January and July (Kling et al., 2005). In adults, colds were reported in 80 per cent
of all asthma exacerbations, and 46 per cent of these episodes were accompanied by
confirmed viral infection, the majority of which were ascribed to RV (61 per cent), followed
in frequency by coronaviruses, parainfluenza virus, influenza virus and RSV (Nicholson
et al., 1993).

Exacerbations of COPD have long been associated with bacterial infection, most
commonly intracellular non-typeable Hemophilus influenzae (NTHI). Exacerbation has also
been associated with the acquisition of new strains of H. influenzae, Moraxella catarrhalis
and Streptococcus pneumoniae (Sethi et al., 2002) and, in patients with severely reduced
lung function, Enterobacter and Pseudomonas species (Eller et al., 1998). On the other hand,
between 27 to 56 per cent of exacerbations are associated with respiratory viral infections,
and RV is the most common virus isolated (Greenberg et al., 2000; Seemungal et al., 2001;
Rohde et al., 2003). In a cohort of subjects of whom greater than 90 per cent had been
vaccinated against influenza, coronaviruses (29 per cent), parainfluenza viruses and picor-
naviruses (23 per cent each) were most commonly identified (Greenberg et al., 2000). In
two studies, RV predominated (Seemungal et al., 2001; Rohde et al., 2003). By virtue of
their relative prevalence and importance in disease pathogenesis, the following discussion
of interactions between respiratory viruses and the epithelium will focus on RV, RSV and
influenza virus.

12.4 Upper and lower respiratory tract infections

As noted above, many exacerbations of asthma and COPD are associated with infection by
viruses typically associated with upper, rather than lower, respiratory tract infection. This
point not only applies to RV and coronaviruses, causes of the common cold, but also other
viruses as well. For example, RSV induces only mild-to-moderate upper respiratory tract
symptoms in older children and adults. How, then, do viruses typically associated with upper
respiratory tract infections induce exacerbations of lower respiratory tract disease?

Recent studies examining the pathogenesis of rhinovirus infections are instructive. Because
RV replication is optimal at 33–35 �C, infections were thought to be restricted to upper airway
tissues. Until recently, RV had not been cultured from lower airway secretions. Accordingly,
different theories were proposed to explain how signals from the upper respiratory tract
might alter lower airway function. These included the release of pro-inflammatory cytokines
from the nasal epithelium into the systemic circulation, and exposure of nasal epithelial
sensory parasympathetic fibres, leading to bronchoconstriction via increased efferent vagal
activity.

It has recently become clear, however, that infections of the upper respiratory tract may
be accompanied by the entry of virus into lower respiratory tract epithelial cells. RV can
replicate in lower airway cells even at core temperature, though greater viral yields are
obtained at cooler temperatures (Schroth et al., 1999). Also, temperatures of the large airway
are 33–35 �C during resting breathing at room temperature (McFadden et al., 1985). Thus,
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conditions in the lower airway may be favourable for RV replication. After experimental
infection, RV RNA has been detected in lower airway secretions (Gern et al., 1997). Four
days after experimental RV infection, immunohistochemistry of the segmental bronchial
epithelium demonstrates the presence of RV16 capsid protein, though some samples showed
only one or two cells positive for virus (Mosser et al., 2005). RV infection increases
lower airway intercellular adhesion molecule (ICAM)-1 expression (Grunberg et al., 2000).
Recently, a case of an immunosuppressed lung transplant recipient with chronic RV infec-
tion of the lower airway was described (Kaiser et al., 2006). Taken together, these findings
suggest that RV grows in the lower airway, although the quantity of viral replication in the
lower airway may be limited. Accordingly, in our subsequent discussions of pathogenesis,
we will assume that respiratory viruses infect both upper and lower respiratory tract
epithelial cells.

12.5 The innate immune response

The airway epithelium functions as the major interface between the host and external envi-
ronment. Rather than serve a passive role, the epithelium releases antimicrobial substances as
well as pro-inflammatory cytokines and chemokines, leading to clearance of micro-organisms
and activation of the adaptive immune system.

The first phase of the response is recognition of micro-organisms by their pathogen-
associated molecular patterns (PAMPs). PAMPs, in turn, are recognized by pattern-
recognition receptors which consist primarily of Toll-like receptors (TLRs) on the cell
surface. Ten mammalian TLRs have been described, each with specific ligands (Chapter 9).
Different TLRs use different combinations of adaptor proteins to generate intracellular
signals. Myeloid differentiation (MyD)-88 appears to function as an adaptor protein for all
TLRs except TLR3, which employs TRIF (Toll/interleukin-1 receptor domain-containing
adaptor inducing interferon-�) (also called TICAM-1, for Toll/interleukin-1 receptor adaptor
molecule-1). TLR3 mediates immune responses to double-stranded (ds) RNA. TLR3 is
expressed in airway epithelial cells (Sha et al., 2004), though the subcellular localization in
differentiated polarized cells has not been resolved. TLR3 was recently identified in dendritic
cell endocytic multivesicular bodies (Matsumoto et al., 2003). During replication, single-
stranded (ss) RNA viruses make ds-RNA intermediates, consistent with the notion that TLR3
mediates responses to RV, RSV, influenza virus, and other respiratory viruses. Other possible
receptors for viral RNA include TLRs 7/8, which recognize ssRNA and signal through
MyD88, cytoplasmic dsRNA-dependent protein kinase R, and the cytoplasmic RNA heli-
cases retinoic-acid-inducible protein (RIG)-I and melanoma-differentiation-associated gene
5 (MDA5). Finally, TLR4, which is well-known for its recognition of lipopolysaccharide,
also binds to the RSV glycoprotein F (Kurt-Jones et al., 2000; Monick et al., 2003).

Engagement of TLRs activates downstream signalling pathways leading to activation
of nuclear factor (NF)-�B and interferon (IFN) regulatory factors (IRFs)-3 and -7, key
transcription factors involved in the expression of cytokines, chemokines and IFNs. The
TLR3 adaptor molecule TRIF/TICAM-1 consists of an N-terminal proline-rich domain,
a Toll/IL-1 receptor (TIR) domain and C-terminal proline-rich domain. The N-terminal
region of TRIF directly associates with tumour necrosis factor (TNF) receptor-associated
factor (TRAF)-6, a ubiquitin ligase, and TANK-binding kinase (TBK)-1. (TANK stands
for TRAF family member-associated NF-�B activator.) Following viral infection, the
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association with TRAF6 leads to activation of the canonical I�B kinase (IKK) complex
and NF-�B, which upregulates the transcription of pro-inflammatory genes such as IL-6,
IL-1 and TNF-�. The recruitment of TBK-1 to the C-terminal region of TRIF initiates a
signalling cascade that culminates in IRF-3 activation and the induction of IFN, RANTES
and IP-10. Finally, other kinases required for the expression of cytokines, chemokines
and IFNs may be activated nonspecifically upon binding and endocytosis of virus (see
section 12.6 below).

Recognition of microorganisms by the airway epithelium leads to the release of antimicro-
bial substances as well as pro-inflammatory cytokines and chemokines. These antimicrobial
substances include the collectins, defensins and nitric oxide. Collectins are collagen-binding
lectins of the C-type lectin superfamily. The collectins involved in lung innate defence are
surfactant protein (SP)-A, SP-D and mannose binding lectin (MBL). Each shares a carbo-
hydrate recognition domain that is essential for binding to monosaccharide arrays present
on the microbial surface. SP-A and SP-D bind and agglutinate micro-organisms and other
particulate material entering the lungs, thereby promoting attachment, uptake, and killing of
respiratory pathogens by alveolar macrophages. Like SP-A and SP-D, MBL can act directly
as an opsonin by binding to carbohydrates on pathogens and then interacting with MBL
receptors on phagocytic cells. By virtue of its structural resemblance to C1q, MBL can also
trigger the opsonic activity of complement, resulting in deposition of C3b/inactivated C3b
on targets and stimulation of phagocytic uptake via the C3 receptors CR1, CR3 and CR4
(Hickling et al., 2004).

Pulmonary infiltration after RSV infection is more severe in SP-A knockout mice, and
co-administration of RSV with exogenous SP-A reduces viral titres and inflammatory cells
in the lungs of SP-A knockout mice (LeVine et al., 1999). SP-A binds both RSV G and
F glycoproteins (Ghildyal et al., 1999). SP-D binds G protein and inhibits RSV infection
in vitro and in vivo (Hickling et al., 1999). Susceptibility to RSV infection in infants has
been linked to polymorphisms in both the SP-A and SP-D genes (Lahti et al., 2002; Lofgren
et al., 2002).

SP-A, SP-D and MBL bind and neutralize influenza A virus in vitro (Reading et al.,
1997; Malhotra et al., 1994). Influenza strains with more haemagglutinin glycosylation sites
are more sensitive to neutralization by SP-D and MBL and replicate poorly in mouse
lungs compared to strains with fewer glycosylation sites (Reading et al., 1997). Growth of
influenza A in the lungs is enhanced when saccharide inhibitors of collectins are included
in the virus inoculum. Influenza A infection increases levels of SP-D and MBL in the
bronchoalveolar lavage fluid of infected mice. Together, these results implicate SP-D, MBL
and possibly SP-A as important components of the innate defence of the respiratory tract
against influenza virus.

Defensins are small cationic microbicidal substances secreted into the epithelial lining
fluid which serve to kill potential pathogens and neutralize inflammatory substances such
as lipopolysaccharide. Based on their biochemical structure, defensins are divided into the
�- and �-defensin subfamilies (Chapter 10). Human �-defensins 1–4 are major components
of the human neutrophil azurophilic granules. Human �-defensins (HBDs)-1, 2, 3 and 4 are
commonly found in epithelial cells (Schutte and McCray, 2002). RV infection of primary
human airway epithelial cells induces HBD-2 mRNA and protein expression, and in vivo
infection of normal human subjects with RV16 induces expression of HBD-2 mRNA and
protein in nasal epithelial scrapings which correlates with viral titre (Proud et al., 2004).
These data are consistent with the notion that HBD-2 plays a role in host defence to
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RV infection. In addition to this antimicrobial function, HBD is selectively chemotactic for
cells stably transfected to express human C-C chemokine receptor (CCR)-6, a chemokine
receptor preferentially expressed by immature dendritic cells and memory T-cells (Yang
et al., 1999). Finally, murine �-defensin 2 has been shown to function as an endogenous
ligand for TLR-4 in immature dendritic cells (Biragyn et al., 2002).

Nitric oxide (NO) is produced by airway epithelial cells and critically involved in
nonspecific (innate) and immunological host defence. NO, a gaseous nitrogen-centred inor-
ganic radical, has antimicrobial actions against various pathogens via its cytotoxic or cyto-
static effects. The relative deficiency of epithelial nitric oxide synthase (NOS)-2 in patients
with cystic fibrosis appears to be a factor in the increased airway infections observed in
these patients (Zheng et al., 2003). Although the importance of NO has been documented
for host defence reactions against bacteria and fungi, its role in the pathogenesis of virus
infections is only partly understood.

NO is synthesized by oxidative conversion of the amino acid L-arginine by NOS. Three
NOS isoforms have been identified, and all three are expressed within the respiratory tract.
NOS1 (nNOS) and NOS3 (eNOS) are primarily expressed in neuronal and endothelial cell
types, respectively, and are highly dependent on increases in intracellular Ca2+ for enzyme
activation. In the airway, nonadrenergic, noncholinergic nerve fibres express NOS1, and
the NO generated is a major mediator of neural smooth muscle relaxation (Belvisi et al.,
1992). In the bronchial epithelium, NOS3 is localized at the basal membrane of ciliary
microtubules and mediates regulation of ciliary beat frequency (Li et al., 2000). NOS2 is
expressed in human airway epithelial cells and is the primary source of NO in asthmatic
airway (Guo et al., 2000). Expression of NOS2 is transcriptionally regulated in response to
pro-inflammatory cytokines including IFNs. Other forms of regulation, including epigenetic,
translational, post-translational and proteolytic, exist.

Antiviral effects of NO are known for many types of virus. With regard to respiratory
viruses, RV infection induces expression of NOS2 in human respiratory epithelial cells in
vitro and in vivo (Sanders et al., 2001), and NO reduces RV-induced cytokine production and
viral replication in a human respiratory epithelial cell line (Sanders et al., 1998). Replication
of RSV is inhibited in HEp-2 cells constitutively expressing NOS (Ali-Ahmad et al., 2003).
NO inhibits SARS-coronavirus infection in vitro (Keyaerts et al., 2004). Finally, cultured CF
airway epithelial cells are more susceptible to human parainfluenza virus-3 infection than
normal cells, and overexpression of NOS2 or an NO donor protects the cells from virus
(Zheng et al., 2003).

On the other hand, NO has little antiviral activity against some viruses, and may actually
impair antiviral responses by suppressing Th1 functions. Further, NO-induced cytotoxicity
via oxidative injury may cause cellular and organ dysfunction. Markedly improved outcome
is observed for murine influenza A viral pneumonia following treatment with a NOS
inhibitor, whereas placebo-treated mice showed evidence of peroxynitrite-mediated lung
damage (Akaike et al., 1996). NO impairs the anti-influenza virus response of the host
by suppressing Th1-dependent IFN-� induction and tipping the Th1–Th2 balance toward
Th2 domination (Karupiah et al., 1998). Similarly, in genetically deficient NOS2 �−/−�
mice, hosts survived with little histopathologic evidence of pneumonitis, whereas infection
in NOS2 (+/+) mice resulted in consolidating pneumonitis and death. NOS2 (+/+) mice
treated with a NOS inhibitor demonstrated improved survival without affecting viral growth
(Karupiah et al., 1998). Thus, the role of NO in immunological host responses against viruses
is complex.
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12.6 Rhinoviruses

RVs, members of the Picornaviridae family, are the most common causes of upper respira-
tory tract infections (‘colds’) in humans and, accordingly, are the most common causes of
asthma and COPD exacerbations (see above). The RV genome is composed of a single strand
of positive-sense RNA (meaning it can be translated directly by the ribosome) enclosed
in a small tetrahedral capsid. There are more than 100 serotypes of RV which can be
classified into two major groups based on their cellular receptor. The major subgroup of
RVs contains approximately 90 per cent of the serotypes (e.g., RV14, -16 and -39) and
utilizes ICAM-1, also known as CD54, as the airway epithelial cell receptor. The remaining
serotypes (e.g., RV1B and -2) use the family of low density lipoprotein receptors (LDL-R)
as their means of entry.

The precise mechanisms by which RV induces asthma or COPD exacerbations are
unknown. Typically, RV infects small clusters of cells in the epithelial layer (Mosser et al.,
2005). While virus-induced cytotoxicity has been well documented for influenza, parain-
fluenza, adenovirus and RSV infections, RVs induce minimal, if any, cytotoxicity (Fraenkel
et al., 1995). While a recent study has shown cytotoxicity in RV-infected subconfluent
BEAS-2B cells (Bossios et al., 2005), epithelial cell shedding is unlikely to contribute to
RV-induced exacerbations of chronic airway disease.

Instead, numerous studies suggest a role for C-X-C chemokines with the neutrophil-
attractant Glu-Leu-Arg (ELR) motif in the pathogenesis of asthma and COPD exacerbations.
ELR-positive C-X-C chemokines include interleukin (IL)-8 (also known as C-X-C ligand-8,
or CXCL8), epithelial neutrophil attractant (ENA)-78 (CXCL5) and growth-related oncogene
(GRO)-� (CXCL1). IL-8 and neutrophils are found in the nasal secretions and sputum of
patients with RV-induced asthma exacerbations (Grunberg et al., 1997a, 1997b; Pizzichini
et al., 1998). Further, the number of neutrophils correlates with the level of IL-8 (Pizzichini
et al., 1998). Neutrophil number, IL-8 and ENA-78 are increased in the sputum and airway
of patients with exacerbations of asthma (Norzila et al., 2000; Ordonez et al., 2000) and
COPD (Bhowmik et al., 2000; Qiu et al., 2003). RV induces IL-8, ENA-78 and GRO-�
expression in cultured airway epithelial cells (Subauste et al., 1995; Schroth et al., 1999;
Griego et al., 2000; Newcomb et al., 2005). After RV16 infection, asthmatic patients show
increased levels of IL-8 in their nasal lavage which correlates with the level of airway
responsiveness (Grunberg et al., 1997b), in contrast to unaffected individuals in whom IL-8
does not increase (de Kluijver et al., 2003). Together, these data suggest that RV infection of
airway epithelial cells may potentiate pre-existing inflammation by enhancing the production
of neutrophil chemoattractants and neutrophilic airway inflammation.

It is also conceivable that RV infection induces lymphocytic and/or eosinophilic inflam-
mation. It has recently been shown that � -interferon inducible protein (IP)-10/CXCL10
is produced in response to RV infection in vitro and in vivo (Spurrell et al., 2005). IP-10
is a chemoattractant for activated type 1 T-lymphocytes and natural killer T cells which
also suppresses eosinophil infiltration. In one study of experimental RV infection in asth-
matic patients, airway T-cells increased while eosinophils decreased (Grunberg et al., 2001),
consistent with a functional role for IP-10. On the other hand, evidence also exists for the
role of eosinophils in the pathogenesis of viral-induced asthma exacerbations. Eosinophils
and eosinophil cationic protein have been detected in the airway following experimental
infection (Fraenkel et al., 1995; Grunberg et al., 1997a) and RV infection increases airway
epithelial cell production of the eosinophil chemoattractant RANTES (for regulated upon
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activation, normal T-cell expressed and secreted, also known as C-C ligand 5) (Schroth
et al., 1999; Gern et al., 2003).

RV infection also upregulates expression of its receptors, ICAM-1 (Sethi et al., 1997;
Papi and Johnston, 1999) and LDL-R (Suzuki et al., 2001a). Finally, RV infection induces
the expression of antiviral cytokines such as interferon (IFN)-� and -� (Wark et al., 2005;
Contoli et al., 2006), as well as many IFN-inducible genes (Chen et al., 2006).

Biochemical signalling mechanisms involved in the innate immune response to RV
infection have recently begun to be elucidated. Each step in the viral life cycle is capable
of activating a discrete signalling pathway (Figure 12.1). RVs infect human epithelial cells

ssRNA dsRNA

endocytosis
cytoskeletal reorganization

ERK, JNK  PI 3-kinase      MyD88      TRIF-1

RV
ICAM-1

ICAM-1
ligation

TLR7, 8     TLR3

Akt Rac1                    TRAF-6

ELR(+) C-X-C chemokines

RV LIFE
CYCLE

RIG-I
MDA5
PKR 

Src

AP-1 NF-κB

Figure 12.1 Steps in RV infection including ICAM engagement, endocytosis and RNA injection.
Parallel signalling events are shown. dsRNA may activate the innate immune system via endocytic
TLR3 receptors or cytoplasmic receptors including RIG-I, MDA5 or protein kinase R

via ceramide-enriched membrane platforms (Grassme et al., 2005). Bound RV is then local-
ized to coated pits and internalized by clathrin-mediated endocytosis (Grunert et al., 1997;
DeTulleo and Kirchhausen, 1998), a process which requires the GTPase dynamin 1 (DeTulleo
and Kirchhausen, 1998). The mildly acidic pH of the endosome triggers uncoating and
penetration. Using confocal microscopy, we have shown in airway epithelial cells that RV
co-localizes with the tyrosine kinase Src, the p110� catalytic subunit of phosphatidylinositol
(PI) 3-kinase and the serine-threonine kinase Akt in lipid rafts (Bentley et al., 2007). Acti-
vation of Src following ICAM-1 engagement induces phosphorylation of the PI 3-kinase
p85 regulatory subunit, activation of PI 3-kinase, accumulation of 3-phosphorylated PI at
the site of RV infection and Akt phosphorylation (Newcomb et al., 2005; Bentley et al.,
2007), and PI 3-kinase activation is required and sufficient for subsequent NF-�B activation
and chemokine expression (Newcomb et al., 2005). The Rho GTPase Rac1 is also acti-
vated during the cytoskeletal reorganization accompanying endocytosis and is required and
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Figure 12.2 The Rho GTPase Rac1 is required for RV-induced IL-8 expression (left panel) and suffi-
cient for NF-�B transactivation (right panel). 16HBE14o- human bronchial epithelial cells were tran-
siently transfected with an IL-8 reporter plasmid (IL-8/Luc) and either a dominant-negative (N17Rac1)
or constitutively-active (V12Rac1) Rac1

sufficient for IL-8 expression (Figure 12.2). In vascular endothelial and smooth muscle cells,
ICAM-1 engagement activates signalling through extracellular signal-regulated kinase (ERK)
(Lawson et al., 1999). ERK is activated minutes after RV infection of airway epithelial cells,
and ERK activation is required for maximal RV-induced IL-8 expression (Newcomb et al.,
2007). Taken together, these data suggest that early events in the RV life cycle, i.e., binding
and endocytosis, are sufficient to activate signalling pathways required for subsequent
chemokine expression. Put another way, viral replication may not be necessary for at least
a subset of RV-induced responses, perhaps explaining how RV can induce exacerbations
of lower airway disease in the absence of abundant viral replication (Halperin et al., 1983).
RV-induced activation of ERK enhances the response to tumor necrosis factor-� (Newcomb
et al., 2007), leading to additive or synergistic pro-inflammatory responses. An example of
synergy between RV and a pro-asthmatic cytokine, IL-13, is shown in Figure 12.3.

Little is known about the transcription factors involved in the induction of chemokine
and cytokine expression by RV in airway epithelial cells. RV infection activates NF-�B
(Papi and Johnston, 1999; Newcomb et al., 2005). Expression of the rhinovirus 3C protease
induces activator protein (AP)-1 transactivation (Funkhouser et al., 2004).

Ultraviolet (UV) irradiation inhibits viral replication and, therefore, can be used to deter-
mine the requirement of viral replication for inflammatory responses. UV irradiation inhibits,
but does not abolish, RV39-induced early cytokine release in BEAS-2B cells (Griego et al.,
2000). UV irradiation does not significantly reduce RV14-induced IL-8 expression in human
tracheal epithelial cells (Suzuki et al., 2001b). RV39-induced IL-8 expression occurs inde-
pendently of viral replication in MRC-5 fibroblasts (Kaul et al., 2000). Finally, bafilomycin,
an inhibitor of vacuolar proton ATPases which promote the low endosomal pH needed
for viral uncoating, decreases RV14-induced ICAM-1, but not IL-8, expression in human
tracheal epithelial cells (Suzuki et al., 2001b). These studies are consistent with the notion
that viral replication is not necessary for at least some RV-induced responses.
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Figure 12.3 RV39 infection of 16HBE14o- human bronchial epithelial cells increases the level of
IL-8 expression induced by IL-13, a pro-asthmatic cytokine. Cells were infected with RV39 and treated
with IL-13. IL-13 alone had no effect on IL-8 protein expression, but combination with RV39 induced
greater effects in IL-8 protein (panel A) and promoter activity (panel B). The synergistic increase
in IL-8 was accompanied by a cooperative increase in AP-1 transactivation (panel C) but not NF-�B
transactivation (panel D) or surface ICAM-1 expression (panel E)

Since viral replication, or even uncoating, may not be necessary for RV-induced IL-8
release, this implies that this aspect of the RV response may be nonspecific. In other words,
RV-induced cytokine release may reflect the cellular response to ICAM-1 engagement and
the endocytosis of receptor–ligand complexes, rather than a specific response to RV itself.
If this is the case, the predominance of RV as a trigger for asthma and COPD exacerba-
tions may simply reflect its prevalence compared to other respiratory viruses. Further, it
is conceivable that additional stimuli, e.g., other viruses or even particulate matter, induce
chemokine expression by similar mechanisms.

On the other hand, since the induction of IL-8 and other pro-inflammatory substances in
response to RV infection appears to be biphasic in nature (Griego et al., 2000), it is, perhaps,
more likely that the early signalling events initiated by viral attachment and endocytosis
are responsible for the early reaction to RV, to be followed by a second set of replication-
dependent responses. Recent studies have examined the role of viral replication and viral
RNA in RV-induced airway epithelial cell chemokine expression. Although RV is a single-
stranded RNA virus, during replication it makes double-stranded (ds)-RNA intermediates.
Toll-like receptor (TLR)-3, a type I transmembrane protein, mediates immune responses
to dsRNA. Airway epithelial cells are activated by dsRNA (Gern et al., 2003; Sha et al.,
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2004), suggesting that TLR3 mediates RV-induced responses. We have recently found that,
in primary mucociliary-differentiated airway epithelial cells, TLR3-specific siRNA inhibits
RV-stimulated IL-8 production (Sajjan et al., 2006). Furthermore, HEK293 cells stably
transfected with TLR3 produced high amounts of IL-8 in response to RV infection. These
findings suggest that TLR3 is required for maximal RV-induced IL-8 expression. The roles of
TLR7 and TLR8, which recognize single-stranded RNA, have not yet been tested. Similarly,
the contribution of RIG-I and MDA5, cytoplasmic helicase proteins recently implicated in
viral dsRNA recognition, have not been examined.

Another receptor for dsRNA is protein kinase R (PKR), which regulates NF-�B and other
transcription factors. The PKR inhibitor 2-aminopurine blocks dsRNA-induced RANTES
and IL-8 secretion (Gern et al., 2003), as well as RV-induced gene expression in primary
human airway epithelial cells (Chen et al., 2006), suggesting that viral replication and PKR
are required for maximal RV-induced responses. However, 2-aminopurine also inhibits ERK,
Akt and other serine/threonine kinases. In our hands, both 2-aminopurine and a PKR mutant
with a defective dsRNA binding motif-1 (Wu and Kaufman, 1996) attenuate but do not block
RV39-induced IL-8 expression, suggesting the importance of other receptors for dsRNA
(Figure 12.4).
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Figure 12.4 Inhibition of PKR does not abolish RV39-induced IL-8 promoter activity. To test for
the requirement of dsRNA-dependent PKR for RV39-induced IL-8 expression, 16HBE14o- cells were
co-transfected with IL-8/Luc and PKR-K64E, a PKR with a defective dsRNA binding motif (from
R. Kaufman, University of Michigan). The mutant did not abolish RV39-induced IL-8 promoter activity.
2-aminopurine (2-AP) had a similar effect

Once released into the cytoplasm, translation of viral RNA is initiated. The picor-
navirus genome contains a 5′ and 3′ noncoding region and encodes a single polyprotein
that is secondarily cleaved into mature proteins. The polyprotein is divided into three
regions; P1, P2, and P3. P1 is cleaved into four mature capsid proteins, and the P2 and P3
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regions comprise non-structural proteins that terminate host cell translation and promote viral
replication. We have shown that a cleavage product of P3 called protease 3C is sufficient to
increase IL-8 expression in human bronchial epithelial cells (Funkhouser et al., 2004).

Thus, there is a wealth of new information describing how RV induces airway epithelial
cell chemokine expression. However, none of the above studies address the mechanism by
which RV induces airway narrowing, the hallmark of asthma exacerbation. While RV has
been noted to infect airway smooth muscle cells in vitro (Hakonarson et al., 1998), we are
unaware of information demonstrating that RV infects airway smooth muscle in vivo. While
the evidence that RV induces neutrophilic airway inflammation is compelling, at present
little is known about the manner by which neutrophils contribute to airway narrowing in
asthma or COPD. Activated neutrophils release a large array of inflammatory mediators
(in particular tumour necrosis factor-�), oxygen radicals and proteases capable of inducing
mucus production and airway remodelling.

Evidence has emerged that RVs are the most common cause of wheezing illness in
the first year of life, and that RV-induced wheezing illness in the first year of life is the
strongest predictor of subsequent third-year wheezing (Lemanske et al., 2005). It is therefore
conceivable that RV may not only induce exacerbations of asthma, but also contribute to
its primary pathogenesis. On the other hand, RV-associated wheezing may only denote an
asthmatic predisposition. In support of this hypothesis, it has been shown that subjects who
are low producers of IFN-� in response to RV appear to be at greater risk for wheezing
or having a severe respiratory infection. Peripheral blood monocytes from patients with
asthma have a deficient type II IFN-� response to RV (Papadopoulos et al., 2002), and the
IFN-� response correlates with FEV1 and PD20 (the methacholine provocative dose for a
20 per cent decrease in FEV1) (Brooks et al., 2003). Children with greater than or equal to
two episodes of wheezing in infancy are less likely to have RV-induced IFN-� responses at
birth (Gern et al., 2006). Bronchial epithelial cells isolated from patients with asthma have
been demonstrated to have an incomplete innate immune response to rhinovirus infection,
with deficient type I interferon-� and type III interferon-� production (Wark et al., 2005;
Contoli et al., 2006). Thus, the host response, rather than the infecting organism, may be the
best predictor of the future pattern of respiratory illness.

12.7 Respiratory syncytial virus

Human RSV is a negative sense, single-stranded RNA virus of the family Paramyxoviridae.
As noted above, bronchiolitis is the most common lower respiratory tract syndrome affecting
young children, with RSV being the most common underlying viral infection (Glezen et al.,
1986). In developed countries, mortality is low, about 2 per 100 000 cases in the USA
(Holman et al., 2003). However, RSV bronchiolitis is the primary cause of hospitalization in
the first year of life in the USA (Kim et al., 1973). Premature babies born at 30–35 weeks
of gestation and infants with cyanotic congenital heart disease are at particular risk.

The role of RSV in the pathogenesis of asthma has long been a source of debate. RSV
infection is associated with increased bronchial reactivity and wheezing. Investigators have
hypothesized that RSV infection skews the immune response towards an allergic phenotype.
Data from the Tuscon Children’s Respiratory Study showed that RSV lower respiratory tract
infection in infants is associated with an increased risk of wheeze by age 6 years, but that the
risk of wheezing decreases markedly thereafter and is not significant by age 13. There was
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no association with atopic status (Stein et al., 1999). In contrast, another study examining the
respiratory status of hospitalized infants with RSV showed increased wheezing and allergies
compared to normal subjects at age 13 (Sigurs et al., 2005). The most likely explanation
is that only a subset of infants, for example, those with pre-morbid differences in airway
structure or function, or differences in the immune response, develop persistent wheeze
in response to RSV infection. Studies have shown that children who wheeze during the
first years of life have diminished lung function shortly after birth (Martinez et al., 1988).
Children with measurable cord blood IFN responses to RSV are less likely to wheeze in
their first year of life (Gern et al., 2006).

In contrast to RV, RSV infection results in the loss of cilia and sloughing of epithelial
cells into the airway, leading to obstruction. The airway lumen is also packed with poly-
morphonuclear leukocytes, fibrin, lymphocytes and mucus. The airway wall is edematous and
infiltrated with inflammatory cells. Interestingly, the immune response to RSV is responsible
for a substantial share of the clinical illness. As evidence of this, mice depleted of CD4 and
CD8 T cells have no discernible illness upon RSV infection, despite persistent viral infection
for several weeks (Graham et al., 1991). Further, primary human mucociliary-differentiated
airway epithelial cells cultured in the absence of immune cells show little cytotoxicity after
RSV infection (Zhang et al., 2002).

The robust innate immune response to RSV infection has three components: surfactant
proteins, chemokines and Toll-like receptors. As noted above, SP-A and SP-D play important
functional roles in the response to RSV infection (LeVine et al., 1999; Ghildyal et al., 1999;
Hickling et al., 1999; Lahti et al., 2002; Lofgren et al., 2002).

Children with RSV bronchiolitis show increased levels of IL-8/CXCL8 (Abu-Harb et al.,
1999), RANTES/CCL5 (Chung and Kim, 2002), IP-10/CXCL10, monocyte chemoattrac-
tant protein (MCP)-1 (CCL2) and macrophage inflammatory protein (MIP)-1� (CCL3,
an eosinophil chemoattractant) (Garofalo et al., 2001) in the airway. Additional studies
examining RSV-infected cultured airway epithelial cells have confirmed these results
(Olszewska-Pazdrak et al., 1998), and also added additional chemokines, most notably
MIP-1�/CCL4	 MIP-3�/CCL20, CXCL11, GRO-�/CXCL1 and fractalkine/CX3CL1, a
unique chemokine which may exist as either a membrane-anchored adhesion molecule or
a soluble chemoattractant for T-cells and monocytes (Zhang et al., 2001). Thus, RSV is a
potent stimulus for neutrophil, eosinophil and T-cell chemotaxis. IL-6 and IL-10 levels are
also increased in the airway of infants with bronchiolitis (Sheeran et al., 1999).

The RSV genome encodes 10 proteins. They are non-structural (NS)-1 and 2, nucleo-
capsid, phosphoprotein, matrix (M)-1 and 2, small hydrophobic (SH), surface attachment
glycoprotein (G), surface fusion glycoprotein (F), and RNA-dependent RNA polymerase.
Binding to the respiratory epithelium occurs via interactions between the heparin-binding
domains of the G glycoprotein and glycosaminoglycans on the cell surface (Martinez
and Melero, 2000). RSV G glycoprotein may also interact with L-selectin (CD62L) and
annexin II (Malhotra et al., 2003). RSV uses lipid rafts for assembly and budding (Marty
et al., 2004).

Recent studies suggest that, in addition to terminating host cell translation and promoting
viral replication, RSV proteins may play specific roles in modulating the immune response.
The non-glycosylated, central, conserved region of the G glycoprotein contains a CX3C
chemokine motif capable of interacting with the fractalkine chemokine receptor, CX3CR1
(Tripp et al., 2001). It is, therefore, conceivable that G glycoprotein expression inhibits
fractalkine-mediated chemotaxis, enhancing viral persistence. The RSV NS2 protein is
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sufficient to decrease epithelial cell signal transducer and activator of transcription (STAT)-2
and type I interferon-induced gene expression (Ramaswamy et al., 2004). NS2 also
suppresses premature apoptosis, thereby facilitating viral growth (Bitko et al., 2007). Finally,
intranasal siRNA particles targeting NS1 have recently been shown to inhibit RSV infection,
suggesting that this viral protein also modulates the immune response (Zhang et al., 2005).

RSV specifically targets the apical surface of ciliated epithelial cells, is shed exclusively
from the apical surface, and spreads to neighbouring ciliated cells by the motion of the
cilial beat (Zhang et al., 2002). As in the case of RV, much is known about the signal
transduction pathways regulating RSV-induced chemokine expression. The RSV F glyco-
protein is sufficient for cytokine expression in cultured monocytes, and CD14 and TLR4
are each required for this response (Kurt-Jones et al., 2000). RSV infection of respiratory
epithelial cells induces increased TLR4 mRNA expression and TLR4 membrane localiza-
tion, suggesting that TLR4 signalling may also play a role in RSV-induced epithelial cell
responses (Monick et al., 2003). RSV inhibits apoptosis and induces nuclear factor �NF�-�B
activity through a PI 3-kinase-dependent pathway (Thomas et al., 2002). Cytoskeletal reor-
ganization during viral endocytosis activates RhoA, which is required for RSV-induced
syncytium formation and filamentous virion morphology (Gower et al., 2005). RSV induces
STAT activation and interferon regulatory factor (IRF) gene expression via a redox-sensitive
pathway involving the inhibition of tyrosine phosphatase activity (Liu et al., 2004). I�B
kinase-
 is also required (Indukuri et al., 2006). RSV also activates NF-�B activation and
IL-8 expression via a non-canonical pathway (Jamaluddin et al., 1998). As with RV, RSV
requires full-length positive-sense RNA for synthesis of new viral RNA, thereby requiring
the formation of double-stranded intermediates. Accordingly, RSV upregulates TLR3 expres-
sion in A549 epithelial cells, and inhibition of TLR3 expression decreases RSV-induced
synthesis of IP-10/CXCL10, CCL5 and IFN-�, but not IL-8/CXCL8 (Rudd et al., 2005; Liu
et al., 2007). Upregulation of TLR3, in turn, is dependent on the RNA helicase RIG-1 (Liu
et al., 2007). RIG-1 is also required for RSV-induced IFN-�, IP-10/CXCL10, CCL-5 and
IFN-stimulated gene 15 expression during the early phase of infection, but not at later times
(Liu et al., 2007).

RSV infection has also been associated with neurogenic airway inflammation (King
et al., 2001). Unmyelinated sensory nerve fibres that innervate the lung are located below
the epithelial surface. During RSV infection, these neuronal cells release pro-inflammatory
neuropeptides such as substance P and neurokinin A, leading to bronchoconstriction, vasodi-
lation of the tracheobronchial microcirculation, increased permeability of the postcapillary
venules, and exudative edema of the airway mucosa. RSV proteins G and/or SH are required
for this response (Tripp et al., 2000). Substance P expression stimulates monocytes and
macrophages to release a variety of mediators including IL-1, IL-6, IL-10, IL-12, and
TNF-� (Azzolina et al., 2003; Weinstock et al., 2003). Nerve growth factor (NGF) arising
from infected airway epithelial cells increases the production and release of substance P
from sensory neurons. Following RSV infection of F-344 rats, expression of NGF and the
neurokinin 1 substance P receptor are increased (King et al., 2001). NGF is overexpressed
in the lower airway of infants with RSV (Tortorolo et al., 2005). Finally, capsaicin treatment
of RSV-infected rats increases leukocyte infiltration of the airway (Auais et al., 2003). It
is also conceivable that interaction of RSV glycoprotein G or fractalkine with the neuronal
fractalkine receptor could increase substance P expression (Tripp, 2004). Taken together,
these data suggest that, in the context of RSV infection, sensory nerve stimulation plays a
significant physiologic and immunomodulatory role.
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12.8 Influenza

Influenza is a cause of bronchiolitis (Loda et al., 1968) and pneumonia in infants (McIntosh,
2002), community-acquired pneumonia in adults (File, 2003), and exacerbations of asthma
and COPD (Johnston et al., 1995; Nicholson et al., 1993; Greenberg et al., 2000; Seemungal
et al., 2001; Rohde et al., 2003). The influenza viruses (A, B and C) are negative-
stranded RNA viruses of the Orthomyxoviridae family. The genome of influenza A, the
most pathogenic virus, consists of eight RNA segments of variable size encoding 10
proteins. Influenza A viruses are classified according to their haemagglutinin (H1-H5)
and neuraminidase (N1-N9) proteins. Viruses with haemagglutinins H1, H2 or H3 and
neuraminidases N1 or N2 are endemic in humans. Influenza cells replicate in airway epithe-
lial cells, but leukocytes are also infected.

The first stage in influenza virus entry to a host cell is recognition of terminal sialic
acid on glycosylated cell surface molecules by haemagglutinin. Human influenza viruses
bind to receptor molecules bearing �-2,6-linked sialic acid, while avian influenza A (H5N1)
strains preferentially bind to �-2,3-linked sialic acid (Rogers and Paulson, 1983). In
cultured primary airway epithelial cells, human viruses preferentially infect non-ciliated
cells with predominantly 2-6-linked sialic acids, whereas avian viruses mainly infect cili-
ated cells with 2-3-linked sialic acids (Matrosovich et al., 2004). On the other hand, a
study of human lower respiratory tract tissue from patients with avian influenza showed
that H5N1 virus attaches predominantly to type II pneumocytes, alveolar macrophages, and
non-ciliated cuboidal epithelial cells in terminal bronchioles, perhaps contributing to the
severity of the pulmonary lesion (van Riel et al., 2006). This preference for the terminal
airway and alveoli may also be a limiting factor in human-to-human transmissibility of
H5N1 virus.

Influenza virus haemagglutinin concentrates in lipid raft microdomains for efficient viral
fusion (Takeda et al., 2003). Cell entry occurs via clathrin-dependent endocytosis. Low pH
in endosomes triggers the fusion of viral and endosomal membranes, liberating viral ribon-
cleoprotein complexes into the cytoplasm. Following viral replication, productive influenza
virus infection in epithelial cells destroys host cell pre-RNAs, inhibits translation of cellular
mRNAs and kills the host cells either by cytolytic or apoptotic mechanisms. Once again,
virus-infected cells respond to infection by production of chemotactic, pro-inflammatory and
antiviral proteins.

Epithelial cells produce IL-6, RANTES/CCL5, MCP-1/CCL2, IL-8/CXCL8 and
eotaxin/CCL11 in response to influenza A virus infection (Choi and Jacoby, 1992; Adachi
et al., 1997; Matsukura et al., 1996; Kawaguchi et al., 2001). After experimental influenza
infection of human volunteers, nasal lavage fluids contain elevated levels of cytokines and
chemokines including IL-6, IL-8, IL-10, TNF-�, IL-8, MIP-1�/CCL3	 MIP-1�/CCL4 and
MCP-1 (Hayden et al., 1998; Fritz et al., 1999; Skoner et al., 1999). It has been hypoth-
esized that hyperinduction of pro-inflammatory cytokines is the cause of unusual disease
severity following avian influenza infection. Expression of TNF-�	 IFN-�/�	 IL-1�,
MCP-1, MIP-1�, IL-12 and MIP-1� are increased in H5N1-induced human macrophages
compared to those infected with H1N1 (Cheung et al., 2002). In contrast to virus-infected
monocytes and macrophages, human lung epithelial cell lines show poor induction of
IFN-�/� during influenza A infection (Ronni et al., 1997). In lung A549 cells, influenza A
virus-induced expression of IFN-�/�	 IFN-�1 and IFN-�2 (IL-28 and 29) is dependent on
pretreatment with IFN-� or TNF-� (Matikainen et al., 2006). It has recently been shown
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that, unlike dendritic cells, airway epithelial cells require a positive-feedback mechanism
involving the IFN-stimulated transcription factor IRF-7 for maximal IFN-�/� production
(Prakash et al., 2005).

Several studies have examined the signal transduction pathways regulating influenza-
induced airway epithelial cell gene expression. p38 and JNK mitogen-activated protein
kinases regulate RANTES production by influenza virus-infected human bronchial
epithelial cells (Kujime et al., 2000). In BEAS-2B airway epithelial cells, influenza
A-induced IL-8 expression is inhibited by chemical inhibitors of ERK, JNK and
PI 3-kinase (Guillot et al., 2005). As expected, IKK is a key factor in triggering
influenza A virus-induced inflammatory cytokine production in airway epithelial cells
(Bernasconi et al., 2005). In HEK293 cells, influenza virus-induced NF-�B-dependent gene
expression is mediated by overexpression of viral proteins and involves oxidative radi-
cals and activation of IKK (Flory et al., 2000). Together with NF-�B and IRF-3/7, the
JNK effectors c-Jun and ATF-2 (transcription factors of the AP-1 family), are critical
regulators of IFN-� expression in epithelial cell lines (Ludwig et al., 2001). Influenza
A virus-induced transactivation of NF-�B and the IRF/IFN-sensitive response element
in BEAS-2B cells is inhibited by a dominant-negative mutant of the TLR-3 adaptor
protein TRIF, implying a role for TLR3 in this process (Guillot et al., 2005). However,
in A549 cells, a dominant-negative form of RIG-I inhibits influenza A virus-induced
IFN-� promoter activity in TNF-�-pretreated cells, and selective activation of RIG-I or
IKK-
 but not TLR3 enhances IFN-�, and -� gene expression, suggesting that RIG-I
is the primary sensor of influenza A dsRNA in respiratory epithelial cells (Matikainen
et al., 2006).

It has been postulated that the induction of apoptosis is a host defence mechanism, stopping
the replication and spread of virus. Apoptosis is an essential process for the destruction
of potentially harmful cells, including virus-infected cells. However, some viruses have
apparently learned either to interfere with apoptosis in order to promote their own replication
or to utilize apoptosis to their own advantage. In RV-infected primary airway epithelial
cells, inhibition of apoptosis results in enhanced viral yield (Wark et al., 2005). On the other
hand, in HeLa cells, apoptosis has no effect on RV14 replication and facilitates release of
newly formed virus from cells (Deszcz et al., 2005). Influenza virus propagation is strongly
impaired by inhibition of caspase 3 in MDCK cells and ectopic expression of this protein
boosts replication efficiency (Wurzer et al., 2003). Caspase 3 activation enhanced export
of viral ribonucleoprotein complexes from the nucleus, allowing formation of progeny
virus particles. Thus, early induction of caspase activity may support viral propogation,
in contrast to execution of the full apoptotic process, which is most likely an antiviral
response.

As noted above, RSV proteins, particularly NS2, may play specific roles in modulating the
immune response, including the suppression of antiviral gene expression (Ramaswamy et al.,
2004) and premature apoptosis (Bitko et al., 2007). Influenza infection also interferes with
the antiviral response. Blockade of the ERK signalling pathway strongly impairs influenza
A growth, and active mutants of Raf-1 and MEK, upstream activators of ERK, enhance
viral titres (Pleschka et al., 2001). Activation of ERK is required for nuclear export of
viral ribonucleoprotein complexes by NS2. The viral NS1 protein limits influenza-induced
activation of NF-�B and ds-RNA dependent PKR (Wang et al., 2000; Bergmann et al., 2000),
as well as IFN-�/� production (Garcia-Sastre et al., 1998), perhaps by its ability to bind to
dsRNA (Lu et al., 1994).
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12.9 Interactions between viral infections
and other stimuli

As noted above, investigators have hypothesized that RSV infection skews the immune
response towards an allergic phenotype. In murine models, the timing of RSV infection
appears to be critical in determining how the immune system responds. In mice infected
with RSV during the allergen sensitization, infection prolongs methacholine-induced airway
hyperresponsiveness (Peebles et al., 1999). In contrast, RSV infection before allergic sensi-
tization decreases allergen-induced airway hyperresponsiveness, production of IL-13 in
lung tissue, and lung eosinophilia (Peebles et al., 2001). RSV infection before and during
allergen challenge decreases mucus-secreting cells and alveolitis (Barends et al., 2004).
Taken together, these data suggest that that RSV enhances allergic disease only when the
immune system has already been Th2-primed by the allergen, consistent with clinical data
showing that IFN responses at birth predict RSV-induced wheeze in the first year of life
(Gern et al., 2006). Like RSV, influenza infection before allergen airway challenge strongly
suppresses allergen-induced airway eosinophilia (Wohlleben et al., 2003). While the relation-
ship between viral infection and the allergic response largely reflects the interaction between
virus and T-lymphocytes, it is likely that airway epithelial cell cytokine and chemokine
responses to viral infection modulate this interaction.

Polymicrobial infection is an important factor in the pathogenesis of acute and chronic lung
diseases. Adverse outcomes due to co-infection of viruses and bacteria have been recognized
in several respiratory diseases including pneumonia, sinusitis, pertussis (whooping cough), and
COPD. In a recent clinical study, mixed viral and bacterial infections, specifically rhinovirus
and NTHI were shown to be associated with increased lung inflammation, decreased lung func-
tion and greater exacerbation severity in COPD patients compared to that caused by either
pathogen alone (Wilkinson et al., 2006). Animal models of mixed viral and bacterial infec-
tions strongly support the notion that prior pulmonary infection with respiratory viruses such as
influenza and RSV greatly increases the severity of bacterial infection (Peltola et al., 2005).

Cellular mechanisms responsible for interactions between viral and bacterial infection of
the airway epithelium have recently been elucidated. Viruses can predispose the host to
bacterial infection by various mechanisms including destruction of respiratory epithelium,
induction of immunosuppression and increasing expression of molecules that bacteria use as
receptors. Both influenza A and RSV cause damage to ciliary cells or ciliostasis, impairing
airway clearance mechanisms (Giebink et al., 1987; Tristram et al., 1998). RSV infec-
tion enhances adherence of Streptococcus pneumoniae to human epithelial cells (Hament
et al., 2004). Influenza A virus increases adherence and internalization of Group A Staphylo-
coccus aureus by destroying respiratory epithelium, thus exposing the basement membrane
(Okamoto et al., 2003). The specific level of their neuraminidase activity correlates with the
capacity of influenza infection to support secondary bacterial pneumonia (Peltola et al., 2005).

In addition, pre-existing chronic bacterial infection in the lower airway may render the
host susceptible to viral infection. We have recently demonstrated that the prior infec-
tion with non-typeable Hemophilus influenzae potentiates pro-inflammatory responses of
well-differentiated primary airway epithelial cells to RV infection. The observed increased
responses were partly dependent on the increased expression of ICAM-1 and TLR3 (Sajjan
et al., 2006). We also noted increased expression of TLR3 in lower airway of COPD patients
with chronic bacterial colonization of the airways (U. Sajjan, M. Hershenson, D. Arenberg
and F. Martinez, unpublished data).
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Air pollutants such as cigarette smoke, particulate matter, ozone and nitrogen dioxide
activate the innate defences of the lung, suggesting the possibility of interactions between
air pollution and viral infection. Mice exposed to diesel engine emissions manifest a greater
influenza disease burden and lower interferon levels (Hahon et al., 1985). Prior diesel emis-
sion exposure also increases RSV gene expression and viral-induced cytokine expression,
peribronchial inflammation and mucous cell metaplasia, while decreasing levels of Clara cell
secretory protein, pro-SP-B and SP-A (Harrod et al., 2003). Ultrafine carbon black particles
enhance RSV-induced airway reactivity, pulmonary inflammation, and chemokine expres-
sion in mice (Lambert et al., 2003). Recently, it has been shown that diesel exhaust particles
increase rat lung epithelial cell expression of both ICAM-1 and LDL (Ito et al., 2006), each
of which serve as receptors for RV. In patients with asthma, exacerbations related to cold
symptoms are associated with higher levels of sulfur dioxide and nitrogen oxides from March
to November in comparison with asthma exacerbations without cold symptoms (Tarlo et al.,
2001). High exposure to nitrogen dioxide the week before the start of a respiratory viral
infection has been associated with an increase in the severity of a resulting asthma exacer-
bation (Chauhan et al., 2003). Thus, air pollution may exacerbate viral-induced disease by
activating chemokine expression, increasing viral infectivity, blunting airway defences and
inhibiting viral clearance.
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13.1 Introduction

The airway epithelium represents a primary site for the introduction and deposition of poten-
tially pathogenic micro-organisms into the body, through inspired air. The epithelial mucosa is
an important component of the innate immune system that recognizes conserved structures in
microorganisms, called pathogen-associated molecular patterns (PAMPs), and initiates appro-
priate signaling to recruit and activate phagocytic cells to the airway. In spite of the innate
defences of the respiratory tract, under certain circumstances, bacterial pathogens reach the
lower airway and cause disease. Most people aspirate to some degree while sleeping and oropha-
ryngeal secretions may enter the lower respiratory tract, but due to the numerous defence mech-
anisms that exist in the airway, especially mucociliary clearance, most aspirated material is of no
clinical significance. However, alterations in mucosal barriers, such as impaired ciliary action,
mechanical trauma and inflammatory changes induced by viral infection, predispose the lung to
pneumonia. Impairment of the immune system, either in humoral or cell-mediated immunity,
or phagocytic function, facilitates colonization at the lower respiratory tract.

13.2 Bacterial pneumonia

Community acquired pneumonia involves airway pathogens such as Streptococcus pneumo-
niae, Haemophilus influenzae, Staphylococcus aureus, and Moraxella catharralis (Andrews
et al., 2003) and it is often due to aspiration of oropharyngeal secretions containing colonizing
flora. Previous viral infections can induce changes in the respiratory epithelium that impair
mucociliary clearance and can serve to increase susceptibility to subsequent bacterial infec-
tion (McCullers, 2006). Health care associated infections, such as nosocomial pneumonias
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are an increasingly common entity often due to opportunistic pathogens such as Pseudomonas
aeruginosa and Enterobacteria (Schwartz, 2004). Ventilator-associated pneumonia is a major
problem in the intensive care unit setting and is commonly caused by methicillin-resistant
S. aureus (MRSA), as well by as Gram-negative bacteria such as P. aeruginosa, Klebsiella
pneumoniae and Acinetobacter baumannii (Shaw, 2005). These species form biofilms and
adhere to plastic, which facilitates colonization and subsequent lung infection. Once the
patient is intubated, the natural barrier between the oropharynx and trachea is bypassed and
the epithelium is damaged as a result of the mechanical injury associated with endotra-
cheal intubation. These conditions favour attachment and growth of bacteria and allow for
greatly increased bacterial density. Intubation and sedation of the patient impairs normal
cough-mediated clearance and facilitates the entry of colonizing pathogens through micro-
and macro-aspiration of infected oral and gastric contents (Craven, 2000). Among Gram-
positive bacteria, S. aureus is a major cause of pneumonia in hospitalized patients and is
becoming increasingly resistant to antibiotics. Between 40 and 60 per cent of all hospital
S. aureus isolates are resistant to methicillin and intermediate to high levels of resistance to
vancomycin have also been recently described (Chang et al., 2003; Craven, 2000; Lindsay
and Holden, 2004; Tenover, 2006).

Most of the pathology associated with chronic lung diseases such as COPD and cystic
fibrosis (CF) are due to bacterial infection and inflammation. The course of COPD is charac-
terized by intermittent exacerbations responsible for the morbidity and mortality associated
with this disease (Murphy, 2006). It is estimated that half of the exacerbations are caused
by bacterial infection, particularly non-encapsulated H. influenzae, Moraxella catarrhalis,
and S. pneumoniae (Sethi and Murphy, 2001). In CF, dysfunction of the cystic fibrosis
transmembrane conductance regulator (CFTR), a chloride channel, in airway epithelium and
submucosal glands leads to dehydrated secretions and predisposes to infection and chronic
inflammation in the respiratory tract. This is manifested early in life by airway obstruc-
tion and recurrent infections of the lung and paranasal sinuses, often due to S. aureus
and H. influenzae (Goss and Rosenfeld, 2004). The CF lung is particularly susceptible to
P. aeruginosa, and this organism plays a critical role in the development and progression of
pulmonary disease in these patients.

13.3 Bacterial virulence factors: role in lung colonization

Colonization of the airway by pathogenic bacteria is the first step in the development of
pneumonia. Pulmonary pathogens share a variety of virulence factors that allow them to
adhere to the airway epithelium and colonize the airway (Table 13.1). Bacterial adhesins
play a key role in colonization because they allow the bacteria to attach to airway cells.
P. aeruginosa pili mediate epithelial adherence and are important in the pathogenesis of
airway infection particularly during invasive infection. Piliated P. aeruginosa, but not pil
mutants, can colonize neonatal mice and cause pulmonary inflammatory responses (Tang
et al., 1995). The secretion of many P. aeruginosa toxins which act within eukaryotic
cells also requires pilin-mediated attachment (Feldman et al., 1998; Hauser et al., 1998).
Streptococcal and staphylococcal surface adhesins can bind to host cell matrix components,
and to cellular receptors upregulated during lung inflammation (Bogaert et al., 2004; Foster,
2005; Foster and McDevitt, 1994).
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Table 13.1 Bacterial virulence factors involved in airway colonization

Virulence factor Bacteria

Cell wall associated adhesins Streptococcus pneumoniae
Staphylococcus aureus
S. pneumoniae

Pili Pseudomonas aeruginosa
Flagella P. aeruginosa
Biofilm P. aeruginosa

S. aureus
Siderofores P. aeruginosa

S. aureus
Neuraminidase P. aeruginosa

S. pneumoniae
Hyaluronidase S. pneumoniae

Pseudomonas strains that initially colonize the airway express flagella which provide
motility and are highly immunostimulatory. Flagella are essential to establish infection and
Fla− mutants are less virulent in a mouse model of pneumonia, failing to disseminate
throughout the lung or into the bloodstream (Feldman et al., 1998; Tseng et al., 2006).
Flagella also bind to mucin through the cap protein FliD (Arora et al., 1998) and activate pro-
inflammatory responses in immune cells of myeloid origin as well as epithelial cells (Wyant
et al., 1999).

For successful colonization, bacteria need to acquire iron from host tissues, where it
is tightly bound to transferrin or, in the airway, lactoferrin (Xiao and Kisaalita, 1997).
Pathogens have developed a complex regulatory system to compete with lactoferrin for iron.
P. aeruginosa siderophores, pyochelin and pyoverdin (Vasil and Ochsner, 1999; Xiao and
Kisaalita, 1997) and the SirABC transporter in S. aureus (Dale et al., 2004) are examples
of these iron-uptake systems.

The pulmonary pathogens P. aeruginosa and S. aureus live in free planktonic form, or
in biofilms (Parsek and Singh, 2003; Yarwood and Schlievert, 2003), which are highly
structured communities that coat surfaces, such as plastic catheters as well as the mucosal
surface of the airway. The coordinated expression of diverse groups of genes within this
community of bacteria is directed by small, diffusible molecules called quorum sensors. At
low density, bacteria live in the planktonic form, but if the number of organism increases
greatly, quorum sensors are secreted. Once a critical density of these molecules is achieved,
they diffuse back into the organisms where, along with transcriptional activators, they direct
the expression of virulence genes that allow the bacteria to evade the host response and
survive as a community. The ability of P. aeruginosa to adapt to a biofilm mode of growth
is determined by the availability of free iron (Banin et al., 2005), and the iron chelator
lactoferrin inhibits highly structured biofilm formation (Singh et al., 2002), forcing bacteria
to scavenge iron using siderophores. P. aeruginosa possess two major mechanisms for iron
acquisition, the high-affinity pyoverdin system and the lower-affinity pyochelin system. Iron
uptake by pyoverdine allows for a critical level of intracellular iron that serves as the signal
for biofilm development, a mechanism that is mediated by the ferric uptake regulator Fur
(Banin et al., 2005). Biofilm production by S. aureus, however, is induced in iron-restricted
conditions, a mechanism also regulated by Fur (Johnson et al., 2005).
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Biofilm production has an important role in bacterial persistence in the lung, especially in
diseases like CF. In this and other chronic infections, bacterial adaptation to the environment
results in the selection of organisms that are more persistent and less invasive, and the
biofilm mode of growth plays a key role in this adaptation (Costerton et al., 1999; Hoiby
et al., 2001; Singh et al., 2002; Singh et al., 2000). In the CF airway, mucin, cellular
components from neutrophils, such as DNA and actin, as well as damaged airway epithelium
serve as a biological matrix that facilitates growth of P. aeruginosa in biofilm (Landry et al.,
2006; Walker et al., 2005). Mucin is one of the most abundant polymers in CF airway and
P. aeruginosa has mucin-specific adhesins that mediate bacterium–mucin interactions. The
flagellar cap protein FliD appears to have a prominent role in this interaction (Landry et al.,
2006). Dehydrated mucus present in CF generates a unique environment in which bacteria
are confined spatially. This increases the local concentration of autoinducers, leading to
increased biofilm formation (Matsui et al., 2006).

Respiratory pathogens such as S. pneumoniae and P. aeruginosa produce neuraminidases,
enzymes that cleaves terminal sialic acid from cell surface glycoconjugates (Vimr et al.,
2004). While the role of viral neuraminidases in pathogenesis is well established (Colman,
1994), less is known about the contribution of bacterial neuraminidases to the development
of pneumonia. Many pulmonary pathogens bind to asialylated glycolipids (Krivan et al.,
1988), suggesting that the ability to desialylate mucosal surfaces could contribute to bacterial
colonization of the airway. In fact, neuraminidase activity increases S. pneumoniae adher-
ence and invasion by exposing receptors for the bacteria (McCullers and Bartmess, 2003;
Tong et al., 2001). P. aeruginosa, a major pathogen in CF, is predominantly entrapped in
airway secretions and bacterial attachment is not necessarily required to initiate inflamma-
tory responses. The P. aeruginosa neuraminidase, instead of exposing host receptors, has a
critical role in the initial colonization of the lung by targeting bacterial glycoconjugates and
contributing to the formation of biofilm (Soong et al., 2006).

After initial colonization by bacteria, the airway epithelium senses the presence of bacterial
products and initiates the inflammatory response that leads to the recruitment and activation
of phagocytic cells into the airway. While PMNs function to eradicate infection, they also
impede air exchange. Thus, the balance between efficient phagocytosis of inspired bacteria
and airway compromise is physiologically critical. Lung injury associated with bacterial
infection is usually the result of both the direct destructive effects of the organism on the
lung parenchyma and damage due to host inflammatory responses.

13.4 Bacterial recognition by airway epithelial cells

Intact bacteria are rarely in direct contact with airway epithelial cells which are well protected
by mucins. Following epithelial damage, bacteria may gain access to the epithelial surface or,
as occurs in COPD and CF, elicit inflammation without invading the epithelium through shed
bacterial components that stimulate surface-exposed or intracellular receptors (Figure 13.1;
Table 13.2). Unlike other mucosal surfaces, the lower airway are normally sterile, and
exposure to bacterial components triggers an inflammatory response. Airway epithelial cells
are polarized, form tight junctions and have a compartmentalized distribution of surface
receptors. Bacterial receptors must be exposed apically to recognize pathogens or bacterial
products present in the lumen of the airway. These receptors are present in low density
compared to those on immune cells, which is likely to prevent excessive responses that
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Figure 13.1 Airway epithelial responses to bacterial ligands. Bacterial ligands (Flagella, pilus,
protein A, peptidoglycan (PGN)) are recognized by surface (asialoGM1, TLRs, TNFR1) or intracellular
(Nods) receptors. Signaling cascades are initiated through adaptor proteins (MyD88/TIRAP, TRAM/TRIF,
TRADD/RIP, RICK), and MAPK and IKK-dependent translocation of transcription factors leads to tran-
scription of inflammatory mediators

Table 13.2 Immunostimulatory bacterial ligands and its receptors

Bacterial ligand Receptor

Flagella, pili, Gram-positive and Gram-negative
bacteria

AsialoGM1

Lipoteicoic acid, lipoproteins, flagella,
lipoarabinomannan, phenol soluble modulins

TLR2

LPS, pneumolysin TLR4
Flagella TLR5, Ipaf
Protein A TNFR1, EGFR
Peptidoglycan NOD1/2

impede normal lung function. However, upon repeated bacterial stimulation more receptors
are recruited to the apical surface where they initiate the inflammatory response when this
is required to clear the infection.
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13.4.1 Toll-like receptors

Among the eleven Toll-like receptors (TLRs) that have been recognized to date (Akira and
Takeda, 2004; Takeda and Akira, 2004), TLRs 1–10 are expressed in airway epithelial cells
(Greene et al., 2005; Muir et al., 2004). However, not all of these TLRs and the associated
adaptors are equally available on the surface of the airway epithelium where they can respond
to luminal contaminants (Chapter 9). TLR4 for example is intracellular, and MD2 expression
is limited (Guillot et al., 2004), which explains the minimal response of epithelial cells to
LPS. TLR2 is apically expressed in airway epithelial cells and TLR5 is rapidly mobilized
in response to bacteria.

TLR2 in airway infection

TLR2 recognizes a variety of microbial components, including lipoproteins/lipopeptides,
lipoteicoic acid from Gram-positive bacteria, lipoarabinomannan from mycobacteria and a
phenol-soluble modulin from Staphylococci (Akira and Takeda, 2004; Takeda and Akira,
2004). In the airway. TLR2 forms a receptor complex with the asialoganglioside gangliote-
traosylceramide (Galb1, 2GalNacb1, 4Galb1, 4Gal1Cer) (asialoGM1) on the apical surface
of epithelial cells within the context of lipid rafts (Soong et al., 2004). This glycolipid has an
exposed GalNacb1-4Gal moiety that serves as a receptor for bacterial pili (DiMango et al.,
1998), flagella (Feldman et al., 1998) and a large number of pulmonary pathogens, including
S. pneumoniae, S. aureus, and P. aeruginosa (Krivan et al., 1988). TLR2 is present on the
apical surface of polarized cells with tight junctions, and is mobilized into specialized lipid
raft microdomains containing caveolin-1 after bacterial stimulation. The role of TLR2 in
initiating pro-inflammatory signaling in professional immune cells, as well as in airway
epithelial in vitro has been established (Greene et al., 2005; Muir et al., 2004; Soong et al.,
2004; Takeda and Akira, 2004). In airway epithelial cells, TLR2 is also involved in early
responses to P. aeruginosa flagella (Adamo et al., 2004). TLR2 and asialoGM1 initiate
signaling in response to S. aureus and P. aeruginosa leading to the activation of NF-�B and
IL-8 production in a MyD88-dependent manner. The lipid raft microdomain seems to be
essential for signaling as suggested by the effects of filipin in inhibiting activation of IL-8
expression in response to bacteria (Soong et al., 2004).

TLR2 mRNA expression is upregulated in the lungs during both Gram-positive and
Gram-negative infection (Kajikawa et al., 2005; Knapp et al., 2004; Power et al., 2004).
In response to S. aureus systemic infection, TLR2 null mice have increased mortality
(Takeuchi et al., 2000). However, the situation in the lung seems to be different. The
response of TLR2 null mice to intranasally inoculated S. pneumoniae did not significantly
differ from wild type mice (Knapp et al., 2004). Cytokine and chemokine production, and
the overall inflammatory response, was modestly reduced in TLR2 null mice, but there was
no difference in bacterial clearance. Similar results were obtained in a model of postin-
fluenza pneumococcal pneumonia (Dessing et al., 2006). A recent study using aerosolized
S. aureus demonstrated the involvement of TLR2 in the production of inflammatory
cytokines (TNF-�, IL-1�) and chemokines (KC, MIP-2), as well as in PMN recruitment.
However, S. aureus clearance was not affected in MyD88 null mice (Skerrett et al., 2004b).
TLR2 null mice did not show increased susceptibility to the Gram-negative pulmonary
pathogen P. aeruginosa (Skerrett et al., 2007), indicating that other signaling pathways
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in addition to TLR2/MyD88 signaling are evidently involved in responses to pulmonary
pathogens.

Intracellular pathogens such as Legionella pneumophila are also handled by TLR2
(Akamine et al., 2005). The protective role of TLR2-mediated signaling in the clearance
of L. pneumophila in the lungs was demonstrated using a murine model of Legionnaires’
disease (Archer and Roy, 2006). In vivo growth of wild type L. pneumophila was enhanced
in the lungs of TLR2-deficient mice, resulting in a delay in bacterial clearance whereas
L. pneumophila dotA mutants that cannot replicate intracellularly were efficiently cleared
(Archer and Roy, 2006).

TLR4 in airway infection

TLR4 is an essential receptor for LPS recognition by professional immune cells (Hoshino
et al., 1999; Poltorak et al., 1998). Although TLR4 is abundant in airway epithelial cells,
it is less critical in signaling epithelial responses to P. aeruginosa (Muir et al., 2004;
Soong et al., 2004). Airway epithelial cells, like other mucosal epithelia, are not particularly
responsive to LPS as compared to myeloid cells, even when all of the required co-receptors
and LPS binding proteins are provided (DiMango et al., 1995; Guillot et al., 2004). This
limited responsiveness is probably due to the intracellular localization of TLR4 in airway
epithelial cells, and low levels of expression of MD2 (Guillot et al., 2004). The lack of
TLR4 involvement in epithelial responses to LPS in vitro does not imply that the lung itself
is unresponsive. Nuclear translocation of NF-�B in response to inhaled LPS was observed in
the bronchiolar epithelium of wild type mice. This response was not observed in transgenic
mice expressing a dominant negative IKB� in the airway epithelium (Skerrett et al., 2004a).
Thus, the pulmonary response to LPS provided systemically (rather than by inhalation) can
be mediated by TLR4 expressed by pulmonary endothelial cells (Andonegui et al., 2003).

TLR4 expression is increased during Gram-negative infection (Kajikawa et al., 2005;
Knapp et al., 2004; Power et al., 2004) and this TLR plays an important role in the overall
defences against P. aeruginosa. TLR4/MyD88 signaling is critical for the induction of
inflammatory cytokines �TNF-�� IL-1�� and chemokines (KC, MIP-2), PMN recruitment
to the lungs, and bacterial clearance in a mouse model of pneumonia (Power et al., 2004;
Skerrett et al., 2004b). While early responses to P. aeruginosa were TLR4/MyD88-dependent
(Power et al., 2004), a later response mediated by either TLR2 or MyD88-independent
pathways has been proposed (Power et al., 2006). TLR4 contributes to a protective innate
immune response to H. influenzae (Wang et al., 2002) and K. pneumoniae (Branger et al.,
2004; Schurr et al., 2005). In addition to recognition of Gram-negative pathogens, TLR4
can play a modest role in the protective immune responses to pneumococcal pneumonia
(Branger et al., 2004) and is apparently involved in pneumolysin signaling (Malley et al.,
2003). However, the protective role of TLR4 during bacterial pneumonia is likely due to
signaling in professional immune cells or endothelial cells rather than epithelial cells in
the lungs.

TLR5 in airway infection

TLR5 recognizes flagellin, the principal component of flagella, from both Gram-positive
and Gram-negative bacteria (Hayashi et al., 2001; Smith et al., 2003; Zhang et al., 2005).
TLR5, although expressed in airway epithelial cells, is not abundant on the apical surface
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but can be recruited following exposure to flagella, which can recognize asialoGM1/TLR2
as well (Adamo et al., 2004). TLR5 may be more abundant in basolateral compartments in
some epithelial cells (Gewirtz, 2006; Gewirtz et al., 2001) where it only responds to invasive
pathogens. The importance of TLR5 in mediating pro-inflammatory responses to flagella
and clearance of P. aeruginosa during lung infection has been recently demonstrated in vivo
using TLR5 null mice (Feuillet et al., 2006). Wild type mice showed neutrophil infiltration
and a significant increase in pro-inflammatory cytokines and chemokines in response to
intranasal inoculation with flagella, whereas neutrofil infiltration was absent in TLR5 null
mice (Feuillet et al., 2006).

Multiple signaling pathways involving different TLRs are triggered in response to bacterial
stimulation (Figure 13.1). Individual TLRs can activate distinct signaling cascades depending
on the adaptor proteins involved. Although most TLR pro-inflammatory signaling in the lungs
is MyD88-dependent, MyD88-independent signaling is also involved in NF-�B activation
(Jiang et al., 2005; Kawai et al., 1999; Kawai and Akira, 2006; Yamamoto et al., 2004).
MyD88 null mice have a more severe phenotype than null mice for any of the individual
TLRs (Feng et al., 2003; Skerrett et al., 2007). This suggests that multiple TLRs contribute
to the host response to certain organisms or other receptors not described yet can signal
through MyD88 and participate in bacterial responses.

13.4.2 TNF-� receptor 1

Bacteria also exploit endogenous signaling cascades to initiate airway inflammation.
Staphylococci recognizes TNF-� receptor 1 (TNFR1) and activate TNF signaling in airway
cells (Gómez et al., 2004). Staphylococcal protein A signaling through TNFR1 plays a
central role in the pathogenesis of S. aureus pneumonia. Staphylococcal mutants lacking
protein A do not cause pneumonia in a mouse model of infection, nor are the mice lacking
TNFR1 susceptible to staphylococcal pneumonia. The absence of TNFR1-dependent PMN
recruitment prevents morbidity due to the pathological consequences of excessive PMN
accumulation into the airway. The requirement for protein A-TNFR1 signaling in the devel-
opment of pneumonia is consistent with the observations that TLR2 and MyD88 signaling
is not essential in protection from staphylococcal infection (Knapp et al., 2004; Skerrett
et al., 2004b).

13.4.3 Intracellular receptors

In addition to cell surface receptors that recognize microbial components, mammalian cells
also have NOD-like receptors (NLRs) to recognize PAMPs in the cytosol of infected cells.
NLRs include proteins such as NOD1 (nucleotide-binding oligomerization domain 1), NOD2,
NALPs (NACHT-, LRR-and pyrin-domain-containing proteins) and IPAF (ICE-protease acti-
vating factor) (Inohara et al., 2004; Kufer et al., 2006; Kufer and Sansonetti, 2007; Mariathasan
and Monack, 2007). Nod1 and Nod2 are both expressed by airway epithelial cells. NOD1
recognizes peptidoglycans containing meso-diaminopimelate acid (DAP) found mainly in
Gram-negative bacteria (Chamaillard et al., 2003; Girardin et al., 2003a), whereas NOD2
mediates responsiveness to muramyldipeptide MurNac-L-Ala-D-iso-Gln (MDP) conserved
in peptidoglycans of all bacteria (Girardin et al., 2003b; Inohara et al., 2003). S. pneu-
moniae invades epithelial and endothelial cells activating the Nod signaling and accord-
ingly lung expression of Nod2 is upregulated during S. pneumoniae infection in mice (Opitz
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et al., 2004; Schmeck et al., 2004). In vitro experiments demonstrate that NF-�B activation by
S. pneumoniae is dependent on NOD2 and mediated by IRAK and IRAK2. These results
suggest that signaling through NODs is a major pathway through which S. pneumoniae
induces inflammation in the lungs.

The intracellular pattern-recognition receptor Ipaf has been recently identified as essential
sensor for cytoplasmic flagellin in macrophages (Amer et al., 2006; Franchi et al., 2006;
Miao et al., 2006). Upon activation Ipaf form a multiprotein complex, an inflammasome that
serves as a platform for the activation of caspase 1 which in turn process IL-� (Martinon and
Tschopp, 2007; Ogura et al., 2006) a pro-inflammatory cytokine that it is rapidly secreted in
response to bacterial infections. Activation of caspase-1 through Ipaf during L. pneumophila
infection, restricts bacterial replication within the macrophages by regulating phagosome
maturation (Amer et al., 2006; Franchi et al., 2006; Miao et al., 2006).

Caspase-1 and caspase-5 are also activated by NALPs (Sutterwala et al., 2006). The
NALP3 inflammasome is activated in response to bacterial pore-forming toxins such as liste-
riolysin (Mariathasan et al., 2006) and aerolysin (Gurcel et al., 2006). This inflammasome
senses the efflux of potassium as the result of the pore formation in the cell membrane and
initiates activation of central regulators of membrane biogenesis (SREBPs) which promote
cell survival upon toxin challenge (Gurcel et al., 2006). S. aureus activates the NALP3
inflammasome by a mechanism that seems to be independent of pore-forming toxin release
(Mariathasan et al., 2006) suggesting that bacterial components might be internalized and
recognized by NALP3. The role of these inflammasomes in mediating responses to bacterial
components in airway epithelial cells remains to be established.

13.5 Airway epithelial cell responses to bacteria

Epithelial cells signal the presence of bacterial components and secrete pro-inflammatory
cytokines and chemokines that recruit immune cells to the site of infection and activate
them. Several bacterial components are highly immunostimulatory, such as flagella, lipopro-
teins and staphylococcal protein A (Table 13.2). In response to bacteria, airway epithe-
lial cells secrete numerous pro-inflammatory chemokines and cytokines such as neutrophil
chemokine IL-8, the cytokines IL-6 and IL-1�, granulocyte-macrophage colony stimulating
factor (GM-CSF), granulocye colony stimulating factor (G-CSF) and transforming growth
factor � �TGF-�� and � �TGF-��.

IL-1 and TNF-�, which is mainly produced by immune cells in the lung, induce the acti-
vation of nuclear factor �B �NF-�B) which promotes the expression of IL-8 and IL-6 as well
as mucin (Strieter et al., 2002). Pro-inflammatory signaling is required to recruit and activate
phagocytic cells to the site of infection. However, the relative balance between stimulating
sufficient phagocytic cells to clear infection and overwhelming the lung with inflammation
is critical in the development of fatal pneumonia. Whereas TNF-� has a protective effect
in animal models of P. aeruginosa infection (Gosselin et al., 1995), TNFR null mice have
decreased inflammation and increased rates of P. aeruginosa clearance (Skerrett et al., 1999).
Similarly, IL-1 receptor null mice intranasally inoculated with P. aeruginosa were found to
have greater bacterial clearance in their lungs and reduced bacteremia, as compared to wild
type mice (Schultz et al., 2002).

Neutrophil chemokines, in particular IL-8, play a critical role in recruitment and main-
tenance of leukocytes during infection. Animal models of pneumonia have demonstrated
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an increase in chemokines in bronchoalveolar lavage of infected mice and blockade of
chemokine receptors results in reduced neutrophil infiltration and clearance of bacteria in
the lung, and increased mortality (Mehrad and Standiford, 1999; Strieter et al., 2002). Trans-
genic mice engineered for enhanced expression of KC (the mouse equivalent of IL-8) and
Gro�/MIP-2 have improved survival during bacterial pneumonia (Tsai et al., 1998).

As part of the inflammatory response, airway epithelial cells also express adhesion
molecules, such as the intercellular adhesion molecule (ICAM)-1, to allow the adhesion of
recruited neutrophils. Neutrophils are involved in the recognition, phagocytosis and clear-
ance of bacteria. This is accomplished by opsonization through Fc-mediated binding, or
antigen recognition using complement receptors. The pathogen is ingested and killed in
the PMN phagosome through the expression of peptides and reactive oxygen intermediates.
Thus, neutrophils are critically important to phagocytose and kill bacteria. However, their
own lysis and release of elastase is a potent stimulus of epithelial IL-8 which promotes a
cycle of continued inflammation (Nakamura et al., 1992).

The cytokines G-CSF and GM-CSF are also expressed by airway epithelial cells and
are important in activating PMNs and dendritic cells that have been recruited at the site
of infection and enhance their survival by inhibition of apoptosis (Saba et al., 2002).
GM-CSF-deficient mice have significantly increased susceptibility to streptococcal infection
(LeVine et al., 1999). Later during infection, and as a consequence of IL-6 trans-signaling,
epithelial cells secrete the chemokine monocyte chemottractant protein-1 (MCP-1) which
plays an important role in the resolution of inflammation and orchestrating the initia-
tion of the adaptive immune response (Gómez et al., 2005; Hurst et al., 2001; Strieter
et al., 2003).

Antimicrobial peptides are also induced by contact of airway epithelial cells with bacterial
products or pro-inflammatory mediators. They have a broad spectrum of activity against
Gram-positive and Gram-negative bacteria and show synergistic activity with other host
defence molecules, such as lysosyme and lactoferrin (Bals and Hiemstra, 2004). It has been
shown that expression of human beta defensin (hBD)-2, hBD-3, hBD4, the cathelicidin-
derived peptide LL37, and several other antimicrobial peptides are induced in vivo during
pneumonia (Bals et al., 2001; Hiratsuka et al., 1998). In vitro studies showed upregu-
lation of hBD-2 in by primary airway epithelial cells in response to P. aeruginosa LPS
and to inflammatory cytokines such as IL-1� and TNF-� (Becker et al., 2000; Harder
et al., 2000; Singh et al., 1998). P. aeruginosa and TNF-� both induced expression of
hBD-3 in lung cells in vitro (Harder et al., 2001) or cultured fetal lung explants (Jia
et al., 2001). Analysis of the putative promoter regions of hBD-2 and hBD-3 genes reveals
consensus sequence sites for the regulators of transcription NF-�B, NF-IL-6 and AP-1
(Becker et al., 2000; Diamond et al., 2000) which are activated in airway epithelial cells
by bacterial ligands. In fact, TLR2 signaling has been linked to the induction of hBD-2
in tracheobronchial cells (Hertz et al., 2003) and primary airway epithelial cells (Wang
et al., 2003).

Other inducible host defence molecules include mucins and reactive nitrogen species,
such as nitric oxide (NO) (Rochelle et al., 1998). Bacterial components, such as flagellin,
bind to mucin (Arora et al., 1998; Landry et al., 2006; Scharfman et al., 2001) and are
cleared by the mucociliary escalator. Mucin concentration in broncoalveolar lavage (BAL)
is increased in response to LPS and flagella, and MUC5A gene expression is upregulated by
LPS and Gram-positive and Gram-negative bacteria (Dohrman et al., 1998), as well as by
pro-inflammatory chemokines and cytokines expressed by airway epithelial cells (Voynow
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et al., 2006). MUC2 expression is also increased in response to P. aeruginosa LPS and
flagellin (Li et al., 1997; McNamara et al., 2001), S. aureus lipoteichoic acid (Lemjabbar
and Basbaum, 2002), and H. influenzae (Jono et al., 2002), by signaling cascades that share
common elements with those induced by TLRs.

NO is produced by inducible nitric oxide synthase (iNOS) expressed by neutrophils,
macrophages and epithelial cells following stimulation with bacteria, LPS and cytokines
(Warner et al., 1995). NO has important local effects in vasodilatation as well as direct
anti-bacterial activities (Darling and Evans, 2003; Mehta, 2005). Decreased iNOS expression
contributes to bacterial colonization and infection as demonstrated in vitro; CF airway
epithelial cells, which have reduced expression of iNOS, were transfected with human
iNOS cDNA and bacterial killing activity was restored (Darling and Evans, 2003). In
addition, iNOS has anti-inflammatory activity by virtue of its effects in preventing neutrophil
recruitment into the lungs (Hickey et al., 1997).

13.6 Signaling pathways involved in chemokine and
cytokine production by epithelial cells

The signaling pathways activated through TLRs, TNFR1 and Nod proteins in airway epithe-
lial cells resemble the cascades activated via these receptors in immune cells (Hehlgans
and Pfeffer, 2005; Takeda and Akira, 2004) (Figure 13.1). TLR signaling is mediated by
MyD88, IRAK and TRAF6, and all these molecules are recruited to the receptor complex
with asialoGM1 in lipid rafts domains (Soong et al., 2004). Activation of this pathway
leads to the nuclear translocation of NF-�B and transcription of pro-inflammatory genes.
MyD88-independent pathways that involve TRAM and TRIF are also activated in the
airway in response to TLR4 ligands (Fischer et al., 2006; Jiang et al., 2005). The MyD88-
independent/TRIF-dependent cascade regulates production of IFN-� and IFN inducible genes
(Toshchakov et al., 2002). Protein A signaling through TNFR1 resembles TNF signaling
with recruitment of TRADD, RIP and TRAF2 to the receptor and activation of p38 and JNK
MAPK and ATF-2 phosphorylation and translocation to the nucleus (Gómez et al., 2004).
Less is known about signaling through intracellular receptors. Nod2-mediated responses to
S. pneumoniae that induce NF-�B activation seem to be mediated by IRAK-TRAF5-NIK,
TAB2 and TAK1 (Opitz et al., 2004; Schmeck et al., 2004).

The pulmonary pathogens S. aureus and P. aeruginosa activate Ca2+ fluxes in epithelial
cells upon contact with specific receptors. TLR2 ligation on airway cells stimulates release of
Ca2+ from intracellular stores by activating TLR2 phosphorylation by c-Src which leads to the
recruitment of PI3K and PLC-� and subsequent Ca2+ release (Chun and Prince, 2006). These
Ca2+ fluxes are sufficient to activate NF-�B and generate IL-8 and GM-CSF expression
(Ratner et al., 2001; Saba et al., 2002). Several other Ca2+-dependent transcription factors are
also activated by bacterial ligands leading to local cytokine expression and mucin production
(McNamara et al., 2001). Peptidoglycan activates the leucine zipper containing transcription
factors cAMP-responsive element-binding protein (CREB)/ATF and AP-1 (Gupta et al.,
1999). CREB senses changes in cyclic nucleotides released at the surface of the airway in
response to Ca2+ fluxes. In addition, CREB functions as a co-activator of CCAAT/enhancer
binding protein (C/EBP) which regulates the expression of IL-6 (Kovacs et al., 2003).
Ca2+-dependent signaling could provide a target for immunomodulatory therapy.
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13.7 Regulation of inflammation by epithelial
cells – receptor shedding

Airway epithelial cells also regulate pro-inflammatory signaling. The pulmonary pathogens
S. aureus and P. aeruginosa induce activation of TACE, the TNF-� converting enzyme, in
airway epithelial cells (Gómez et al., 2004, 2005). TACE or ADAM 17 is a member of the
ADAM family of proteases involved in the release of several superficial proteins including
the TNF-�, EGF and IL-6 receptors (Mezyk et al., 2003). TACE has an important role in
regulation of inflammation. TACE cleaves TNFR1 from the surface of airway epithelial cells
and macrophages (Gómez et al., 2004) and this shed, soluble TNFR1 serves to neutralize
free TNF-� (mainly produced by immune cells) and protein A in the airway lumen, as well
as to prevent further epithelial activation through loss of TNFR1 from the cell. Soluble
TNFR1 also exerts immunoregulatory functions by induction of apoptosis in monocytes
through reverse signaling via membrane-bound TNF-� (Waetzig et al., 2005).

Bacterial ligands regulate the activity of TACE itself. S. aureus protein A induces TACE
activation by direct binding to the epidermal growth factor receptor (EGFR) (Gómez et al.,
2007). EGFR signaling stimulates the ERK1/2 MAPK, which in turn phosphorylates TACE.
While TACE is highly expressed on the apical surface of airway epithelial cells, the
substrate, TNFR1, has to be mobilized to the surface where it co-localizes with TACE.
Thus, staphylococcal recognition of EGFR and activation of TACE serves to counteract the
pro-inflammatory consequences of TNR1 signaling, PMN recruitment and activation.

Bacterial activation of TACE also induces shedding of the IL-6R� from epithelial cells
and trans-signaling (Gómez et al., 2005). Epithelial responsiveness to IL-6 is dependent
upon the presence of two receptors, gp130 and IL-6R� (gp80) (Bauer et al., 1989; Heinrich
et al., 2003). Shed soluble IL-6R� binds to IL-6 forming a ligand–receptor complex that
interacts with membrane-bound gp130 in a high-affinity interaction termed ‘trans-signaling’.
This interaction initiates MCP-1 expression by epithelial cells, which heralds the shift from
acute inflammation (PMN recruitment) to a resolution phase with macrophage/monocyte
signaling and clearance of apoptotic PMNs (Amano et al., 2004; Hurst et al., 2001). In
addition, shed IL-6R induces a decrease in IL-8 production (Hurst et al., 2001; Marin et al.,
2001) probably due to STAT5-dependent inhibition of NF-�B (Luo and Yu-Lee, 2000).

As the control of inflammation in the airway is crucial, the activation of both pro- and
anti-inflammatory responses by mucosal epithelial cells has a primary role in determining
the outcome of pneumonia. Airway epithelial cells not only regulate their own signaling
capabilities shed epithelial receptors can serve to decrease the pro-inflammatory signaling
induced by immune cells in the lung.

13.8 Lung damage and bacterial invasion of the airway
epithelium

Airway colonization can be followed by bacterial invasion, bacteremia and mortality in
hosts with immunorepressed mucosal barrier function. P. aeruginosa produces a number
of toxins that are delivered into the host cell cytosol by the type III secretion system.
The type III secretion system is associated with acute invasive infection and requires pilin-
mediated bacterial-epithelial cell contact (Hauser et al., 1998). This system consists of three
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components: the secretion apparatus, the translocation or targeting apparatus, and the secreted
toxins (effector proteins) and cognate chaperons (Gauthier et al., 2003). The four type
III-secreted proteins that have been identified in P. aeruginosa are: exotoxins U, Y, S and T.
Almost no strain encodes all four of them, but all strains express exotoxin T (ExoT) (Shaver
and Hauser, 2004), suggesting a more conserved role for this protein in pathogenesis. Mutants
lacking ExoT exhibit reduced virulence and do not disseminate (Garrity-Ryan et al., 2004;
Hauser et al.,1998). ExoT, as well as ExoS, encodes an N-terminal GTPase-activating protein
that targets the small GTPases Rho, Rac, and Cdc, and a C-terminal ADP ribosyltransferase
(ADPRT) domain (Barbieri and Sun, 2004). ExoT and ExoS modulate many processes that
involve the actin cytoskeleton and are key in maintaining the mucosal barrier integrity. ExoT
also inhibits host-cell division by targeting cytokinesis (Shafikhani and Engel, 2006). ExoU
has recently been characterized as a member of the phospholipase A family of enzymes with
potent cytotoxin activity (McMorran et al., 2003; Sato and Frank, 2004).

13.9 Conclusions

Bacterial pathogens interact with airway epithelial cells by expressing numerous ligands
called PAMPs that elicit inflammatory responses through surface-exposed and intracellular
receptors. Failure of the normal innate clearance mechanisms enables organisms to persist in
the airway lumen. Both adherent bacteria and shed products are potent stimuli for epithelial
pro-inflammatory chemokine and cytokine production. This serves to recruit PMNs from
the circulation into the airway. Recruitment of PMNs to the lung is critical to eradicate
respiratory pathogens, but is not innocuous to the host. Inflammation is detrimental to the
major function of the airway in maintaining an open conduit for gas exchange. Indeed, much
more so than at other mucosal surfaces. Thus, the balance between efficient phagocytosis
of inspired bacteria and airway compromise is physiologically critical and determines the
outcome of lung infections.
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14.1 Introduction

The respiratory epithelial cell surface represents the primary reactive interface of the body
with pollutants suspended in the air. Given its tremendously large surface area, it serves as
a very large target for interaction with toxic gases and particles in the airborne environment.
Because the great majority of this surface is found in the most peripheral aspects of the lung,
in the respiratory bronchioles and alveoli, determination of the functional consequences of
interactions of these agents with epithelial cells and the cooperative roles played by other
cells within the epithelial structures remains a challenge to researchers.

Due to their commonality of source, airborne pollutants are most often found in complex
mixture with other chemicals and particles. This fact poses challenges to investigation of
causality and mechanism of action in studies involving ambient, as opposed to controlled,
experimental exposures. Conversely, it imposes a range of caveats that must be considered
when the results of mechanistic, single pollutant studies carried out using in vivo or isolated
cell systems are extrapolated to ambient exposures in humans.

The airborne pollutants focused on in this chapter, ozone, nitrogen dioxide, particulate
matter, and secondhand cigarette smoke, are components of outdoor and indoor air that are
of special current interest based on their involvement in the development and exacerbation
of respiratory and cardiovascular disease in exposed populations. Although not the only
pollutants in these environments, exposure to these agents are believed to pose particular
risk to the health of individuals in both urban and rural communities within developed and
developing countries.
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14.2 Oxidant pollutants

The primary oxidant pollutant gases found in ambient outdoor air are ozone and nitrogen
dioxide, the latter also being an important contaminant of indoor air. For the most part,
these two gases share common modes of interaction with the airway epithelium, with their
principal differences relating to the differing oxidizing capacity of each.

14.2.1 Cell surface activity

Ozone is the most highly reactive oxidant gas commonly found in the ambient environment.
It is considered to be a secondary environmental pollutant, because it is typically formed by
chemical reaction when primary combustion pollutants, such as nitrogen dioxide, react with
volatile organic compounds in the presence of ultraviolet light. Ozone is a near-ubiquitous
contaminant of outdoor air in areas of high vehicular and industrial emissions and, thus,
represents a common component of airborne chemical exposure in both highly-developed
and developing countries.

Most studies in human subjects support the concept that the deposition pattern of ozone
tends to be greatest in the more peripheral, rather than central, airway, although deposition
certainly occurs throughout the respiratory tract (Overton and Miller, 1988). Studies utilizing
measures of pulmonary function thought to predominantly reflect changes in small airway,
such as the FEF25–75 and Vmax 50 and Vmax 75, tend to show measurable, and sometimes
persistent, effects in peripheral regions, often at relatively low levels of exposure (Frank
et al., 2001; McDonnell et al., 1991). The effectiveness of ozone in targeting the epithelium
in the small airway may be enhanced by the decreased thickness and differing composition
of epithelial lining fluid (ELF) in these regions.

The mechanisms through which ozone interacts with biological fluids and cell membranes
have been the object of much investigation in the past 50 years. Studies suggested that the
high reactivity of ozone with the variety of oxidizable molecular targets in ELF, including
lipid, protein and carbohydrate moieties, makes it likely that much of the ozone that enters
the respiratory tract will not interact directly with the surface of underlying epithelial cells
(Menzel, 1976; Pryor and Church, 1991; Uppu and Pryor, 1994; Mudway and Kelly, 1998;
Postlethwait et al., 1998; Ballinger et al., 2005; Kermani et al., 2006). Calculations (Pryor,
1992) further suggest that the majority of ozone reaching the epithelial cell membrane would
be expected to react within this lipid-rich bilayer, with few ozone molecules entering the
cell. The products from these reactions may themselves exhibit oxidant activity as reactive
oxidant species (ROS), or may take on mediator roles at, or within, the epithelial cell
membrane. For example, treatment of the BEAS-2B human bronchial epithelial cell line
with selected products derived from the ozonation of phosphatidylcholine caused selective
activation of cytosolic phospholipase (cPL)A2 and PLC and PLD (Kafoury et al., 1998).
The ozone-induced activation of cPLA2 through this mechanism and its subsequent release
of arachidonic acid from membrane phospholipids likely plays an important role in synthesis
and release of prostaglandins, thromboxane B2, leukotrienes C4, D4, and E4 (in some species),
12-HHT, and other eicosanoid products from human airway epithelial cells (McKinnon
et al., 1993; Leikauf et al., 1993). Release of products of PLC activation, such as platelet
activating factor, has also been reported (Kafoury et al., 1999). In addition, ozonolysis of
lipids and other molecules within the ELF and epithelial cell membrane can lead to synthesis
of reactive and bioactive products such as aldehydes, hydroxyhydroperoxides, and hydrogen
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peroxide (Leikauf, 1995), cholesterol-derived oxysterols (Pulfer et al., 2005) and alkenals,
especially 4-hydroxynonenal (Iles et al., 2005). An additional mechanism of ozone toxicity at
the cell surface is its ability to oxidize sulfhydryl groups. In addition to targeting glutathione
in extracellular regions, ozone can inhibit the function of enzymes, co-enzymes and other
proteins by inactivating SH groups at their active sites (Mustafa, 1990).

Studies in human subjects of the effects of ozone at high ambient levels on mucociliary
function do not indicate a measurable effect on overall particle clearance rates in the lung
(Foster et al., 1987; Gerrity et al., 1993), suggesting that ozone surface chemistry may not
affect this process to a great extent. However, it was noted that mucus flow in the more
peripheral airway, which is thought to represent the predominant site of ozone deposition,
demonstrated a significant increase following ozone (Foster et al., 1987). The basis for this
peripheral lung effect could not be determined. In a study in which subjects were exposed
to low and high ambient levels of ozone for 1 h, neither lung clearance rates nor measures
of epithelial permeability were observed to be affected (Morrison et al., 2006).

Nitrogen dioxide exists as a free radical gas in the environment. It is produced by high-
temperature combustion of nitrogen-containing fuels and is present in industrial, vehicular
and home heating and cooking emissions. Its deposition in the respiratory tract is similar
to that of ozone, with its broad distribution being primarily toward the peripheral airway.
Reactive nitrogen species (RNS) closely linked to nitrogen dioxide in biological systems
include nitric oxide (NO) and peroxynitrite �ONOO−�, the chemistry of which was recently
reviewed by Pryor et al. (2006). With a redox potential half that of ozone, exogenous
nitrogen dioxide targets molecules more easily oxidized, including unsaturated lipids and
lipoproteins. Concentrations of the water-soluble antioxidants uric acid and ascorbic acid
in ELF retrieved by lavage from healthy subjects were found to be significantly reduced
following exposure of the fluid to nitrogen dioxide. This consumption was dose-dependent
in the range of 0.05 to 1.0 ppm, whereas the decrease in glutathione levels was 10-fold
less (Kelly and Tetley, 1997), in contrast to the high reactivity of glutathione with ozone
(Kermani et al., 2006). Similarly, the decrease in both glutathione peroxidase (GPX) activity
and protein levels in human ELF induced by ozone is not characteristic of nitrogen dioxide
exposure (Avissar et al., 2000). These and similar studies underscore the extent to which the
availability of susceptible targets in ELF plays in modulating the effects of nitrogen dioxide
at the epithelial cell surface.

At high exposure levels, nitrogen dioxide has been shown to damage cilia and cause
hypertrophy of the bronchial epithelium in animal inhalation experiments (Rombout et al.,
1986). Although nitrogen dioxide reacts selectively and at moderate rates with non-radical
targets, it reacts to a much greater extent with other radicals. Such activity allows for the
development of cooperative oxidant interactions between RNS and ROS. Because nitrogen
dioxide and ozone often exist as co-pollutants, these types of interactions may play an
important role in epithelial cell activation and toxicity in the airway during ambient exposures
(Pryor et al., 2006).

14.2.2 Stimulus transduction and intracellular activation

Although exposure to oxidant pollutants has been demonstrated in some studies to increase
permeability in the airway of human subjects and in animal models (e.g. Broeckaert et al.,
1999; van Bree et al., 2002; Voter et al., 2001) the mechanisms for this effect remain
controversial. In in vivo systems, the relatively rapid influx of inflammatory cells makes
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it difficult to separate direct effects on the airway epithelium from those resulting from
subsequent inflammatory processes. Studies utilizing airway epithelial cells grown in culture
at an air–liquid interface have provided the opportunity to investigate several key epithelial
cell-specific responses in the absence of the confounding effects of other resident and
transient cells (Yu et al., 1994). It is interesting to note that an increasing number of studies
in this system suggest that airway epithelial cells from asthmatic donors respond differently
than those from non-asthmatics. In one such study, permeability based on the movement
of 14C-BSA across the confluent cultures was seen to increase in cells from asthmatic, but
not from non-asthmatic subjects in response to both ozone and nitrogen dioxide exposures
(Bayram et al., 2002). These data suggest that inherent differences in susceptibility to
oxidant challenge exist in asthmatic epithelial cells, and that these differences are preserved
in epithelial cell culture in the absence of other cells. The basis for this apparent difference
in responsiveness is not known; however, it has also been reported in studies of the release
of granulocyte-monocyte colony-stimulating factor (GM-CSF), regulated upon activation,
normal T-cell expressed and secreted (RANTES), and soluble intracellular adhesion molecule
(ICAM)-1 from cultured bronchial epithelial cells derived from atopic asthmatic versus
non-atopic non-asthmatic subjects (Bayram et al., 2001).

An early study made the surprising observation that pretreatment of normal human
bronchial epithelial (HBE) cells with substance P (SP), a tachykinin released from nerves
closely associated with the airway epithelium and implicated in the pathophysiology of
asthma, inhibited the ozone-induced increase in transepithelial potential difference and inhib-
ited paracellular mannitol flux. SP had no effect on either of these measures at baseline. The
epithelial barrier protective effect of SP was mitigated by pretreatment with a neurokinin
(NK)-1 receptor antagonist (Yu et al., 1996). That in vitro finding takes on added interest
in light of a more recent study in which treatment of allergic asthmatics with an NK1/NK2
receptor antagonist enhanced, rather than mitigated, allergen-induced early and late airway
responses (Boot et al., 2007), suggesting that the neurokinin may play a protective role in
those airway.

Given the wide range of reactive products generated by ozone and nitrogen dioxide,
it is likely that the cellular signalling pathways that initiate their responses in the airway
epithelial cell are shared to a large extent. The oxidant-related transcription factors NF-
kappaB, NF-IL-6, and activator protein (AP)-1 appear to be involved in transduction of most
of these signals. Exposure of cells of the A549 Type II-like epithelial line to ozone-induced
DNA binding activity of all of these factors, followed by increases in interleukin (IL)-8
mRNA and protein levels. The activities of the transcription factors and IL-8 expression
in response to ozone were demonstrated to be protein tyrosine kinase (PTK)- and protein
kinase A (PKA)-dependent, but were independent of protein kinase C activity. These studies
confirmed that the activity of the kinases was dependent upon reactive oxygen intermediates
and that their activation was independent of one another (Jaspers et al., 1998). In cultures
of human nasal epithelial cells exposed to a low to high ambient range of ozone, NF-
kappaB showed a minimal dose–response activation that corresponded with ozone-induced
free radical production. At high exposure levels, expression of tumour necrosis factor alpha
(TNF�) was significantly increased in the cells (Nichols et al., 2001). In total, results of
studies of oxidant exposures are consistent with the concept that the signalling pathways
within epithelial cells have the potential for a high degree of regulatory interaction and that
the level of oxidant stress applied may be a critical factor in determining the predominant
pathway followed.
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14.2.3 Stimulation of intercellular signalling

The ability of HBE cells to synthesize and release products from both apical and basolateral
surfaces is extensive and well-documented in the literature. Under baseline conditions, these
molecules modulate the activation and function of resident and transient cells in the airway
mucosa. Under conditions of challenge from environmental pollutant agents, the patterns and
magnitudes of expression of these mediators and cell-surface proteins can be dramatically
altered, affecting innate host defence and susceptibility, immune and non-immune inflam-
matory responses, and the functional capacities of cells involved with structural changes
in the lung. In addition to studies which employ exposure of cultured human cells, in vivo
exposures followed by evaluation of biopsied respiratory mucosa provide similar expression
data. For example, in nasal biopsies taken from healthy subjects 6 hours after exposure
to a relatively high concentration of ozone (0.4 ppm, 2 h), levels of TNF�, IL-1�, IL-8,
IL-6, granulocyte monocyte-colony stimulating factor (GM-CSF) and intercellular adhesion
molecule (ICAM)-1 were increased in epithelial cells, as assessed by immunohistochemistry
(Dokic and Howarth, 2006). Exposure to ambient levels of ozone has also been demon-
strated to induce mediator release. Healthy subjects exposed to concentrations as low as
0.08 ppm for 6.6 h, with exercise, showed increased levels of IL-6 and PGE2, as well as
lactate dehydrogenase and alpha-1 antitrypsin in BAL fluid. PMN influx was also observed
(Devlin et al., 1991).

Although somewhat controversial, synthesis and release of IL-5 has been reported from
primary cultures of human bronchial and nasal epithelial cells (Salvi et al., 1999). This
multi-functional cytokine is typically associated with immune activity involving basophils
and eosinophils. In a cross-over study of healthy subjects exposed to a relatively low level
of ozone (0.12 ppm, 2 h) or air, message for IL-5, whose product was localized in biopsies to
the bronchial epithelial cells, was decreased by ozone. The upregulation of Th2 cytokines by
nitrogen dioxide exposure has also been observed. In a study of repeated exposures of healthy
non-smokers to 2 ppm for 4 h on four successive days, immunohistologic staining of biopsy
tissue showed increased expression of IL-5, IL-10 and IL-13 in the bronchial epithelium
(Pathmanathan et al., 2003). These effects on epithelial cell Th2 cytokine expression may
represent one of the ways in which exposure to oxidant pollutants can modify airway allergic
processes and may play a role in disease development in individuals, such as children
indoors, who experience repeated exposure to low levels of nitrogen dioxide during early
development. The presence of mediators in airway tissues may also predispose cells to
injury. Inflammatory cytokines, whether released by the epithelial cells themselves or by
other cells within the mucosa, have been shown to increase the toxicity of oxidant exposures.
Pretreatment with TNF� and IFN� resulted in a twofold to threefold increase in cytotoxicity
of otherwise minimally-toxic levels of nitrogen dioxide in HBE cells (Ayyagari et al., 2004).

14.2.4 Associations with respiratory disease

A considerable body of data indicates that exposure of the respiratory system to ozone
or nitrogen dioxide is associated with the development or exacerbation of lung-associated
disease. In some cases, the role of the epithelium in mediating these effects is understood,
while in other cases, the underlying mechanisms are not yet clear. Because of the relatively
high reactivity of the oxidant pollutants with targets at the epithelial cell surface, it is
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nevertheless likely that these cells are involved in transducing the signals that lead to these
effects in most, if not all, situations of exposure.

The results of time-series studies of the relationship between ozone exposure in the
ambient environment and cardiovascular and respiratory mortality have provided equivocal
results. Two recent meta-analyses of these data support the notion that short-term exposure
to ozone, independent of the levels of particulate matter present, is associated with mortality,
particularly in the elderly (Bell et al., 2005; Ito et al., 2005). As air quality continues to
decline in many urban areas linked to vehicular gas emissions, this association, if present,
would take on increasing public health significance.

Many studies involving exposures of subjects to ozone under controlled conditions have
demonstrated acute decrements in pulmonary function, even at commonly-found ambient
levels (e.g. McDonnell et al., 1991). Furthermore, these and other functional studies confirm
the small, peripheral airway as preferential targets. The observation that the effects of ozone
in these regions may also persist beyond the exposure period and be cumulative with repeated
exposure (Frank et al., 2001; Tager et al., 2005), place the epithelial lining in these areas
at the nexus of intercellular signalling during exposures. Communication between epithelial
cells and fibroblasts, and perhaps other cells associated with the epithelial-mesenchymal
tropic unit, can be affected by exposure to ozone (Lang et al., 1998). Interference with
normal growth processes in the developing lungs of infant monkeys undergoing chronic
periodic exposure to ozone has been reported and suggests that exposure to ozone may alter
the structure of the resulting lung, perhaps due to the superimposition of ozone-induced
damage and repair cycles on the normal growth processes (Fanucchi et al., 2006; Schelegle
et al., 2003).

One of the primary characteristics of allergic asthma is the presence of chronic airway
inflammation. Because of the potent pro-inflammatory activity of ozone, it has been postu-
lated that the superimposition of ozone exposure on asthmatic airway could lead to direct
enhancement of the inflammatory state and provide a basis for disease exacerbation. Further-
more, the potential for ozone to co-operatively stimulate oxidant-related pathways already
activated in epithelial, and other, cells of the asthmatic airway could provide a mechanism
by which to impart to these cells an increased responsiveness to ozone exposure. Studies
have employed both in vivo exposures of atopic asthmatic and normal subjects to ozone
followed by bronchial biopsy and in vitro exposure of bronchial epithelial cells derived from
similar cohorts. Among the proinflammatory mediators for which expression and release in
response to ozone have been found to be significantly higher in an asthmatic as compared to
control subjects are GM-CSF, IL-5, IL-8, epithelial neutrophil-activating protein (ENA)-78,
and soluble ICAM (Bayram et al., 2001; Bosson et al., 2003).

There is considerable interest in the effect that exposure of the airway epithelium to ozone
may have on responses to allergen challenge in allergic individuals. In one study, previously-
sensitized and non-sensitized infant monkeys were exposed to 0.5 ppm ozone or filtered air
for 8 hours per day for five consecutive days with or without concurrent allergen exposure
on three of the five days. This protocol, with intervening 9-day washouts, was repeated
11 times over a 6-month period. The sensitized animals exposed to ozone showed marked
increases in serum IgE and histamine levels and airway eosinophilia in response to allergen
challenge compared to air-exposed counterparts. At the end of the 6-month study, ultrastruc-
tural changes in the airway of the ozone-exposed group were also apparent (Schelegle et al.,
2003). In contrast, studies utilizing controlled exposures of human subjects to address this
question have not provided definitive results. In one study, subjects with allergic rhinitis
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and subjects with allergic asthma were exposed to ozone at near ambient or high ambient
levels. High exposure protocols (single 3-h 0.25 ppm or 4-day repeated 0.125 ppm), but not
single 0.125 ppm, were effective in increasing functional and inflammatory responsiveness
to allergen challenge post exposure in both study groups (Holz et al., 2002). Using exposure
protocols that result in a lower ozone dose, however, make alterations in allergen respon-
siveness in asthmatics more difficult to detect. Modification of exposure methodology in
order to reduce the variability of the ozone concentration around the 1-h 0.12 ppm target
concentration resulted in the loss of a previously-observed enhancement in the response
to subsequent allergen challenge in six of nine allergic asthmatics (Hanania et al., 1998).
In another study of 1-h exposures to 0.2 ppm, no effect on the early bronchoconstrictor
response or on the late inflammatory response to allergen was observed in a group of 14
asthmatic subjects. However, it was noted that a subset of subjects whose initial pulmonary
function decrement in response to ozone was the greatest tended to be most responsive to
allergen following ozone (Chen et al., 2004). This observation has been reported by others,
and suggests that individual variation in the ability of epithelial targets to mitigate ozone-
induced oxidant stress may influence sensitivity to allergen challenge. It also appears that the
concentration administered to the airway surface is an important determinant in initiating a
detectable effect in susceptible individuals. Although most attention has focused on outdoor
sources of ozone, it should be noted that some commercial ‘air cleaner’ products designed
for indoor use generate ozone as part of their cleaning strategy. Some such devices release
significant levels of ozone and may pose health risks for children with respiratory disease
(Phillips et al., 1999).

In infants and young children in whom epithelial defence mechanisms may not be fully
developed, there is particular concern regarding the effects of exposure to the oxidant
pollutants, including nitrogen dioxide. In one of several studies using ambient measures of
pollutants, nitrogen dioxide levels showed the largest association with asthma admissions in
children from 5 to 14 years of age (Barnett et al., 2005). Chronic exposure of infants and
young children to nitrogen dioxide is a particular issue for those who spend long periods in
homes and other indoor environments in which combustion of nitrogen-containing fuels is
used for cooking and heating, and in which cigarette smoke is present. Non-asthmatic infants
living in homes at the highest quartile for nitrogen dioxide concentration (17.4 ppb) had a
higher frequency of days with wheeze, persistent cough and shortness of breath than infants
in the lowest quartile (van Strien et al., 2004). Increased likelihood of wheeze, shortness
of breath and chest tightness was also seen in children with pre-existing asthma who were
living in homes with nitrogen dioxide levels that were elevated, but below the current US
ambient air quality standard (Belanger et al., 2006).

It may be that, in addition to the oxidant-induced synthesis and release of bronchocon-
strictive agents by ozone and nitrogen dioxide, these pollutants exacerbate allergic responses
through secondary pathways. As described earlier, both of these oxidants induce the release
of the Th2 cytokines, IL-5, IL-10 and IL-13, from airway epithelial cells (Pathmanathan
et al., 2003; Salvi et al., 1999). Under conditions of repeated release of these mediators
associated with recurring exposures, patterns of cellular activity and the state of immune
inflammation in the airway mucosa might be modified. Evidence has also been presented
that oxidant pollutants may contribute to preexisting respiratory diseases by interacting with
respiratory virus infections. The important role that virus infections play in asthma exacer-
bations is well known and is discussed in depth in Chapter 12. In a study in which personal
nitrogen dioxide exposures were monitored every week for up to 13 months, episodes
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of virus-associated upper respiratory-tract infections were linked to the severity of lower
respiratory tract symptom scores. These investigators observed that the severity of virus-
associated asthma exacerbations were greatest when the precipitating infection was preceded
within a week by exposure to elevated levels of nitrogen dioxide. These elevated levels,
whose median was 21 �g m−3 in the highest tertile, were well within the current air quality
standard (Chauhan et al., 2003).

In addition to other stimuli, both oxidant pollutants and several respiratory virus infections
have been shown to increase expression of ICAM-1 on the surface of epithelial cells of the
human upper and lower respiratory tract (Sajjan et al, 2006; Spannhake et al., 2002). As
this adhesion molecule provides the point of attachment of the major receptor group human
rhinoviruses (HRV) to the epithelial cell surface, its upregulation by oxidant pollutants
could represent a means by which to increase the risk and spread of infection and the
subsequent increase in asthma disease severity. To investigate mechanisms of interaction
not linked to ICAM-1 binding, human upper and lower respiratory tract epithelial cells
were allowed to internalize HRV and were then exposed to ozone or nitrogen dioxide. A
significantly more than additive effect of both oxidants on virus-induced cytokine release
was observed. This was especially pronounced with nitrogen dioxide, which increased IL-8
release by 250 per cent above the sum of either stimulus independently (Spannhake et al.,
2002). These and similar studies underscore the ability of respiratory epithelial cells to
respond powerfully to external stimuli and significantly modulate the pathophysiology of
the airway.

14.3 Particulate matter

An extensive series of studies by several groups have shown a strong association between
both chronic and short-term exposures to elevated levels of particulate matter (PM) in the
ambient environment and increases in morbidity and mortality. These studies have identified
this risk in populations residing in areas of environmental character that appear to be diverse
in terms of geography, industrial development, and socioeconomic status (e.g. Bell et al.,
2004; Dockery et al., 1993; Dominici et al., 2006; Kettunen et al., 2007; Nawrot et al.,
2007; Pope et al., 1991; Schwartz and Dockery, 1992a, 1992b; Stolzel et al., 2006). A wide
range of epidemiologic, controlled human exposure, animal, and in vitro studies have been
directed toward understanding the nature of PM size and composition that imparts toxicity
at the epithelial cell interface. In addition, questions regarding the triggers linking daily
increases in PM levels with cardio- and cerebrovascular mortality, and the manner in which
these signals might be transduced to result in the observed pathology at target sites distant
from the lungs remain to be answered. Clearly, in studies of exposures other than those
conducted under controlled laboratory conditions, the confounding effects of ever-present
co-pollutants represent a major challenge to identifying those characteristics of ambient PM
that are responsible for the observed adverse health effects.

14.3.1 Cell surface activity

Total suspended particles (TSP) in the air can be grouped into three fractions by size (mass
median aerodynamic diameter): course �10–2�5 �m�, fine �<2�5–0�1 �m�, and ultrafine
�<0�1 �m� particles. In some cases, the PM fractions are isolated based on the selected
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particle size and contain all smaller-sized particles below that cut-off, as in the case of
PM10 �<10 �m�	 PM2�5 �<2�5 �m� and PM0�1 �<0�1 �m� fractions. Coarse and fine fractions
constitute the greatest mass of PM deposited on airway surfaces and have received the most
attention in terms of their toxic and pathogenic effects. Ultrafine particulates interact with
airway surfaces by means of electrostatic, steric and other adhesive forces and, because of
their small size, their interactions with cell membranes and interstitial regions may be very
different from larger particles. The potential biological activity of the different fractions can
vary considerably as a result of their differing sources and resulting composition. Coarse
fractions arise primarily from mechanical sources, whereas fine and ultrafine fractions derive
from combustion processes, leading to their high content of nitrates, sulfates, elemental and
organic carbon and certain metals. As would be expected, the broad spectrum of active
constituents present in and on ambient PM have the potential to activate epithelial cells
through a near full range of signalling pathways available within exposed cells. As described
below, many of these involve activation of relatively nonspecific oxidant and other stress-
related pathways at concentrations that are non-cytotoxic. Furthermore, the interplay between
these numerous components of PM that characterizes its multi-factorial stimulus further
complicates our understanding of the translation of ambient exposure to potential health
effect outcome by airway epithelial cells.

The extent to which PM is taken up into epithelial cells or moves through the airway
epithelium to extrapulmonary sites or to the systemic circulation is unclear. Furthermore,
the significance of this mechanism in the observed non-respiratory morbidity and mortality
in humans following acute PM exposure is controversial. In the case of ultrafine PM, some
studies suggest that movement from the airway into lung tissue compartments and to non-
pulmonary organs can be identified (Geiser et al., 2005; Kreyling et al., 2002), although
there was no indication that epithelial cell transport played a role in this movement. Although
one study reported rapid and substantial movement of technetium 99m ultrafine particles
from lungs to the systemic circulation in healthy subjects (Nemmar et al. 2002), subsequent
investigations by others using the same system indicated the presence of minimal levels of
translocation across the epithelium in both healthy subjects and those with COPD (Brown
et al., 2002, Wiebert et al., 2006). Using transmission electron microscopy, investigators
have described the time-course of diesel exhaust particle (DEP) endocytosis by human
nasal epithelial cells in primary culture (Boland et al., 1999). Entry of DEP into the cells
was associated with increased release of IL-8, GM-CSF and IL-1� that was attenuated by
treatment of the DEP to remove adsorbed organic compounds.

Particles landing on the mucosal surface of the airway become entrapped in a protein- and
lipid-rich and aqueous environment into which their soluble constituents may be released.
These include biologically-active organic pollutants, acid salts, biological contaminants and
metals that can activate epithelial cells in the absence of PM entry into the cells. Polycyclic
aromatic hydrocarbons (PAHs) derive from incomplete combustion of organic molecules and
are found associated with PM from vehicular (gasoline and diesel), as well as industrial, emis-
sions. Many have been identified as carcinogens, and their ability to form DNA adducts in
airway epithelial cells has been described (e.g. Pohjola et al., 2003). Components removed
from DEP by organic extraction have been shown to elicit responses in normal HBE cells
that mimic those of un-extracted DEP and include release of IL-8, GM-CSF and RANTES
(Kawasaki et al., 2001). Studies have demonstrated that PAHs can be transferred from the
surfacesofPMtoairwayepithelialcellmembraneswhich they thenrapidlycrossandaccumulate
in cytosolic lipid vesicles (Mazzarella et al., 2007; Penn et al., 2005). Depending upon the PM
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source, debris and products from bacterial or other infectious agents may also be presented at
the epithelial cell surface. Studies have provided evidence that delivery of biological stimuli
by this route can trigger responses in primary HBE cells through activation of Toll-like
receptors on cell surfaces (Becker et al., 2005b, 2005c).

14.3.2 Stimulus transduction and intracellular pathways

Exposure of human and animal airway epithelial cells in culture to ambient PM2�5 and residual
oil fly ash (ROFA) increased the production of ROS within the cells with resultant activation
of NF-
B and expression of pro-inflammatory mediators. This activity was reduced or
inhibited by treatment with antioxidants or free radical scavengers (Nam et al., 2004; Shukla
et al., 2000; Stringer and Kobzik, 1998). Immunohistochemical staining of biopsies from
healthy subjects exposed to DEP implicated upstream involvement of p38 and JNK mitogen-
activated protein (MAP) kinases in activation of transcription factors NF-
B and AP-1 in
bronchial epithelial cells, also suggesting the involvement of oxidative stress (Pourazar et al.,
2005). As pointed out by Nam and colleagues (2004), NF-
B also induces generation of
nitric oxide (NO) by mediating expression of inducible nitric oxide synthase (iNOS). Thus,
this provides a pathway for increasing pro-inflammatory activity in the airway in addition
to those leading to the expression of inflammatory cytokines. In addition to p38 MAP
kinase, activation of the extracellular signal-regulated kinase (ERK) has been reported to
be necessary for GM-CSF expression in primary HBE cells exposed to an ultrafine/fine
�<0�18 �m� PM (Reibman et al., 2002). In a study of ultrafine synthetic particles of elemental
carbon, exposure of HBE cells resulted in IL-8 promoter activity, gene expression and
protein release that were not observed to be accompanied by NF-
B binding or promoter
activity. However, the effect was associated with a biphasic activation of p38 MAP kinase
(Kim et al., 2005). These findings suggest that naked carbonaceous ultrafine particles may
interact with HBE cell pro-inflammatory processes differently than combustion-derived PM.

A great deal of interest has been generated by the activities of transition metals present
in various PM fractions. Particles generated by combustion of coals, oils and oil products,
and other organic fuels and that are present in ambient air have been reported to contain a
variety of metals including aluminium, arsenic, chromium, copper, iron, lead, manganese,
nickel, selenium, silicon, strontium, titanium, vanadium, and zinc. It is likely that seasonal
differences in PM metal content – along with other components – play a role in the variation
in biological activity reported for samples collected at different locations and at different
times of the year in a given location (Becker et al., 2005a; Seagrave et al., 2006). In
early studies, iron associated with urban air particulates was observed to be mobilized in
aqueous solution and, when PM was incubated with cells of a human alveolar epithelial line,
cellular content of the iron storage protein ferritin was increased, suggesting mobilization
of iron from the PM to the cells (Smith and Aust, 1997). It was also demonstrated that
synthesis and release of IL-6, IL-8 and TNF� by HBE cells in response to ROFA could be
inhibited by addition of a metal chelator or a free radical scavenger (Carter et al., 1997).
These and other early studies provided the basis for numerous investigations that followed
which began to dissect the various roles that metals play in PM-related cardio-respiratory
pathology.

Iron-containing particles have been shown to activate NK-
B by a process that includes
movement of the metal ions across the cell membrane and upstream involvement of Src
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and the epidermal growth factor receptor (EGFR) (Churg et al., 2005; Cao et al., 2007).
Exposure of a human airway epithelial cell line to zinc++ induced IL-8 gene and protein
expression that was associated with phosphorylation of the AP-1 components c-Fos and
c-Jun. In addition, zinc++ induced phosphorylation of ERK, JNK and p38 MAPKs, which
was required for IL-8 expression, while inhibiting ERK and JNK phosphatase activity (Kim
et al., 2006). These results suggest that this common PM metal constituent both initiates and
protects the upstream signalling pathway for IL-8 expression in exposed cells. Metal—metal
interactions within epithelial cells are also apparent. In cultures of rodent airway epithelial
cells, combinations of copper and zinc were found to cause greater cell stress and cytotoxicity
than either metal individually (Pagan et al., 2003). Nickel-sulfate-induced release of IL-8 by
a human airway epithelial cell line was abolished by addition of either iron++ or iron+++

to the cultures. In contrast, the expression of hypoxia-linked genes also induced in the
cells by nickel was unaffected by iron co-exposure, suggesting a complex interaction of
distinct pathways of activation for these two metals (Salnikow et al., 2004). It may be
that metal exposures associated with PM can adversely affect epithelial cell host defense
mechanisms. A recent study demonstrated that treatment of cells of the human alveolar
epithelial line, A549, with ROFA resulted in an inhibition of stimulated expression of human
beta-defensin-2 (Klein-Patel et al., 2006). This small cationic protein, that represents an
important component of pulmonary innate immunity, is secreted into airway surface liquids
and has broad antimicrobial activity in the lung.

14.3.3 Stimulation of intercellular signalling

As indicated above, the most commonly observed changes in airway epithelial cell gene
expression in response to PM exposure are those involved with oxidant stress-associated
and pro-inflammatory pathways. Typical of studies of HBE cells exposed to DEP and
ambient PM10 and PM2�5, is the release of cytokines IL-6, IL-8, GM-CSF and TNF�, with
preferential polarity in apical or basolateral release sometimes reported (Auger et al., 2006;
Becker et al., 2005c; Fujii et al., 2001; Takizawa et al., 2000a). Contributing to PM-initiated
movement of inflammatory cells into the epithelium is the intracellular stimulation of the
cyclooxygenase (COX)-2 pathway activity and the enhanced expression of amphiregulin, a
ligand of the pro-inflammatory EGFR, by HBE cells (Becker et al., 2005c; Blanchet et al.,
2004). These activities initiate de novo inflammation in healthy airway and, importantly,
have the ability to exacerbate chronic inflammatory states, such as exist in COPD and
asthma, potentially causing an acute increase in disease severity. In addition, ambient PM
exposure has been reported to induce HBE expression of MIP-3�/CCL20, the ligand for the
CCR6 receptor on a subgroup of dendritic cells (Reibman et al., 2003). In concert with the
effect of ROFA on beta-defensin-2 described above, these data suggest that PM may alter
the characteristics of immune responses in airway exhibiting allergen-induced inflammation.
However, investigations aimed at assessing these effects by comparing cellular responses to
short-term or acute DEP exposures have provided inconsistent results in studies of nasal and
lower airway in which responses in asthmatic and non-asthmatic subjects were compared
(Holgate et al., 2003; Kongerud et al., 2006; Stenfors et al., 2004). Epidemiologic studies
of disease-associated susceptibility, however, point to increased risk of PM exposures with
regard to cardiovascular endpoints in individuals with pre-existing conditions such as COPD
(e.g. Peel et al., 2007; Sunyer and Basagana, 2001).
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14.3.4 Associations with respiratory disease

Of special current interest is identification of the signalling pathways through which exposure
of the airway epithelial surfaces to PM is translated to acute mortality associated with extra-
pulmonary organs, such as the heart and brain. Three principal mechanisms have emerged as
likely candidates. These are: (1) alterations in autonomic nervous system control of cardiac
function, for example, heart rate variability; (2) increased instability of atherosclerotic plaques
or of clotting mechanisms leading to vascular infarction; and (3) effects of pulmonary-
derived mediators that induce vascular constriction or directly interfere with cardiac myocyte
function.

Several epidemiologic studies have reported an association between short-term exposures
to increased levels of PM and decreases in heart rate variability (e.g. Liao et al., 2004;
Magari et al., 2001). However, in one study this effect was dependent upon the locality of
the exposure (Timonen et al., 2006), perhaps due to differences in PM composition, and
in another, no effect on heart rate variability was detected in subjects with or without pre-
existent cardiovascular disease (Sullivan et al., 2005). Characterization of PM composition
was not made in any of these studies and leaves open the possibility that differences in metal
or organic constituents may have contributed to these disparate findings. Furthermore, the
possible linkage between epithelial signalling and afferent nerve stimulation in the airway
accounting for the observed influence on autonomic cardiac control remains unclear.

Airway epithelial cells have been shown to both release and bind endothelin (ET)-1
(Pegorier et al., 2006; Ninomiya et al., 1995) a peptide with potent vasoconstrictor and
cardiac ionotropic actions. Animal studies have shown that ambient PM exposure increases
circulating levels of ET leading to vasopressor responses and enhanced ventricular arrhythmia
in rats with experimental myocardial infarction (Kang et al., 2002; Vincent et al., 2001).
Release of this mediator from epithelial cells alone or in combination with pulmonary
endothelial cells stimulated by the release of IL-8 and vascular endothelial growth factor
from epithelial cells may contribute to cardiac instability in individuals exposed to ambient
PM (Chauhan et al., 2005).

The stability of pre-existing atherosclerotic plaques can be jeopardized by enhanced
inflammation in systemic vessels, perhaps resulting from the upregulation of vascular adhe-
sion molecules and the recruitment of leukocytes to sclerotic regions. In animal studies,
exposure to PM stimulates the bone marrow and induces the release of PMNs and other
leukocytes into the circulation (van Eeden et al., 2005). This stimulation was associated
with increased circulating levels of IL-1� and IL-6, known to be released by the airway
epithelium in response to PM exposure. In addition, it has been proposed that redox-active
constituents of combustion-derived particles that transit the epithelium may enhance systemic
inflammation and contribute to vascular sclerotic lesion progression and instability leading
to infarction (Delfino et al., 2005). Studies in apolipoprotein-E-deficient mice suggest that
this process may be enhanced by disfunction of lipid metabolism in susceptible individuals
(Chen and Nadziejko, 2005).

One of the primary concerns for long-term exposure to PM is for increased lung cancer
risk associated with chronic exposure to their pathogenic constituents. Using data collected
by the American Cancer Society in their Cancer Prevention II study, Pope and colleagues
concluded that lung cancer mortality, in addition to all-cause and cardiopulmonary mortality,
was associated with exposure to fine PM (Pope et al., 2002). Potential mechanisms leading
to this association have been described. One of the first studies was conducted using a
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spontaneously derived cell line of alveolar type II epithelial cells exposed to the PM2�5 fraction
derived from ambient PM10 collected on filters (Timblin et al., 1998). Exposure of the cells to
nontoxic concentrations of PM2�5 initiated the c-jun kinase signalling pathway leading to c-jun
phosphorylation and transcriptional activation of AP-1-regulated genes. These activities were
associated with an increased number of cells undergoing DNA synthesis. The observation
of this signalling cascade points to similarities between PM exposure and other stimuli that
lead to the carcinogenic process in airway epithelial cells.

14.4 Secondhand cigarette smoke

The risks associated with the exposure to mainstream tobacco smoke as a consequence of
smoking cigarettes are well known with regard to the development of chronic obstructive
pulmonary disease (COPD) and lung cancer. Since the 1986 Surgeon General’s Report
(Centers for Disease Control, 1986), it has become increasingly well understood that expo-
sure of non-smokers to secondhand smoke (SHS) or sidestream smoke released from burning
cigarettes may also pose a significant health risk. Some of the earliest studies indicated that
SHS contained markedly higher levels of PAHs than did mainstream smoke (Grimmer et al.,
1987). Analysis of data recently made available from tobacco company research indicates
that, in some tests, SHS appeared to exhibit greater toxicity and tumorigenicity than main-
stream smoke (Schick and Glantz, 2005). Data from this research also indicate that, as SHS
smoke ‘ages’ in the indoor air, its toxicity significantly increases (Schick and Glantz, 2006).
These data support the notion that exposure to secondhand smoke poses a significant respi-
ratory health hazard in the indoor environment and represents an important and sometimes
prevalent air pollutant with which the respiratory epithelial cell lining interacts.

In addition to its PM constituent, which principally falls in the PM2�5 �<2�5 �m� range, the
gas/vapour phase of SHS is rich in alkenes, nonspecific and tobacco-specific nitrosamines,
aromatic and heterocyclic hydrocarbons, and amines. In addition, metals, such as cadmium,
lead, zinc and arsenic, can be present in varying amounts. Thus, the interaction of SHS with
epithelial cells shares many general mechanisms with those of other combustion-derived
airborne PM, with differences based largely on the unique range and levels of tobacco-
associated organic constituents that are present. The volatile organics compounds (VOCs)
derived by combustion from these organic molecules contribute substantially to the toxicity of
the gas/vapour phase (Pouli et al., 2003). At the present time, the vast majority of information
available regarding the interactions of cigarette smoke (CS) with airway epithelial cells comes
from studies in which mainstream tobacco smoke or an aqueous cigarette smoke extract
(CSE) that contains many of its volatile components, were used. Analysis by microarray of
fully differentiated primary human bronchial epithelial cells exposed to mainstream smoke
clearly indicates that the activities of many categories of gene pathways are modulated in
response to this multifaceted exposure (Maunders et al., 2007).

14.4.1 Cell surface activity

Exposure to various forms of CS has been demonstrated to increase fluids at epithelial cell
surfaces primarily by interfering with intercellular tight junctions and by stimulating mucus
production. The mechanisms through which reversible leakage across the epithelial barrier
is regulated in response to non-cytotoxic levels of CS are not fully understood. One recent
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study offers evidence that pathways involving Rho kinase and myosin light chain kinase
may exhibit opposing activities by which this flux of ions and macromolecules through the
junctions can be modulated (Olivera et al., 2007).

14.4.2 Stimulus transduction and intracellular pathways

Perhaps the most prominent and generic of the effects of CS on airway epithelial cells is the
activation of redox-sensitive pathways. This activation occurs through mechanisms identical,
or similar, to those already described for other gaseous and metal-containing PM pollutants.
Typically, pathways of activation involve kinase cascades leading to the transactivation of
pro-inflammatory genes by transcription factors such as NF-
B and AP-1. As previously
described, the consequences of this activity include the release of inflammation-inducing
cytokines, chemokines, and lipid mediators into the epithelial mucosa and the enhanced
expression of adhesion molecules and receptors on cell surfaces. In addition, the activation of
sulfhydryl and other redox-sensitive sensors by CS components results in the stimulation of
antioxidant defences. Heme oxygenase-1 and peroxidases, such as GPX2, are two antioxidant
enzymes that play a role in epithelial cell protection following CS exposure. A recent study
indicates that the extensive expression of GXP2 in lung epithelial cells in response to CS is
dependent upon the binding of nuclear factor-E2-related factor (Nrf2) – a transcription factor
broadly involved in upregulating antioxidant defenses – to the GXP2 response element in
the cells (Singh et al., 2006).

Exposure of the airway epithelium to CS leads to transcriptional upregulation of MUC5AC,
the predominant mucin in human airway. This effect is thought to be one of several factors
that contribute to the pathology of cigarette-induced chronic obstructive pulmonary disease
(COPD). In recent years, studies from many laboratories, including that of Carol Basbaum,
have shed considerable light on the pathways involved with this aspect of airway stimulation
resulting from CS exposure and its relationship to other sources of oxidant stress to the
epithelium. It is now believed that reactive oxidant species generated by CS lead to stimu-
lation of ERK and JNK pathways through activation of EGFR and Src, respectively. These
activation pathways combine to result in AP-1 mediated MUC5AC expression (Gensch et al.,
2004). The mucus-rich airway of COPD patients are often infected with bacteria and contain
a variety of pro-inflammatory cytokines. When cells of the human airway epithelial line,
NCI-H292, were challenged with CSE in addition to bacterial LPS or TNF�, MUC5AC
production was synergistically increased. The synergism appeared to be dependent, at least
in part, upon the activity of EGFR (Baginski et al., 2006). A similar effect on IL-6 release
in response to CSE has also been observed (Beisswenger et al., 2004).

It has also been shown that CS causes a pronounced epithelial cell upregulation of the
protooncoproteins c-Jun, c-Fos and Fra-1 that was linked to the activation of AP-1 (Zhang
et al., 2005). Data have indicated the overexpression of these AP-1 family members in some
epithelial cell cancers. The pathway leading to this upregulation required the activation of
EGFR through a mechanism that was dependent upon initiation by matrix metalloproteinase
(MMP) activity (Zhang et al., 2005). This signalling cascade, with elements similar to those
observed in responses to PM2�5 exposures and described earlier, may add to a framework
for mechanisms of transition from normal epithelium to malignancy under conditions of
chronic activation. Long-term exposure to CS may also induce the expression of otherwise
silent genes within epithelial cells. UCHL1, a member of the ubiquitin proteasome pathway
present only in bronchial neuroendocrine cells of non-smokers, was found to be expressed
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in ciliated epithelial cells of smokers. The epithelial cell presence of this enzyme, which is
found overexpressed in more than half of all lung cancers, suggests that events associated
with this consequence of CS exposure may also contribute to transformational changes in
these cells (Carolan et al., 2006).

Unique to the chemical composition of CS is the presence of tobacco-specific carcinogenic
nitrosamines derived from nicotine, the most potent of which is 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK). Airway epithelial cells express metabolic activities capable
of bioactivating NNK, through �-hydroxylation pathways, to produce alkylating agents
believed to be primarily responsible for DNA alkylation linked to adenocarcinogenesis
(Hoffman and Hecht, 1985). This activity is largely carried out by cytochrome P450 2A13
(Smith et al., 2007). NNK has also been demonstrated to stimulate the proliferation of
normal bronchial epithelial cells in a process involving increased expression of cyclin D1
protein that is dependent upon NF-
B activation (Ho et al., 2005). In addition to the tobacco-
specific nitrosamines, a wide range of PAHs with similar potential carcinogenic activities in
epithelial cells, such as benzo(a)pyrene, are present in tobacco smoke, as they are in other
forms of smoke from incomplete combustion processes.

Under proper conditions of intensity and persistence of activation by components
of cigarette smoke and other environmental pollutants, the various pathways of epithe-
lial cell signalling described above can potentially lead to carcinogenic outcomes in
exposed cells.

14.4.3 Stimulation of intercellular signalling

The release of pro-inflammatory mediators from airway cells in response to cigarette smoke
and its various preparations has been a fairly consistent finding in both in vivo and in vitro
studies. Primary among these are IL-8 and growth-related oncogene (GRO)-alpha, which
primarily stimulate neutrophil chemoattraction, and monocyte chemotactic protein (MCP)-1,
a principal stimulant of alveolar macrophages. Analysis of bronchoalveolar lavage fluid
suggests that IL-8 and GRO-alpha are elevated in the airway of smokers compared to non-
smokers, and that their levels can increase acutely following CS exposure. Although the
origins of these mediators cannot be determined in lavage studies, these and related data
suggest that epithelial cells represent a primary source of chemotactic activity in smokers
(Mio et al., 1997; Morrison et al., 1998; Takizawa et al., 2000b).

The vast majority of studies of the effects of CSE, and cigarette smoke condensate (CSC),
that contains particulate components, on HBE cells demonstrate increased gene and protein
expression of several pro-inflammatory mediators. These include IL-8, IL-6, GRO-� and
ICAM-1, with the involvement of NF-
B playing a primary role in their transcriptional
activation (Glader et al., 2006; Hellermann et al., 2002; Kode et al., 2006; Mio et al., 1997;
Richter et al., 2002). Receptors for the complement-derived anaphylatoxin C5a (C5aR) are
expressed on the surface of HBE cells. Exposure of these cells to CSE in the presence of
C5aR ligand can mediate IL-8 release through a PKC-dependent mechanism (Wyatt et al.,
1999). These and a great number of other studies underscore the broad range of mechanisms
through which epithelial cells can make primary contributions to the airway inflammation
that accompanies chronic exposure to CS.

In addition to the synthesis of cytokine mediators, evidence indicates that CS-initiated
pathways leading to NF-
B activation can also result in the synthesis and release of lipid
mediators by the COX-2 pathway (Shishodia et al., 2003).



290 CH14 INTERACTIONS OF POLLUTANTS WITH THE EPITHELIUM

14.4.4 Associations with respiratory disease

Despite the increase in regulations that prohibit smoking indoors at business and other
commercial sites in order to reduce SHS exposure, these actions are limited in terms of
world-wide impact. Furthermore, because time spent indoors at home is estimated at 40–60
per cent for adults, this unregulated environment is likely to represent the greatest source
of SHS in families that contain a smoker, especially for infants and children. The Global
Youth Tobacco Surveys that were conducted in 132 countries over the period from 1999 to
2005 indicated that 56 per cent and 44 per cent of students were exposed to SHS in public
places and at home, respectively (The GTSS Collaborative Group, 2006).

An association between maternal smoking and reduced lung function in asthmatic children
has been described and is now well established. In an early study of asthmatic children
from 7 to 17 years of age, measures of FEV1 and FEF25–75 were significantly decreased
in those whose mothers were smokers compared to those whose mothers were not (Murray
and Morrison, 1986). The inability to distinguish between the contributions of pre- and
postnatal exposure in most of these studies was recently addressed by Moshammer et al.
(2006). In a study of more than 20, 000 children from 6 to 12 years of age living in nine
countries of Europe and North America, they were able to identify small, but significant,
associations between SHS and both FEV1 and maximal expiratory flow at 50 per cent of vital
capacity �MEF50� in children exposed during the postnatal period only. The significance of
this finding is that decreased lung function in early childhood is a known risk factor for
the development of wheezing and asthma in children. Childhood exposure to SHS has also
been shown to be associated with the incidence of adult asthma, suggesting the potential for
latency in the health effects of exposure (Skorge et al., 2005).

In addition to the direct effects of SHS on the respiratory system, evidence has been
accumulating that SHS exposure is associated with acute cardiovascular disease (Raupach
et al., 2006). Consistent with earlier studies, analysis of data from non-smoking patients
with a first event of acute myocardial infarction or unstable angina and non-smoking healthy
controls showed an association of disease with ETS exposure. Exposure less than three
times per week was associated with a 26 per cent higher risk and regular exposure was
associated with a 99 per cent higher risk (Panagiotakos et al., 2002). These findings may
reflect similarities with the data showing an association between non-cigarette-smoke-related
PM exposures and cardiovascular morbidity and mortality discussed previously. Beyond
the evidence supporting the involvement of the specific epithelial cell activities described
in sections above in CS-related respiratory pathogenesis, the specific mechanisms through
which epithelial cell activity might mediate or contribute to pathology in downstream vessels
and organs remains to be determined.

14.5 Conclusions

Epithelial cells of the respiratory tract interact both directly and indirectly with a broad range
of airborne environmental gases and particulates. These unique cells have developed an effec-
tive defensive battery of protective and responsive pathways to reduce damage to the airway
lining and to facilitate recovery from potentially toxic exposures. In most instances, these
defenses are adequate to reduce health risk associated with such exposures on an acute or
subacute basis, although the system can certainly be overwhelmed in susceptible individuals.
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Furthermore, some of the negative consequences of exposure of respiratory epithelial cells
to airborne pollutants are known to be initiated or maintained by activities within the cells
themselves. This seemingly paradoxical capability of cells that are positioned at the airway
interface largely for the purpose of host defense in part reflects the complex consequences
of exposures to contemporary agents that were not predominant in the evolutionary envi-
ronment. Increasing our understanding of the mechanisms through which these detrimental
health effects arise will inform strategies to assist epithelial cells in their protective role.
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15.1 The airway epithelium as a key target of allergens

The airway epithelium is the ultimate line of physical defence against inhaled materials of
diverse origin, composition and biological threat (Gehr and Heyder, 2000). In defending
the host, the cells that comprise the airway mucosa act in conjunction with mucus and
the soluble components of airway surface liquid that function as essential components of
innate immunity. In fulfilling this defensive role, the airway epithelium orchestrates a sub-
epithelial network of cells that are responsible for the cohesion and integrity of host defence
(Robinson, 1995). Allergens are amongst the many types of inhaled hazard to which the
airway epithelium is exposed. In this chapter, we consider the potential interactions of
allergens with the airway epithelium and current evidence suggesting that interactions at the
mucosal surface are central to the initiation and maintenance of allergy.

Allergens are the, usually proteinaceous, causative factors and triggers for IgE-mediated
hypersensitivity reactions (Stewart and Robinson, 2003). In the airway, the most significant
allergic conditions are rhinitis and asthma. A good understanding now surrounds the effector
mechanisms involved in these conditions, but less is known about how allergens actually
initiate and cause allergy (Stewart, 2000). The factors relevant to causation include the
characteristics of allergen exposure, the presence of genetic predisposing factors, and the
physicochemical and biochemical nature of the allergens themselves.

Considerations of what makes an allergen an allergen and why allergy only develops in
some people have led to proposals that non-immunological variables may have significant
influence on this outcome (Aas, 1978). One factor suggested is the intrinsic permeability of
tissues. If, for example, the airway epithelium was abnormally ‘leaky’ in an individual, this
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might increase the probability of allergens contacting the immune system, a process which
would be influenced by physicochemical factors such as molecular size. However, this view
presupposes the existence of a permeability barrier dysfunction and implies that allergens
are otherwise passive threats in the absence of a defect that grants access to the immune
system. As will be discussed later, whilst the possible genetic programming of a barrier
defect may be important in some conditions, other evidence suggests that permeability may
be influenced directly by some allergens.

Attempts to understand allergenicity at the molecular level have focused on searches for
common structural motifs within allergens that could explain their ability to elicit allergy
(Aalberse and Stadler, 2006; Aalberse, 2006, 2000). With the benefit of hindsight, it is easy
to see that allergen diversity makes it unlikely that a single structural motif could provide
a general explanation of allergenicity, although immunologically cross-reactive allergens
must show some similarity (Aalberse and Stadler, 2006). An alternative perspective on the
question of what makes an allergen has come from two converging approaches. One of these
has considered the problem in terms of understanding what must happen for allergens to
establish contact with antigen presenting cells, a process in which epithelial barriers must
have a significant role (Robinson et al., 1997; Wan et al., 1999). The other has sought to
understand the behaviour of allergens through an appreciation of their biological properties
that extend beyond molecular shape and a description of their antigenic epitopes (Stewart
and Robinson, 2003). Both of these approaches assume, however, that the properties of
allergens must be viewed in the context of other factors, such as genetic predisposition
and viral infection, which may be complicit in determining, if not the outcome of allergen
exposure, the threshold level of allergen required to initiate allergic sensitization.

15.2 The epithelial barrier
As described elsewhere in this volume, the airway epithelium functions as a highly regulated
barrier. The sophistication of its function delicately balances the need to protect the host
against noxious agents entering from the outside world with a requirement for the regulated
physiological movement of cells and solutes into the lumen. Collectively, the cellular struc-
ture and its associated functions provide key elements of the immunological, biochemical
and physical defence of the airway.

In human airway, the major antigen-presenting cells are dendritic cells (DCs) (Holt et al.,
1990; Holt, 2002; Lambrecht and Hammad, 2003; Huh et al., 2003; van Rijt and Lambrecht,
2005). Secondary mechanisms of antigen presentation exist and include macrophages,
inducible bronchus-associated lymphoid tissue and epithelial cells (Delventhal et al., 1992;
Pabst and Gehrke, 1990; Salik et al., 1999), but current evidence suggests that, in human
airway, these antigen presentation pathways are either normally less significant or result
in the development of immunological tolerance (Ritz et al., 2000; Salik et al., 1999; Kalb
et al., 1991; Mezzetti et al., 1991).

DCs form a continuous network beneath the airway epithelium, with the dendrites of
individual cells arborizing extensively to enable antigen sampling to occur over a large
area of mucosa (Holt et al., 1990). Although a subset of DCs may protrude lumenally
(Jahnsen et al., 2006), DCs generally have a predominantly sub-epithelial localization, which
means that the probabilities of allergen detection, presentation and antibody-driven responses
are likely to be increased when the epithelial barrier reacts to enhance the likelihood of
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interactions between allergens and DCs (Herbert et al., 1990; Robinson et al., 1997; Wan
et al., 1999). Epithelium-associated DCs are normally unable to stimulate naive T-cells and
thus a further feature of the response to an allergen is the provision of signal(s) that enable
DCs to mature as they process allergen and migrate to draining lymph nodes to recruit
T-cells (van Rijt and Lambrecht, 2005).

At the simplest level, the airway epithelium may be considered as forming a barrier which
offers two potential routes for substances to cross it, one transcellular and the other, para-
cellular. Transcellular movement occurs passively in accordance with the law of diffusion
for substances that are sufficiently lipid-soluble to enter the epithelial cell membrane, and
which are eventually capable of leaving it down a concentration gradient. In the absence
of a purely passive transcellular movement capability, the existence of specific transporters
(active or facilitated) or endocytosis might provide other transit mechanisms and, in these
cases, proteasomal or lysosomal degradation may result. Paracellular movement can occur
passively through the narrow intercellular channels that are formed by the abutment of
epithelial cells, but diffusional capacity is low compared to that potentially available for
diffusion across the larger surface area of cell membranes. However, for substances unable
to move transcellularly, transepithelial passage through paracellular spaces is the only alter-
native. Significantly, in the context of antigen presentation, the paracellular route provides
the possibility of increased direct contact with the dendrites of antigen-presenting cells.
Paracellular channels show discrimination in the nature and magnitude of the movement
that can occur through them; properties which are conferred by the presence of interepithe-
lial tight junctions (TJs) (Tsukita et al., 2001; Citi, 1993). For any macromolecular solute,
the paracellular permeability is inversely related to its Stokes’ radius because of the size
limitation of the channel. For low molecular weight anions and cations the permeability
and selectivity of the channels are defined by their composition of transmembrane adhesion
proteins (Tsukita et al., 2001; Anderson et al., 1993; Anderson and Van Itallie, 1995).

Tight junctions are assembled from proteins that create adhesive macromolecular strands
which encircle the apical pole of epithelial cells, establishing the barrier properties of the
polarized epithelium (Chapter 2). Transmembrane adhesion proteins include occludin (Furuse
et al., 1993), the claudin family (Furuse et al., 1998) and junction-associated molecules
(JAMs) (Mandell and Parkos, 2005; Aurrand-Lions et al., 2000; Ebnet et al., 2000), with
occludin and claudins having particularly important roles in adhesion and permeability
(Van Itallie and Anderson, 1997; Furuse et al., 1998; Balda et al., 1996, 2000; Aijaz
et al., 2006).

Claudins are adhesive proteins of ∼ 23 kDa with four transmembrane spans (4TM). They
create the distinctive anastomosing strands characteristic of TJs in freeze-fracture replicas
of epithelia, and appear to underlie the development of transepithelial electrical resistance
and ionic selectivity (Tsukita et al., 2001; Furuse et al., 1998; Hou et al., 2006). Numerous
claudins have now been identified, the extracellular domains of which show regions of appre-
ciable sequence homology suggesting conservation of function, but significant differences
also exist and confer particular properties on the different family members (Tsukita et al.,
2001; Furuse et al., 1999, 2001; Aijaz et al., 2006). This provides some explanation for the
considerable variation in transepithelial electrical resistance of epithelia in different parts of
the body because the profile of claudins found within any epithelium dictates its electrical
resistance and ionic permselectivity (Furuse et al., 2001; Hou et al., 2006). Occludin may be
more significant in governing the paracellular permeability of solutes other than mineral ions
and the creation of a transepithelial electrical resistance (Balda et al., 1996). Like the claudins,
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occludin, and its splice variant occludin-2, are 4TM proteins, but occludin �∼65 kDa) is
larger than the claudin proteins and has a longer intracellular C-terminal domain (Furuse
et al., 1993). The first of its two extracellular domains is rich in Tyr and Gly residues,
whereas the composition of the second domain is more diverse. Assembly of occludin and
claudins into the TJ complex involves interaction of their C-termini with ZO-1, ZO-2 and
ZO-3, a group of membrane-associated guanylate kinase-like proteins (MAGUKs) that are
key components of TJ plaques (Fanning et al., 1998; Furuse et al., 1994; Anderson and Van
Itallie, 1995; Tsukita et al., 2001; Aijaz et al., 2006). JAMs differ from other TJ transmem-
brane proteins (Mandell and Parkos, 2005). They have a single membrane-spanning domain
and two immunoglobulin-like domains. Compared to occludin and claudins, their role in
TJs is less clear, but like the 4TM proteins, JAMs are capable of binding to cytoplasmic TJ
proteins (Bazzoni et al., 2000).

15.3 Peptidases and epithelial cell signalling

Epithelial cells are exposed to a variety of proteolytic enzymes in the course of their normal
functions, but how these cells respond is not well understood. Physiologically, this process
is carefully controlled to prevent dysfunction arising from unregulated proteolysis. Control
exists at several levels, including the presence of endogenous inhibitors and by the continued
tight binding of a proteolytic enzyme’s own prodomain after enzyme maturation. However,
if these regulatory mechanisms are overwhelmed or evaded then pathophysiological conse-
quences may evolve.

Epithelial cells express receptors that respond to a variety of peptidases. These receptors,
known as protease-activated receptors (PARs), are members of the superfamily of G-protein
coupled receptors (GPCRs) and their activation may result in a diverse collection of effects
(Coughlin, 2000; Vergnolle et al., 2001). The enzymes that activate these receptors cleave the
N-terminus of the latent receptor, thereby creating a receptor with a truncated extracellular
N-terminus which is able to bind and activate the receptor as a ‘tethered ligand’. Although
classically activated by serine peptidases such as thrombin (PAR-1, -3 and -4), trypsin
(PAR-2, -4) and tryptase (PAR-2), members of the PAR family may also be cleaved by
other peptidase classes with activity on the C-terminal side of Lys and Arg. However, if
cleavage occurs at different residues the effect may lead to sub-maximal activation, or even
inactivation of the receptor.

The signal transduction pathways of PARs involve, at least in part, an increase in phos-
phoinositide turnover and an increase in intracellular calcium (Berger et al., 2001; Schechter
et al., 1998; Ubl et al., 2002). Downstream transduction also involves mitogen-activated
protein kinase (MAPK) signalling (Camerer et al., 2002; Wang et al., 2002; Temkin et al.,
2002), a series of pathways crucial to the progression of inflammation from initiation to
resolution. The net result of MAPK signalling is the phosphorylation of a variety of cyto-
plasmic and nuclear proteins, alteration of gene expression and the promotion of cell growth,
differentiation, apoptosis, inflammation and adaptation to stress (Tibbles and Woodgett,
1999; Waetzig and Schreiber, 2003). The three major groups of MAPKs are the extracellular
signal-related kinases (ERKs), the c-jun N-terminal kinases (JNKs) and the p38 kinases. Acti-
vation of these groups of MAPKs is controlled by upstream MAP kinases (MAP2Ks) which
are hierarchically regulated by families of MAPK kinase kinase (MAP3Ks) that respond to
extracellular stimuli through kinase-linked receptors and GPCRs in the cell membrane.
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15.4 The biochemical properties of allergens and their
contribution to allergenicity

Traditionally, attempts to understand allergenicity have focused on the characterization of
the immunological epitopes which allergens display. These are created by linear sequence
and by protein conformation, so other studies of allergenicity have naturally examined
the possibility that allergens may possess shared structural features. While of undoubted
importance, neither epitope analyses nor molecular topology alone provides a satisfactory
general understanding of allergenicity. Allergens are highly diverse, and a conundrum of
allergenicity is that some of them are clearly more significant than others, for reasons that
are not simply explained by their relative environmental abundance or their immunogenicity
in experimental tests of lymphocyte responsiveness. This has led to an examination of what
other properties of allergens contribute to their allergenicity.

One of the most recently studied aspects of allergenicity is the contribution made by an
allergen’s biochemical properties, a topic that is beyond the scope of this chapter but which
is reviewed in detail (Stewart and Robinson, 2003). The most extensively studied property is
enzymatic activity, and in particular the ability to degrade proteins and peptides. Although
numerous allergens in the plant kingdom are enzymes, peptidases are most significantly
represented in the allergen repertoires of mites, fungi and stinging insects. A striking feature
of peptidase allergens is their potency as sensitizers and the high prevalence of immunore-
activity associated with them in allergic patients. House dust mites (HDMs) are amongst
the most significant of domestic allergens, and at least four types of peptidase allergen are
present within the matrix of inhaled substances associated with HDM allergy. Peptidases
may be encountered in the working environment and are usually products of bacteria, fungi
or plants. These are important causes of occupational asthma, most notably in the detergent
industry where the potency of these materials as sensitizers was recognized almost 40 years
ago. These general observations suggest that peptidase activity could be important for the
initiation of allergy (Robinson et al., 1997). Conversely, allergens lacking peptidase activity
are notoriously poor at inducing allergic sensitization. Ovalbumin, one of the most widely
used experimental tools in models of allergy, exemplifies well the difficulty in obtaining
allergic reactions to non-peptidase antigens. When administered to the airway, ovalbumin
typically induces tolerance (Kheradmand et al., 2002). Robust IgE-mediated responses are
only obtained if ovalbumin is administered subcutaneously or intraperitoneally in the pres-
ence of a suitable adjuvant. This suggests that, for inhaled allergens, an essential component
of allergenicity is a profile of biological activity that augments allergen delivery across the
airway mucosa to DCs, evades the mechanisms that drive tolerance and stimulates processing
via Th2 polarized immune responses. There are grounds to believe that peptidase activity
provides significant insights into this biological profile and an understanding of events that
are essential to both the initiation and maintenance of allergy (Robinson et al., 1997; Wan
et al., 1999; Herbert et al., 1995; Ghaemmaghami et al., 2002; Kheradmand et al., 2002).

Several independent lines of evidence support the view that peptidase activity makes a
significant contribution to allergic sensitization. For example, in mice sensitized subcuta-
neously with glutathione transferase from Schistosoma mansoni, the HDM allergen, Der p 1,
causes the resulting immune response to develop with Th2 polarity, but when immunization
is performed using Der p 1 inactivated by heat, or by the cysteine peptidase inhibitor E-64, the
development of Th2 polarity is blunted (Comoy et al., 1998). Other studies have established
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that inhibition of the enzymatic activity of Der p 1 or papain blunts the development of IgE
responses to both Der p 1 itself, and to bystander allergens such as ovalbumin (Chambers
et al., 1998; Gough et al., 1999, 2001, 2003). A similar picture exists for allergic responses
to Aspergillus fumigatus (Kurup et al., 2002). For example, mixed allergens from A. fumi-
gatus or A. oryzae have a striking effect on intranasal responses to ovalbumin. The normal
response to intranasally delivered ovalbumin is tolerance, but this is converted to a strong
allergic response by the Aspergillus extracts (Kheradmand et al., 2002). Pretreatment of the
Aspergillus extracts with serine peptidase inhibitors diminishes the magnitude of allergic
sensitization, suggesting that serine peptidase activity within the extracts plays an essential
role in modulating the immunological response (Kheradmand et al., 2002). The target(s)
inactivated by the inhibitors have not been identified, but several Aspergillus allergens are
serine peptidases with actions on relevant biological targets (e.g. Asp f 13, Asp f 15, Asp f
18 and Asp o 13) (Tai et al., 2006).

Although it remains to be established whether peptidases present in other allergen mixtures
(e.g. pollens, insects etc.) behave similarly, a provocative new parallel to the highly successful
Linnean method of allergen classification is suggested by the observations with allergens of
mites and fungi. This parallel approach transcends classification by source or immunological
similarity and divides allergens into those, such as certain HDM and fungal allergens, that
have the capability to induce allergy without the need for adjuvants and those, like oval-
bumin, that are wholly reliant on the action of other factors to promote sensitization. HDMs
and Aspergillus species are sources of enzymes other than peptidases (e.g. Asp f 1 ribonu-
clease, Asp f 9 endoglucanase, Der p 4 amylase and Der p 18 chitinase) and it remains to
be established what role these enzyme activities play in sensitization. Similarly, interesting
questions are raised about the role of enzymes in pollen allergy, where known peptidase
allergens are few in number and enzymatic activity is exemplified by pectate lyase and
polygalacturonase, and other types of allergen are prevalent (Stewart and Robinson, 2003).
The IgE-independent actions of these enzymes in promoting allergy are yet to be determined
in detail. It should also be borne in mind that the influence of a peptidase on sensitization
need not be encoded in a molecule which itself is strongly allergenic and in such a situation
peptidase activity may be considered as acting principally in an adjuvant capacity. Thus, the
numerous serine and cysteine peptidase components of pollen extracts which, while not asso-
ciated with any known allergen, may be adjuvants in pollen allergy (Bagarozzi and Travis,
1998; Bagarozzi et al., 1996, 1998; Cortes et al., 2006; Grobe et al., 2002, 1999; Hassim
et al., 1998; Matheson and Travis, 1998; Radlowski, 2005; Raftery et al., 2003). Conversely,
there is speculation that non-peptidase materials such as endotoxin and unmethylated DNA
may behave as adjuvants to peptidase allergens in dust mite allergy (Platts-Mills, 2007).

As is evident from Tables 15.1–15.3, peptidases from numerous sources are known
allergens, and these are encountered domestically and/or occupationally. Of the domestic
respiratory allergens, those of mite origin are clinically most important and consequently the
most studied. This is especially true for Der p 1, the archetype of Group 1 mite allergens
and a ‘concept template’ for understanding the significance of peptidase activity related to
allergenicity. Group 1 mite allergens are globally the most important of domestic allergens
and a therapeutic target, either for specific immunotherapy or for emerging new approaches
to allergy treatment and prevention.

Der p 1, in common with other Group 1 mite allergens such as Der f 1 and Eur m 1,
is a member of the C1 family of clan CA cysteine peptidases (Robinson et al., 1997). In
mites, these powerful enzymes digest the resilient structural proteins in their diet (Colloff
and Stewart, 1997). These enzymes are initially synthesized as zymogens with an 80 residue
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Table 15.1 Known proteolytic allergens from fungal sources

Allergen (source
and identity)

Frequency of
reactivity (%)

Molecular
weight (kDa)

Function

Ascomycota

Aspergillus fumigatus
Asp f 5 74 40 Metallopeptidase
Asp f 10 3 34 Aspartic peptidase
Asp f 13 >60 34 Alkaline serine peptidase
Asp f 15 ? 16 Homologous with serine peptidase

from Coccidioides immitis
Asp f 18 79 34 Vacuolar serine peptidase
Cladosporium herbarium
Cla h 9 ? ? Vacuolar serine peptidase
Penicillium
chrysogenum/notatum
Pen ch 13 >80 34 Alkaline serine peptidase
Pen ch 18 >80 28−34 Vacuolar serine peptidase
Penicillium oxalicum
Pen o 18 80 34 Vacuolar serine peptidase
Penicillium citrinum
Pen c 13 100 33 Alkaline serine peptidase
Candida albicans
Acid peptidase 75 35 Aspartate peptidase
Trichophyton tonsurans
Tri t 2 42 30 Subtilisin-like peptidase homologous

with Pen ch 13 and Pen c 13
Tri t 4 61 83 Dipeptidyl peptidase
Trichophyton rubrum
Tri r 1/2 ? 30 Subtilisin-like peptidase homologous

with Pen ch 13 and Pen c 13
Tri r 4 ? 83 Dipeptidyl peptidase
Rhodoturala mucilaginosa
Rho m 2 57 31 Vacuolar serine peptidase

Table 15.2 Known proteolytic allergens from mite aeroallergens

Allergen (source
and identity)

Frequency of
reactivity (%)

Molecular
weight (kDa)

Function

Pyroglyphidae,
Glycyphagidae, Acaridae,
and Echimyopodidae

Group 1 (e.g. Der p 1) >90 25 Cysteine peptidase
Group 3 (e.g. Der p 3) 90 25 Trypsin-like serine peptidase
Group 6 (e.g. Der p 6) 39 25 Chymotrypsin-like serine peptidase
Group 9 (e.g. Der p 9) >90 28 Collagenase-like serine peptidase
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Table 15.3 Known proteolytic aeroallergens associated with occupational allergy

Allergen (source
and identity)

Frequency of
reactivity (%)

Molecular
weight (kDa)

Function

Fungal allergens

Aspergillus oryzae
Asp o 13 ? 34 Alkaline serine peptidase;

subtilase homologue
Cryphonectira parasitica
Renin ? 34 Aspartate peptidase; shows

homology with mammalian and
cockroach pepsins

Bacterial allergens

Bacillus subtilis
Alcalase >50 28 Subtilisin serine peptidase
Bacillus licheniformis
Esperase >50 28 Subtilisin serine peptidase
Clostridium histolyticum
Collagenase >50 68−125 Metallopeptidase
Streptomyces grisens

? 36 Chymotrypsin-like serine peptidase

Caricaceae

Carica papaya (Pawpaw)
Car p 1 ? 23 Papain, cysteine peptidase
Actinidia chinensis (Kiwi
fruit)
Act c 1 100 30 Actinidin, cysteine peptidase

Bromelaceae

Ananas comosus
(Pineapple)
Ana c 2 ? 23 Bromelain, cysteine peptidase

Mammalian peptidases
Trypsin (porcine) ? 24 Serine peptidase; homologous with

mite groups 3,6, and 9 allergens
Chymotrypsin (bovine) ? 25 Serine peptidase; homologous with

mite groups 3,6, and 9 allergens
Pepsin (porcine) ? 35 Aspartate peptidase; shows

homology with cockroach Bla g 2

propiece that must be removed for the allergens to become enzymatically active and for them
to become fully immunogenic. A high degree of similarity exists between the Group 1 mite
allergens, a finding of potential therapeutic importance. Although they are related to the C1
family archetype, papain, it is clear that major differences exist between them and, signifi-
cantly, between the mite allergens and mammalian C1 family enzymes such as the cathepsins.
Some key differences concern the binding pockets in the active site of the enzyme, a fact
established from the recently obtained crystal structure of recombinant Der p 1 (Figure 15.1).
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Mite allergens of Groups 3, 6 and 9 are all serine peptidases with tryptic (Group 3),
chymotryptic (Group 6) or collagenolytic (Group 9) specificity. The clinical significance
of these allergens is probably less than the Group 1 allergens, reflecting their lower abun-
dance and specific activity within the complete mix of mite peptidase allergens. They have
been of particular interest in the context of understanding the molecular recognition of

(a)

(b)

Figure 15.1 (a) Line representation of Der p 1 structure determined by X-ray crystallography with
catalytic site residues (Gln126, Cys132, His268, Asn288, numbering from full length sequence) indi-
cated in stick form. (b) Active site residues of Der p 1 showing creation of binding pocket
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peptidase allergens in the airway epithelium because their cleavage specificity suggests they
activate PARs.

Peptidase activity is also well represented amongst important fungal allergens and an
increasing body of work has demonstrated that allergens with serine peptidase activity make
important contributions to allergenicity. As with the mite allergens, understanding the effects
of the fungal serine peptidases on the airway epithelium is providing valuable new insights
into mechanisms of allergy.

15.5 Peptidase contributions to allergic sensitization
via the epithelium

Much, if not all, of the potency of peptidases as allergens appears to reside in their ability
to execute two general actions: augmentation of the delivery of allergens to DCs and the
creation of a signalling environment that fosters the development of allergy, especially in
those with a genetic predisposition.

15.5.1 Epithelial permeability

As already described, transepithelial delivery is a necessary step in increasing the probability
of allergen detection by DCs, and is one that must be recapitulated for allergic sensitization
to be maintained. Despite the significance of this step, interactions between allergens and
the epithelial lining of the respiratory tract are not well understood. The largest body of
available evidence, appropriately in view of their status as the most significant cause of
domestic allergies, concerns HDM allergens.

Evidence for the intraepithelial uptake of HDM allergens is equivocal, with evidence of
little (Wan, Zhang and Robinson, unpublished observations) or more significant amounts
(Mori et al., 1995). A diminished processing of Der p 1 has been reported in airway epithelial
cells from people with asthma, although the reasons for this, the mechanisms involved,
and the potential significance of the deficit are unknown (Mori et al., 1995). However,
paracellular routes of allergen delivery are of special interest because they allow a simple and
direct route to DCs (Wan et al., 1999). HDM allergens would normally be expected to have
little access to paracellular channels because these are occluded apically by TJs. However,
peptidase allergens have a significant effect on the structure and functional cohesion of TJs.
This has been demonstrated for natural mixtures of HDM allergens and also for purified
peptidase allergens from HDM (Wan et al., 1999, 2000a, 2000b, 2001). The effect of
Der p 1 on epithelial permeability was first reported in 1990 (Herbert et al., 1990), and
subsequently demonstrated in whole airway and in intact sheets of airway mucosa (Herbert
et al., 1995). The next major advance was the identification of the molecular mechanism
and elucidation that TJs are the major target for Der p 1 in the augmentation of epithelial
permeability (Wan et al. 1999, 2000a). These discoveries were facilitated by technical
advances which revealed the high potency of these allergens as localized and reversible
disruptors of epithelial permeability (Wan et al. 1999, 2000a). With these techniques, it has
become clear that significant changes can be induced with the contents of very few faecal
pellets (Wan et al., 1999). Figure 15.2 shows that TJ cleavage affects cytoplasmic (ZO-1)
components in addition to the transmembrane adhesion proteins occludin and claudin-1. The
extracellular domains of the adhesion proteins contain cleavage sites for Der p 1 and the
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Figure 15.2 Time-dependent disruption of TJs in epithelial monolayers by Der p 1. MDCK or
16HBE14o- human airway epithelial cells were exposed to Der p 1 and fluorescent antibody labelling
of TJ proteins performed. After 1 h exposure to Der p 1 disruption of staining of both intracellular
(ZO-1) and transmembrane adhesion proteins (occludin, claudin-1) is seen

serine peptidase allergens, consistent with events observed in imaging data (Figures 15.3
and 15.4) (Wan et al., 1999, 2000a, 2001). It is also clear that this extracellular protein
cleavage is associated with the activation of intracellular protein processing, because one
of the major fragments of occludin generated during this process arises by a cleavage
within the intracellular C-terminal domain (Wan et al., 1999). Two photon imaging and
quantitative analysis of reconstructed images reveals the effect of the peptidase allergens on
the appearance of TJ rings visualized by fluorescent antibody labelling (Figure 15.5) (Wan
et al., 1999, 2000a, 2001). An important feature to note is that while these ultrasensitive
imaging techniques reveal that the areas immediately surrounding the contact with HDM
faecal pellets show profound changes in the appearance of TJs, these frequently exist within
larger areas where little disruption is observable. The effect of the peptidase allergens on
epithelial cohesion is therefore subtler than the gross derangements in the appearance of the
epithelium that accompany chronic persistent asthma or that are typical of the post mortem
pathology of patients who died in status asthmaticus (Dunnill, 1971, 1960; Naylor, 1962;
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Figure 15.3 (a) Immunoblots of occludin from 16HBE14o- cells prepared from sham-treated cells
and after a 2.5-hour exposure to Der p 1. (b) Degradation by Der p 1 of peptide 88AWDRGYGTSLLG99

(single letter amino acid code) corresponding to residues 88–99 of human occludin (top right),
with identified cleavage sites marked by arrows. The left section of (b) shows the HPLC A280 chro-
matogram and selected ion chromatograms for the 4-h incubation products of Der p 1 with the
peptide. Mass spectra for the peptides are shown. Major components correspond to unchanged 12-mer
sequences �M+H+� m/z 1295�6� M+H2

2+� m/z 648�5� and residues 1–10 �M+H+� m/z 1125�5� M+
H2

2+� m/z 563�� 7–12 �M + H+� m/z 547�, and 8–12 �M + H+� m/z 490�

Piacentini et al., 1998). The effect of peptidase allergens on TJs produces a non-selective
increase in permeability (Figure 15.6(a) and (b)), and inhibition of Der p 1 proteolytic activity
prevents both the changes in TJs and the transepithelial delivery of Der p 1 (Figure 15.6(c)).
The nonspecificity of the permeability increase means that the transepithelial delivery of
any allergen would be increased after TJ cleavage, thus facilitating the contact between DCs
and non-peptidase allergens which are unable to cross the epithelium directly. More recent
studies have suggested that fungal serine peptidase allergens exert similar effects on TJs
(Tai et al., 2006).

Repair of TJs after allergen exposure occurs over a time span of a few hours (Wan
et al., 1999). The repair is a highly ordered process in which rings of ZO-1 are initially
reinstated, creating the necessary reticular framework into which the adhesion proteins are
then assembled to re-establish junctional integrity (Figure 15.7 (a) and (b)). In more extreme
circumstances, caused both by prolonged or highly concentrated exposures to allergen, TJs
may disappear entirely (Figure 15.5) and this is associated with changes in desmosomal
labelling. The purpose and mechanism of this change in desmosomes is unknown, but
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Figure 15.4 (a) HPLC ion chromatograms and electrospray mass spectra of selected fragments
following the degradation of occludin extracellular loop peptide �88AWDRGYGTSLLG99� by HDM serine
peptidases, Der p 3, Der p 6 and Der p 9. A280 ultraviolet (UV) absorbing fragments include WDRGYGT-
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UV absorbance. Doubly charged ions are bracketed. (b) Diagrammatic representation of HDMFP serine
peptidase cleavage sites in relation to the predicted membrane topography of occludin. Arrows denote
cleavage sites found in synthetic peptide, filled and open circles denote theoretical cuts for enzymes
with tryptic and chymotryptic specificity, respectively. (c) and (d) HPLC-electrospray mass spectro-
metry showing effects of HDM serine peptidase allergens on claudin-1 peptide KVFDSLLNLNS (c), and
WYGNRIVQ (d). Selected ion chromatograms are shown on the left, with the corresponding mass spectra
on the right. Note that doubly charged ions are bracketed. Two major fragments of KVFDSLLNLNS
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(IId, M + H+ m/z 539�2), and WYGNR (IIId, M + H+ m/z 695�3). Doubly charged ions are bracketed.
Free tryptophan (not shown) and unchanged WYGNRIVQ (IVd, M + H+ m/z 1035�5) were also present.
(e) Shows diagrammatically the cleavage sites in relation to the predicted topography of claudin-1.
Arrows denote cleavage sites in synthetic peptide, filled and open circles denote theoretical cuts for
enzymes having tryptic and chymotryptic specificity, respectively
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Figure 15.5 Three-dimensional isosurface reconstructions of changes in epithelial adhesions
following exposure to HDM allergen. Fluorescent antibody labelling of TJs (green staining) and
desmosomes (red staining) was performed and images captured by two-photon molecular excitation
microscopy were rendered into 3-D isosurfaces using IRIS Explorer. White arrows show the appearance
of initial discontinuities in TJ immunostaining
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Figure 15.6 (a) Time-dependent effects of HDM faecal pellets (HDMFPs) on the mannitol permeability
of MDCK cell monolayers cultured in Transwells. Forty HDMFPs solubilized in EMEM containing 0.5 mM of
reduced glutathione were added to monolayers (filled bars). Open bars show monolayers sham treated
with EMEM/glutathione alone. �Significant differences from sham-treated monolayers �P < 0�05�.
(b) Effects of Der p 1 on permeability of MDCK cell monolayers showing concordance between changes
in [14C]mannitol permeability (open bars) and TJ breakage (i.e. the total length of breaks per cell; filled
bars) in the same cell monolayer ��P < 0�05�. (c) The transepithelial movement of immunoreactive
Der p 1 across MDCK cell monolayers depends upon enzymatic activity. Data are expressed as the
percentage of the starting concentration ([apical] t0) of Der p 1 in the apical compartment that was
detected in the basal chamber at the indicated time points. Monolayers were treated with allergen
that had full catalytic activity, or which was rendered partially active or fully inactive �Responses
significantly different from both of the other treatments �P < 0�05�
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Figure 15.7 (a) and (b) Recovery of occludin and ZO-1 in 16HBE14o- epithelial cell monolayers
following exposure to Der p 1. Cells were sham exposed (control) or treated with allergen for 4 hours
(T 4 h), and then allowed to recover over 16 h (R 1 h, R 3 h, R 16 h). Images are shown as extended-
focus x–y sections. (c) and (d) Apoptosis induced by Der p 1 revealed by annexin V/propidium iodide
staining of 16HBE14o- and MDCK cells respectively

because they function as intercellular ‘spot welds’ and regulate epithelial cohesion (Garrod,
1993; Green and Jones, 1996) it may represent an attempt to increase mechanical resilience
in an area of stress.

15.5.2 Apoptosis

For cells unable to maintain anchorage following exposure to peptidase allergens the fate
is death by apoptosis (Figure 15.7(c) and (d)) (Baker et al., 2003). Apoptosis is known to
be triggered separately from TJ cleavage because peptidase allergens can cause apoptosis
in cell lines derived from the airway epithelium that constitutively lack TJs (Baker et al.,
2003). Furthermore, in cell lines that normally express TJs, apoptosis is not affected when
the TJs are removed by a calcium switch procedure (Baker et al., 2003). The precise
trigger for apoptosis caused by peptidase allergens remains unknown, but a component of
the initiation or response mechanism(s) probably involves disruption of hemidesmosomal
adhesion, causing detachment of cells from the substratum biomatrix. Whether this cell
detachment adds to the local increase in epithelial permeability caused by TJ cleavage is
unclear. The consequences of apoptotic cell loss may be contained by rapid reformation of
intercellular adhesions and a dynamic response of remaining cells to fill the vacancy created
by a detached cell. However, if cell detachment is extensive, or if TJ integrity in remaining
cells is highly compromised, then apoptosis may contribute to epithelial permeability as has
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been demonstrated in gastrointestinal epithelium (Schulzke et al., 2006). Although apoptosis
is activated separately from TJ cleavage, it has at least one feature which is reminiscent of
the latter. In epithelial cells rendered apoptotic by staurosporine (Bojarski et al., 2004), the
C-terminus of occludin undergoes intracellular cleavage similar to the response evoked by
dust mite peptidase allergens (Wan et al., 1999).

15.5.3 Receptor cleavage and mediator release

Peptidase allergens initiate a number of IgE-independent pro-inflammatory events, especially
the release or activation of mediators. The range of mediators involved encompasses lipids
(eicosanoids), proteins (cytokines and chemokines), complement and, in mast cells, histamine
(Asokananthan et al., 2002b; Kauffman et al., 2000; Machado et al., 1996; Tai et al., 2006;
Tomee et al. 1997, 1998; King et al., 1998). In addition to mediator release, other studies have
revealed the potential for peptidase allergens to interact with, and inactivate, other aspects
of mucosal defence (Kalsheker et al., 1996). The predictable effect of this combination of
events is the creation of a signalling environment favouring allergy development, especially
in those with a genetic predisposition. In this context, genetic predisposition is taken to
indicate an existing bias towards the development of Th2 immunity and/or the presence of
genetic polymorphisms in endogenous antipeptidases that could create supersensitivity to
mite peptidases. Over the past 25 years, limited evidence that allergy may be associated
with deficiencies in antipeptidase defence have accrued from functional studies (Eden et al.,
2003; Hyde et al., 1979; Rudolph et al., 1978; Sigsgaard et al., 2000). More recently, these
have been supplemented by genetic evidence, notably mutations in serpins (LETK-1, PAI-1,
C1 esterase inhibitor, �1-antichymotrypsin), which indicate an increased susceptibility to
allergy in those with defective antipeptidase defences (Smith and Harper, 2006). Furthermore,
evidence suggests that antipeptidase defences may be directly inactivated by certain allergens
(Kalsheker et al., 1996; Brown et al., 2003). A key serpin present in epithelial lining fluid
is �1-antitrypsin which protects the respiratory tract from damage by serine peptidases
that become activated during inflammation. The reactive centre of this protein is attacked
proximal to the amino terminus by Der p 1, inactivating the inhibitor and thus potentiating
any allergens with serine peptidase activity. Der p 1, and by implication related Group 1 mite
allergens, appears to have an ability to evade inhibition by many mammalian antipeptidases.
Of the mammalian antipeptidases examined, only �2-macroglobulin inhibits Der p 1, and
it is noteworthy that this antipeptidase is scarce in epithelial lining fluid (Hubbard and
Crystal, 1991).

Several studies have documented the release of cytokines from airway epithelial cells by
mite peptidase allergens and by peptidase-containing extracts or purified allergens derived
from A. fumigatus or P. chrysogenum (Asokananthan et al., 2002b; King et al., 1998; Tai
et al., 2006; Tomee et al., 1997, 1998; Sun et al., 2001). Although only a few examples from
the gamut of peptidase allergens have been examined, major allergens from diverse sources
converge on the same range of IgE-independent effector pathways. In airway epithelial cells,
both Der p 1 and Der p 9 upregulate the transcription of cytokine genes and increase cytokine
release (King et al., 1998; Sun et al., 2001). Similarly, peptidase activity has been associated
with the production of PGE2 and nitric oxide (Tai et al., 2006). These events involve, at
least in part, signalling via pathways that are linked to cleavage of PARs. Der p 1, Der
p 3 and Der p 9 all cleave the amino terminus of PAR-2 (Asokananthan et al., 2002b; Sun
et al., 2001), the expression of which is upregulated in asthmatic airway epithelium (Knight
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et al., 2001). These peptidases may cleave the receptor differentially, and the consequences
may, therefore, depend upon the efficacy of the particular nascent N-terminal tethered
ligands generated. Typically, cleavage of PAR-2 by trypsin yields an agonist N-terminus that
increases phosphoinositide turnover, increases the intracellular concentration of calcium, and
activates downstream MAPK signalling (Coughlin, 2000; Wang et al., 2002). As described
later, the effects of mite peptidase allergens are less characterized, however.

Evidence therefore suggests that peptidase allergens liberate cytokines and chemokines
that are relevant to allergy (Asokananthan et al., 2002b; Sun et al., 2001; Tai et al., 2006;
Tomee et al., 1997, 1998). In epithelial cells stimulated by the serine peptidase mite allergens
Der p 3 and Der p 6, this stimulation is accompanied by the release of eotaxin (CCL11),
RANTES (CCL5) and GM-CSF (King et al., 1998; Sun et al., 2001). Other studies have
documented the release of IL-6, IL-8 (CXCL8) and GM-CSF by Der p 1 (Asokananthan et al.,
2002b). IL-6 has an essential role in B cell maturation and in IL-4-dependent IgE synthesis
(Vercelli et al., 1989; Muraguchi et al., 1988), and it is known to be present in elevated
amounts in bronchoalveolar lavage fluid or in nasal secretions in asthma (Broide et al., 1992;
Fahy et al., 1995). GM-CSF generates signals that cause dendritic cells to differentiate and
to migrate from the airway epithelium to present captured antigens at regional lymph nodes
(Stick and Holt, 2003). IL-8 has a broad range of actions in addition to its chemoattractant
properties, including promotion of plasma leakage and airway hyperresponsiveness (Colditz
et al., 1990; De Sanctis et al., 1999; Fujimura et al., 1998; Xiu et al., 1995). It is present
in elevated concentrations in asthma (Chanez et al., 1996; Nocker et al., 1996), especially
prior to late phase reactions (Kurashima et al., 1996). RANTES is a chemokine for DCs
(Sozzani et al., 1997), while together with eotaxin and GM-CSF, it is capable of upregulating
eosinophil chemotaxis and activation (Rothenberg, 1999; Soloperto et al., 1991). A similar
pattern of cytokine and chemokine release is evoked by peptidase allergens from A. fumigatus
and P. chrysogenum, for which the release of PGE2 and TGF�1 has additionally been
reported (Tai et al., 2006).

The effects of these signalling molecules may be further enhanced by the cleavage of
receptor molecules in other cell types. Several targets have been identified. These include the
low-affinity IgE receptor (CD23) on B-lymphocytes (Schulz et al., 1995) and � subunit of
IL-2R (CD25) on T-lymphocytes (Schulz et al., 1998). Cleavage of the latter would diminish
the tendency to Th1 immunity by suppressing IL-2 dependent T-cell proliferation. In DCs,
potential targets are CD40 and the lectins DC-SIGN and DC-SIGNR, but the functional
consequences remain to be established (Furmonaviciene et al., 2007).

The involvement of peptidase allergens in cleavage events at the epithelial surface or in
other cells that have close associations with the airway mucosa raises the issue of what
signal transduction processes are coupled to these events. Earlier reference was made to
general mechanisms of peptidase signalling in epithelial cells, but the current understanding
of signalling in the specific context of peptidase allergens is incomplete. Studies have been
conducted with a miscellany of crude extracts, purified allergens, and with native or recom-
binant proteins which may be folded incorrectly or contaminated with traces of endotoxin.
This diversity of trigger signal creates obvious uncertainties regarding interpretation of data,
especially when this may be compounded by the use of epithelial cells of different lineage to
provide the signal transduction readout. Generally, PAR activation is coupled inter alia to the
turnover of phosphatidylinositol and an increase in intracellular calcium (Coughlin, 2000).
Calcium responses have been observed for peptidase allergens, especially the mite serine
peptidases (King et al., 1998; Sun et al., 2001), but it is less clear if the rise in calcium is
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obligatory for the upregulation of cytokine expression through changes in gene transcription.
The particular profile of cellular response is, thus, expected to depend on several factors,
amongst which are the PAR sub-type, the agonist efficacy of the tethered ligand generated
by proteolytic cleavage of the receptors and the particular G-proteins that are coupled to
these receptors in any particular cell type. It remains possible that some cellular responses
to peptidase allergens superficially appearing to be transduced by PAR-type mechanisms are
mediated by entirely novel receptors, or through the agency of an intermediary peptidase
liberated by an allergen. Of the HDM allergens, this possibility may be particularly relevant
for Der p 1. Whether Der p 1 per se cleaves PAR-2 to elicit responses in epithelial cells is
currently under debate.

PARs are archetypally responsive to serine peptidases, with PAR-2 being activated by
trypsin and tryptase. In support of Der p 1 acting at least partially via PAR-2, epithelial cells
exposed to Der p 1 release cytokines in a similar fashion to that which occurs on treatment
with PAR-2 agonist peptide (Asokananthan et al., 2002a, 2000b). After activation, PARs are
internalized and degraded by lysosomes. In epithelial cells previously stimulated with Der
p 1, the Ca2+ response to trypsin or PAR-2 agonist peptide is diminished, consistent with
Der p 1-PAR-2 cross reactivity (Asokananthan et al., 2002b). However, other evidence has
suggested that Der p 1 may mediate at least some its peptidase-dependent actions through
other mechanisms. In A549 cells, ERK1/2 signalling is the major MAPK signal transduction
pathway for Der p 1 in the release of IL-8, whereas for Der p 3 and a PAR-2 agonist peptide
the response additionally involved p38 and JNK signalling, and the amounts of IL-8 produced
were greater (Adam et al., 2006). Although all three major MAPK pathways were activated
by Der p 3, the responses differed temporally and in magnitude. Transcriptional regulation of
IL-8 production by Der p 1 was dominated by NF-�B, whereas PAR-2-mediated responses
of Der p 3 and PAR-2 agonist peptide involved both AP-1 and NF-�B (Adam et al., 2006).
These differences do not prove the existence of a separate receptor for Der p 1, but they do
highlight differences which may account for the lower potency of Der p 1 in the production
of IL-8. Additional evidence for PAR-2-independent production of IL-8 comes from studies
in KNRK cells transfected with the PAR-2 receptor. In these cells, Der p 1 was inactive in
both increasing intracellular calcium and in stimulating the production of IL-8. However,
trypsin or a PAR-2 agonist peptide achieved both (Adam et al., 2006). Moreover, in HeLa
cells treated with Der p 1 a small increase in IL-8 production resulted without the cells
having been transfected with the PAR-2 receptor (Adam et al., 2006). Whilst not proof that
Der p 1 acts through a novel receptor, this too emphasizes that knowledge of these response
pathways remains sketchy.

In contrast to the above, other transfection studies have suggested that Der p 1 does mediate
at least some of its effects via PAR-2 activation (Asokananthan et al., 2002b). In HeLa cells
transfected with enhanced yellow fluorescent protein constructs of either PAR-1 or PAR-2,
Der p 1 caused receptor internalization and IL-6 release in only the cells transfected with
the PAR-2 construct (Asokananthan et al., 2002b). This suggests that the cytokine release
is associated with PAR-2 activation. Furthermore, in the A549 epithelial cell line which
respond to PAR activation with an increase in intracellular calcium, Der p 1 pretreatment
caused loss of responsiveness to PAR-2 agonist peptide and trypsin, but not PAR-1 agonist
peptide and thrombin (Asokananthan et al., 2002b). This indicates that the calcium response
is mediated by PAR-2 activation. However, these results are complex to understand because,
when using cytokine production as a readout, pretreatment of A549 cells with Der p 1 had
a different effect, in which cytokine release due to PAR-1 agonist peptide was diminished
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whilst PAR-2 agonist peptide responses were retained (Asokananthan et al., 2002b). More
recently, the fungal serine peptidase allergen Pen c13 has been shown to activate both PAR-
1 and PAR-2, adding further complexity to understanding (Chui et al., 2007). One of the
difficulties in understanding data from the A549 cell line is its possible heterogeneity, with
at least four distinct morphological and antigenic sub-populations reported (Croce et al.,
1999) and discrepancies in the expression of all four PARs.

BEAS-2B cells also respond to HDM peptidase allergens with an increase in intracellular
calcium and the release of GM-CSF, IL-8 and IL-6. Here too, some evidence suggests that
PAR-2 receptors do not mediate the calcium signalling response of Der p 1 (King et al.,
1998). Calcium responses to Der p 9 were not affected by prior exposure to Der p 1, but were
ablated by trypsin treatment (King et al., 1998). Although a commonly used surrogate of the
airway epithelium, BEAS-2B cells are known to have a number of atypical features (Baker
et al., 2003), so it is difficult to ascertain if the discrepant findings are an idiosyncrasy of
this ‘epithelial’ cell line.

15.6 Conclusions

How allergens interact with the airway mucosa, and by implication with cells resident within
the airway lumen, is a key step in the pathogenesis and maintenance of allergy. Mucosal
surfaces encounter the largest amounts of inhaled allergens and it seems reasonable that
much of allergy is dictated by events at these surfaces, and by the consequences of genetic
predisposition. In addition to interactions between allergens and cells that bear surface-bound
IgE, it has become recognized in recent years that allergens participate in interactions with
the airway epithelium through mechanisms that are IgE-independent. These IgE-independent
actions rely on properties of specific allergens that make them capable of catalysing certain
types of reaction, or capable of activating receptors or other molecular recognition systems,
to promote allergy development. It is perhaps surprising then that this aspect of allergen
biology is still in its infancy. This status reflects a number of factors, not least the difficulties
of obtaining pure allergens that retain all their biological properties. A further consideration
is that the innate mechanisms with which allergens interact are themselves incompletely
understood.

A pattern is emerging of how interactions with the airway epithelium deliver allergen
and create a cytokine-rich milieu which promote allergy. However, one aspect that remains
confusing is the cellular signalling which drives these events. Evidence surrounding the
involvement of known PARs in responses to Group 1 mite allergens is contradictory, although
a consensus exists that HDM serine peptidase allergens activate PAR-2. There is little doubt
that MAPK signalling is central to these responses, but the finer details of which pathways
are coupled to specific mediators will require further investigation.

In revisiting the question of what makes an allergen an allergen, it is clear that host tissue
permeability is a factor which peptidase allergens are able to influence directly through their
short-term actions on TJs. There is, therefore, no obligatory requirement for sensitization to
inhaled allergens to depend upon a pre-existing or genetically programmed defect of mucosal
permeability. Currently, evidence does not exist indicating a polymorphism for generally
impaired TJ function in asthma, but there is a theoretical possibility of enhanced mucosal
permeability if the repertoire of expressed TJ adhesion proteins were to become changed to
a ‘leakier’ phenotype. Although the development of severe airway inflammation in asthma
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does cause TJ disruption, more moderate disease does not appear to be associated with an
unusually high permeability (Bennett and Ilowite, 1989; Ilowite et al., 1989), suggesting
that in the lungs there are no major endogenous deficits in TJs or paracellular permeability
control. This situation contrasts with skin, where accumulating evidence suggests two types
of endogenous barrier defect predispose to allergy. In one of these, based on the strong
association between atopy and Netherton’s syndrome, the defect involves antipeptidase
defence (Chavanas et al., 2000; Moffatt, 2004). In the other defect, it has been proposed that
loss of function variants in filaggrin, a protein which is vital to aggregation of the keratin
cytoskeleton and formation of the skin barrier, predisposes to atopic dermatitis. By extension,
this defect may also increase susceptibility to other allergic conditions through other barriers
where filaggrin is a significant component (Palmer et al., 2006; Weidinger et al., 2006). In
principle, antipeptidase and structural barrier defects are not mutually exclusive and together
create the possibility for enhancing the biochemical opportunism of major allergens.

A growing body of evidence suggests that enzymatic activity, especially peptidase activity,
is important for sensitization to major allergens from fungi and arthropods. This emerging
picture reveals new features of allergy, especially the co-dependence of acquired immunity
on mechanisms of innate immunity which a number of allergens are able to activate through
their broader biological properties. As discussed in this chapter, interesting implications
arise from these insights into allergen biology. Particularly provocative is the suggestion that
allergens could, regardless of source, be categorized into as few as two classes according
to whether they required an adjuvant to elicit allergy. The other provocative insight is the
opportunities for therapeutic exploitation created by the identification of upstream events in
the allergy cascade which are not targeted by existing medications.

References

Aalberse RC (2000) Structural biology of allergens. Journal of Allergy and Clinical Immunology, 106,
228–238.

Aalberse RC (2006) Structural features of allergenic molecules. Chem.Immunol.Allergy, 91, 134–146.
Aalberse RC and Stadler BM (2006) In silico predictability of allergenicity: from amino acid sequence

via 3-D structure to allergenicity. Molecular and Nutritional Food Research, 50, 625–627.
Aas K (1978) What makes an allergen an allergen? Allergy, 33, 3–14.
Adam E, Hansen KK, Astudillo FO, Coulon L, Bex F, Duhant X, Jaumotte E, Hollenberg MD, and

Jacquet A (2006) The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression
of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent
mechanism. Journal of Biological Chemistry, 281, 6910–6923.

Aijaz S, Balda MS, and Matter K (2006) Tight junctions: molecular architecture and function. Inter-
national Review of Cytology, 248, 261–298.

Anderson JM and Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of
paracellular permeability. American Journal of Physiology, 269, G467–G475.

Anderson JM, Balda MS, and Fanning AS (1993) The structure and regulation of tight junctions.
Current Opinion in Cell Biology, 5, 772–778.

Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ,
and Stewart GA (2002a) Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4
stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. Journal
of Immunology, 168, 3577–3585.

Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, and Stewart GA
(2002b) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial



322 CH15 INTERACTIONS BETWEEN ALLERGENS AND THE AIRWAY EPITHELIUM

cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and
inactivates PAR-1. Journal of Immunology, 169, 4572–4578.

Aurrand-Lions MA, Duncan L, Du PL, and Imhof BA (2000) Cloning of JAM-2 and JAM-3: an
emerging junctional adhesion molecular family? Current Topics in Microbiology and Immunology,
251, 91–98.

Bagarozzi DA, Jr. and Travis J (1998) Ragweed pollen proteolytic enzymes: possible roles in allergies
and asthma. Phytochemistry, 47, 593–598.

Bagarozzi DA, Jr., Pike R, Potempa J, and Travis J (1996) Purification and characterization of a novel
endopeptidase in ragweed (Ambrosia artemisiifolia) pollen. Journal of Biological Chemistry, 271,
26227–26232.

Bagarozzi DA, Jr., Potempa J, and Travis J (1998) Purification and characterization of an arginine-
specific peptidase from ragweed (Ambrosia artemisiifolia) pollen. American Journal of Respiratory
Cell and Molecular Biology, 18, 363–369.

Baker SF, Yin Y, Runswick SK, Stewart GA, Thompson PJ, Garrod DR, and Robinson C (2003)
Peptidase allergen Der p 1 initiates apoptosis of epithelial cells independently of tight junction
proteolysis. Molecular Membrane Biology, 20, 71–81.

Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, and Matter K (1996) Functional dissociation
of paracellular permeability and transepithelial electrical resistance and disruption of the apical-
basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane
protein. Journal of Cell Biology, 134, 1031–1049.

Balda MS, Flores-Maldonado C, Cereijido M, and Matter K (2000) Multiple domains of occludin
are involved in the regulation of paracellular permeability. Journal of Cellular Biochemistry, 78,
85–96.

Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, and Dejana E (2000) Interaction
of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin.
Journal of Biological Chemistry, 275, 20520–20526.

Bennett WD and Ilowite JS (1989) Dual pathway clearance of 99mTc-DTPA from the bronchial
mucosa. American Review of Respiratory Disease, 139, 1132–1138.

Berger P, Tunon-de-Lara JM, Savineau JP, and Marthan R (2001) Selected contribution: tryptase-
induced PAR-2-mediated Ca�2+� signaling in human airway smooth muscle cells. Journal of Applied
Physiology 91, 995–1003.

Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, Schulzke JD, Florian P, Fromm M,
Tauber R, and Huber O (2004) The specific fates of tight junction proteins in apoptotic epithelial
cells. Journal of Cell Science, 117, 2097–2107.

Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, and Wasserman SI (1992) Cytokines in
symptomatic asthma airways. Journal of Allergy and Clinical Immunology, 89, 958–967.

Brown A, Farmer K, MacDonald L, Kalsheker N, Pritchard D, Haslett C, Lamb J, and Sallenave
JM (2003) House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase
inhibitors. American Journal of Respiratory Cell and Molecular Biology, 29, 381–389.

Camerer E, Kataoka H, Kahn M, Lease K, and Coughlin SR (2002) Genetic evidence that protease-
activated receptors mediate factor Xa signaling in endothelial cells. Journal of Biological Chemistry,
277, 16081–16087.

Chambers L, Brown A, Pritchard DI, Sreedharan S, Brocklehurst K, and Kalsheker NA (1998)
Enzymatically active papain preferentially induces an allergic response in mice. Biochemical and
Biophysical Research Communications, 253, 837–840.

Chanez P, Enander I, Jones I, Godard P, and Bousquet J (1996) Interleukin 8 in bronchoalveolar lavage
of asthmatic and chronic bronchitis patients. International Archives of Allergy and Immunology,
111, 83–88.

Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafe JL, Wilkinson J,
Taieb A, Barrandon Y, Harper JI, de Prost Y, and Hovnanian A (2000) Mutations in SPINK5,
encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genetics, 25, 141–142.



REFERENCES 323

Chiu LL, Perng DW, Yu CH, Su SN, and Chow LP (2007) Mold allergen, pen C 13, induces IL-8
expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. Journal
of Immunology, 178, 5237–5244.

Citi S (1993) The molecular organization of tight junctions. Journal of Cell Biology, 121, 485–489.
Colditz IG, Zwahlen RD, and Baggiolini M (1990) Neutrophil accumulation and plasma leakage

induced in vivo by neutrophil-activating peptide-1. Journal of Leukocyte Biology, 48, 129–137.
Colloff MJ and Stewart GA (1997) House dust mites. In Asthma, Barnes PJ, Grunstein MM, Leff AR,

and Woolcock AJ (eds), Lippincott-Raven, Philadelphia, PA, pp. 1089–1103.
Comoy EE, Pestel J, Duez C, Stewart GA, Vendeville C, Fournier C, Finkelman F, Capron A, and

Thyphronitis G (1998) The house dust mite allergen, Dermatophagoides pteronyssinus, promotes
type 2 responses by modulating the balance between IL-4 and IFN-gamma. Journal of Immunology,
160, 2456–2462.

Cortes L, Carvalho AL, Todo-Bom A, Faro C, Pires E, and Verissimo P (2006) Purification of a novel
aminopeptidase from the pollen of Parietaria judaica that alters epithelial integrity and degrades
neuropeptides. Journal of Allergy and Clinical Immunology, 118, 878–884.

Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature, 407, 258–264.
Croce MV, Colussi AG, Price MR, Segal-Eiras A (1999). Identification and characterization of different

subpopulations in a human lung adenocarcinoma cell line (A549). Pathology and Oncology Research,
5, 197–204.

De Sanctis GT, MacLean JA, Qin S, Wolyniec WW, Grasemann H, Yandava CN, Jiao A, Noonan T,
Stein-Streilein J, Green FH, and Drazen JM (1999) Interleukin-8 receptor modulates IgE produc-
tion and B-cell expansion and trafficking in allergen-induced pulmonary inflammation. Journal of
Clinical Investigation, 103, 507–515.

Delventhal S, Brandis A, Ostertag H, and Pabst R (1992) Low incidence of bronchus-associated
lymphoid tissue (BALT) in chronically inflamed human lungs. Virchows Archive B Cell Pathology
Including Molecular Pathology, 62, 271–274.

Dunnill MS (1960) The pathology of asthma, with special reference to changes in the bronchial mucosa.
Journal of Clinical Pathology, 13, 27–33.

Dunnill MS (1971) The pathology of asthma. Ciba Foundation Study Group, 38, 35–46.
Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, and Vestweber D (2000) Junctional

adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. Journal of
Biological Chemistry, 275, 27979–27988.

Eden E, Hammel J, Rouhani FN, Brantly ML, Barker AF, Buist AS, Fallat RJ, Stoller JK, Crystal RG,
and Turino GM (2003) Asthma features in severe alpha1-antitrypsin deficiency: experience of the
National Heart, Lung, and Blood Institute Registry. Chest, 123, 765–771.

Fahy JV, Wong H, Liu J, and Boushey HA (1995) Comparison of samples collected by sputum
induction and bronchoscopy from asthmatic and healthy subjects. American Journal of Respiratory
and Critical Care Medicine, 152, 53–58.

Fanning AS, Jameson BJ, Jesaitis LA, and Anderson JM (1998) The tight junction protein ZO-1
establishes a link between the transmembrane protein occludin and the actin cytoskeleton. Journal
of Biological Chemistry, 273, 29745–29753.

Fujimura M, Xiu Q, Tsujiura M, Tachibana H, Myou S, Matsuda T, and Matsushima K (1998) Role
of leukotriene B4 in bronchial hyperresponsiveness induced by interleukin-8. European Respiratory
Journal, 11, 306–311.

Furmonaviciene R, Ghaemmaghami AM, Boyd SE, Jones NS, Bailey K, Willis AC, Sewell HF,
Mitchell DA, and Shakib F (2007) The protease allergen Der p 1 cleaves cell surface DC-SIGN and
DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic
responses. Clinical and Experimental Allergy, 37, 231–242.

Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, and Tsukita S (1993) Occludin:
a novel integral membrane protein localizing at tight junctions [see comments]. Journal of Cell
Biology, 123, 1777–1788.



324 CH15 INTERACTIONS BETWEEN ALLERGENS AND THE AIRWAY EPITHELIUM

Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, and Tsukita S (1994) Direct
association of occludin with ZO-1 and its possible involvement in the localization of occludin at
tight junctions. Journal of Cell Biology, 127, 1617–1626.

Furuse M, Sasaki H, Fujimoto K, and Tsukita S (1998) A single gene product, claudin-1 or -2,
reconstitutes tight junction strands and recruits occludin in fibroblasts. Journal of Cell Biology, 143,
391–401.

Furuse M, Sasaki H, and Tsukita S (1999) Manner of interaction of heterogeneous claudin species
within and between tight junction strands. Journal of Cell Biology, 147, 891–903.

Furuse M, Furuse K, Sasaki H, and Tsukita S (2001) Conversion of zonulae occludentes from tight to
leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. Journal of Cell
Biology, 153, 263–272.

Garrod DR (1993) Desmosomes and hemidesmosomes. Current Opinion in Cell Biology, 5, 30–40.
Gehr P and Heyder J (eds) (2000) Particle–Lung Interactions, Marcel Dekker, New York.
Ghaemmaghami AM, Gough L, Sewell HF, and Shakib F (2002) The proteolytic activity of the major

dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced
Th2 bias determined at the dendritic cell level. Clinical and Experimental Allergy, 32, 1468–1475.

Gough L, Schulz O, Sewell HF, and Shakib F (1999) The cysteine protease activity of the major dust
mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. Journal of
Experimental Medicine, 190, 1897–1902.

Gough L, Sewell HF, and Shakib F (2001) The proteolytic activity of the major dust mite allergen Der
p 1 enhances the IgE antibody response to a bystander antigen. Clinical and Experimental Allergy,
31, 1594–1598.

Gough L, Campbell E, Bayley D, Van Heeke G, and Shakib F (2003) Proteolytic activity of the
house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model. Clinical and
Experimental Allergy, 33, 1159–1163.

Green KJ and Jones JC (1996) Desmosomes and hemidesmosomes: structure and function of molecular
components. FASEB Journal, 10, 871–881.

Grobe K, Becker WM, Schlaak M, and Petersen A (1999) Grass group I allergens (beta-expansins)
are novel, papain-related proteinases. European Journal of Biochemistry, 263, 33–40.

Grobe K, Poppelmann M, Becker WM, and Petersen A (2002) Properties of group I allergens from
grass pollen and their relation to cathepsin B, a member of the C1 family of cysteine proteinases.
European Journal of Biochemistry, 269, 2083–2092.

Hassim Z, Maronese SE, and Kumar RK (1998) Injury to murine airway epithelial cells by pollen
enzymes. Thorax, 53, 368–371.

Herbert CA, Holgate ST, Robinson C, Thompson PJ, and Stewart GA (1990) Effect of mite allergen
on permeability of bronchial mucosa [letter]. Lancet, 336, 1132.

Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ, and Robinson C (1995)
Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1.
American Journal of Respiratory Cell and Molecular Biology, 12, 369–378.

Holt PG (2002) The role of airway dendritic cell populations in regulation of T-cell responses to
inhaled antigens: atopic asthma as a paradigm. Journal of Aerosol Medicine, 15, 161–168.

Holt PG, Schon-Hegrad MA, Oliver J, Holt BJ, and McMenamin PG (1990) A contiguous network of
dendritic antigen-presenting cells within the respiratory epithelium. International Archives of Allergy
and Applied Immunology, 91, 155–159.

Hou J, Gomes AS, Paul DL, and Goodenough DA (2006) Study of claudin function by RNA interfer-
ence. Journal of Biological Chemistry, 281, 36117–36123.

Hubbard RC and Crystal RG (1991) Antiproteases. In The Lung: Scientific Foundation, Crystal RG
and West JB (eds), Raven Press, New York, pp. 1775–1787.

Huh JC, Strickland DH, Jahnsen FL, Turner DJ, Thomas JA, Napoli S, Tobagus I, Stumbles PA,
Sly PD, and Holt PG (2003) Bidirectional interactions between antigen-bearing respiratory tract
dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC



REFERENCES 325

activation occurs in the airway mucosa but not in the lung parenchyma. Journal of Experimental
Medicine, 198, 19–30.

Hyde JS, Werner P, Kumar CM, and Moore BS (1979) Protease inhibitor variants in children and
young adults with chronic asthma. Annals of Allergy, 43, 8–13.

Ilowite JS, Bennett WD, Sheetz MS, Groth ML, and Nierman DM (1989) Permeability of the bronchial
mucosa to 99mTc-DTPA in asthma. American Review of Respiratory Disease, 139, 1139–1143.

Jahnsen FL, Strickland DH, Thomas JA, Tobagus IT, Napoli, S, Zosky, GR, Turner DJ, Sly PD,
Stumbles PA, Holt PG. (2006) Accelerated antigen sampling and transport by airway mucosal
dendritic cells following inhalation of a bacterial stimulus. Journal of Immunology, 177, 5861–5867.

Kalb TH, Chuang MT, Marom Z, and Mayer L (1991) Evidence for accessory cell function by
class II MHC antigen-expressing airway epithelial cells. American Journal of Respiratory Cell and
Molecular Biology, 4, 320–329.

Kalsheker NA, Deam S, Chambers L, Sreedharan S, Brocklehurst K, and Lomas DA (1996) The
house dust mite allergen Der p1 catalytically inactivates alpha1- antitrypsin by specific reactive
centre loop cleavage: a mechanism that promotes airway inflammation and asthma. Biochemical
and Biophysical Research Communications, 221, 59–61.

Kauffman HF, Tomee JF, Van De Riet MA, Timmerman AJ, and Borger P (2000) Protease-dependent
activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine produc-
tion. Journal of Allergy and Clinical Immunology, 105, 1185–1193.

Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, and Corry DB (2002) A protease-activated
pathway underlying Th cell type 2 activation and allergic lung disease. Journal of Immunology, 169,
5904–5911.

King C, Brennan S, Thompson PJ, and Stewart GA (1998) Dust mite proteolytic allergens induce
cytokine release from cultured airway epithelium. Journal of Immunology, 161, 3645–3651.

Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, and Thompson PJ (2001) Protease-
activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients
with asthma. Journal of Allergy and Clinical Immunology, 108, 797–803.

Kurashima K, Mukaida N, Fujimura M, Schroder JM, Matsuda T, and Matsushima K (1996) Increase
of chemokine levels in sputum precedes exacerbation of acute asthma attacks. Journal of Leukocyte
Biology, 59, 313–316.

Kurup VP, Xia JQ, Shen HD, Rickaby DA, Henderson JD, Jr., Fink JN, Chou H, Kelly KJ, and
Dawson CA (2002) Alkaline serine proteinase from Aspergillus fumigatus has synergistic effects
on Asp-f-2-induced immune response in mice. International Archives of Allergy and Applied
Immunology, 129, 129–137.

Lambrecht BN and Hammad H (2003) The other cells in asthma: dendritic cell and epithelial cell
crosstalk. Current Opinion in Pulmonary Medicine, 9, 34–41.

Machado DC, Horton D, Harrop R, Peachell PT, and Helm BA (1996) Potential allergens stimulate
the release of mediators of the allergic response from cells of mast cell lineage in the absence of
sensitization with antigen-specific IgE. European Journal of Immunology, 26, 2972–2980.

Mandell KJ and Parkos CA (2005) The JAM family of proteins. Advanced Drug Delivery Reviews,
57, 857–867.

Matheson NR and Travis J (1998) Purification and characterization of a novel peptidase (IImes) from
mesquite (Prosopis velutina) pollen. Journal of Biological Chemistry, 273, 16771–16777.

Mezzetti M, Soloperto M, Fasoli A, and Mattoli S (1991) Human bronchial epithelial cells modu-
late CD3 and mitogen-induced DNA synthesis in T cells but function poorly as antigen-presenting
cells compared to pulmonary macrophages. Journal of Allergy and Clinical Immunology, 87,
930–938.

Miyoshi J and Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity.
Advanced Drug Delivery Reviews, 57, 815–855.

Moffatt MF (2004) SPINK5: a gene for atopic dermatitis and asthma. Clinical and Experimental
Allergy, 34, 325–327.



326 CH15 INTERACTIONS BETWEEN ALLERGENS AND THE AIRWAY EPITHELIUM

Mori L, Kleimberg J, Mancini C, Bellini A, Marini M, and Mattoli S (1995) Bronchial epithelial cells
of atopic patients with asthma lack the ability to inactivate allergens. Biochemical and Biophysical
Research Communications, 217, 817–824.

Muraguchi A, Hirano T, Tang B, Matsuda T, Horii Y, Nakajima K, and Kishimoto T (1988) The
essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells.
Journal of Experimental Medicine, 167, 332–344.

Naylor B (1962) The shedding of the mucosa of the bronchial tree in asthma. Thorax, 17, 69–72.
Nocker RE, Schoonbrood DF, van de Graaf EA, Hack CE, Lutter R, Jansen HM, and Out TA (1996)

Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary
disease. International Archives of Allergy and Applied Immunology, 109, 183–191.

Pabst R and Gehrke I (1990) Is the bronchus-associated lymphoid tissue (BALT) an integral structure
of the lung in normal mammals, including humans? American Journal of Respiratory Cell and
Molecular Biology, 3, 131–135.

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A,
Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ,
Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K,
Halkjaer LB, Bisgaard H, Mukhopadhyay S, and McLean WH (2006) Common loss-of-function
variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.
Nature Genetics, 38, 441–446.

Piacentini GL, Vicentini L, Mazzi P, Chilosi M, Martinati L, and Boner AL (1998) Mite-antigen
avoidance can reduce bronchial epithelial shedding in allergic asthmatic children. Clinical and
Experimental Allergy, 28, 561–567.

Platts-Mills TA (2007) The role of indoor allergens in chronic allergic disease. Journal of Allergy and
Clinical Immunology, 119, 297–302.

Radlowski M (2005) Proteolytic enzymes from generative organs of flowering plants (Angiospermae).
Journal of Applied Genetics, 46, 247–257.

Raftery MJ, Saldanha RG, Geczy CL, and Kumar RK (2003) Mass spectrometric analysis of elec-
trophoretically separated allergens and proteases in grass pollen diffusates. Respiratory Research,
4, 10.

Ritz SA, Gajewska BU, Stampfli MR, and Jordana M (2000) Determinants of the immune-inflammatory
response in allergic airway inflammation: overview of antigen presentation and cellular activation.
Journal of Allergy and Clinical Immunology, 106, S206–S212.

Robinson C (1995) The airway epithelium: the origin and target of inflammatory airways disease
and injury. In Immunopharmacology of the Respiratory System, Holgate ST (ed.), Academic Press,
London, pp. 187–207.

Robinson C, Kalsheker NA, Srinivasan N, King CM, Garrod DR, Thompson PJ, and Stewart GA
(1997) On the potential significance of the enzymatic activity of mite allergens to immunogenicity.
Clues to structure and function revealed by molecular characterization. Clinical and Experimental
Allergy, 27, 10–21.

Rothenberg ME (1999) Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues.
American Journal of Respiratory Cell and Molecular Biology, 21, 291–295.

Rudolph R, Dolling J, Kunkel G, Staud RD, and Baumgarten C (1978) The significance of nasal
protease inhibitor concentrations in house dust allergy. Allergy, 33, 310–315.

Salik E, Tyorkin M, Mohan S, George I, Becker K, Oei E, Kalb T, and Sperber K (1999) Antigen
trafficking and accessory cell function in respiratory epithelial cells. American Journal of Respiratory
Cell and Molecular Biology, 21, 365–379.

Schechter NM, Brass LF, Lavker RM, and Jensen PJ (1998) Reaction of mast cell proteases tryptase
and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. Journal of
Cell Physiology, 176, 365–373.

Schulz O, Laing P, Sewell HF, and Shakib F (1995) Der p I, a major allergen of the house dust
mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). European Journal of
Immunology, 25, 3191–3194.



REFERENCES 327

Schulz O, Sewell HF, and Shakib F (1998) Proteolytic cleavage of CD25, the alpha subunit of the
human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity.
Journal of Experimental Medicine, 187, 271–275.

Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, and Fromm M (2006) Disrupted barrier
function through epithelial cell apoptosis. Annals of the New York Academy of Sciences, 1072,
288–299.

Sigsgaard T, Brandslund I, Omland O, Hjort C, Lund ED, Pedersen OF, and Miller MR (2000) S and
Z alpha1-antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: an
example of gene/environment interaction. European Respiratory Journal, 16, 50–55.

Smith PK and Harper JI (2006) Serine proteases, their inhibitors and allergy. Allergy, 61, 1441–1447.
Soloperto M, Mattoso VL, Fasoli A, and Mattoli S (1991) A bronchial epithelial cell-derived factor

in asthma that promotes eosinophil activation and survival as GM-CSF. American Journal of
Physiology, 260, L530–L538.

Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, D’Amico G, Power CA, Wells TN,
Gobbi M, Allavena P, and Mantovani A (1997) Receptor expression and responsiveness of human
dendritic cells to a defined set of CC and CXC chemokines. Journal of Immunology, 159, 1993–2000.

Stewart GA (2000) The molecular biology of allergens. In Asthma and Rhinitis, Busse WW and
Holgate ST (eds), Blackwell Science, Oxford, pp. 1107–1142.

Stewart GA and Robinson C (2003) Allergen Structure and Function. In Middleton’s Allergy. Principles
and Practice, Adkinson NF, Yunginger JW, Busse WW, Bochner BS, Holgate ST, and Simons FER
(eds), Mosby, Philadelphia, PA, pp. 585–609.

Stick SM and Holt PG (2003) The airway epithelium as immune modulator: the LARC ascending.
American Journal of Respiratory Cell and Molecular Biology, 28, 641–644.

Sun G, Stacey MA, Schmidt M, Mori L, and Mattoli S (2001) Interaction of mite allergens Der p3 and
Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. Journal of Immunology,
167, 1014–1021.

Tai HY, Tam MF, Chou H, Peng HJ, Su SN, Perng DW, and Shen HD (2006) Pen ch 13 allergen
induces secretion of mediators and degradation of occludin protein of human lung epithelial cells.
Allergy, 61, 382–388.

Temkin V, Kantor B, Weg V, Hartman ML, and Levi-Schaffer F (2002) Tryptase activates the mitogen-
activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing
cytokine production and release. Journal of Immunology, 169, 2662–2669.

Tibbles LA and Woodgett JR (1999) The stress-activated protein kinase pathways. Cellular and
Molecular Life Science, 55, 1230–1254.

Tomee JF, Wierenga AT, Hiemstra PS, and Kauffman HK (1997) Proteases from Aspergillus fumigatus
induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines.
Journal of Infectious Diseases, 176, 300–303.

Tomee JF, van Weissenbruch R, de Monchy JG, and Kauffman HF (1998) Interactions between inhalant
allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment.
Journal of Allergy and Clinical Immunology, 102, 75–85.

Tsukita S, Furuse M, and Itoh M (2001) Multifunctional strands in tight junctions. Nature Reviews in
Molecular Cell Biology, 2, 285–293.

Ubl JJ, Grishina ZV, Sukhomlin TK, Welte T, Sedehizade F, and Reiser G (2002) Human bronchial
epithelial cells express PAR-2 with different sensitivity to thermolysin. American Journal of
Physiology–Lung Cell and Molecular Physiology, 282, L1339–L1348.

Van Itallie CM and Anderson JM (1997) Occludin confers adhesiveness when expressed in fibroblasts.
Journal of Cell Science, 110, 1113–1121.

van Rijt LS and Lambrecht BN (2005) Dendritic cells in asthma: a function beyond sensitization.
Clinical and Experimental Allergy, 35, 1125–1134.

Vercelli D, Jabara HH, Arai K, Yokota T, and Geha RS (1989) Endogenous interleukin 6 plays an
obligatory role in interleukin 4-dependent human IgE synthesis. European Journal of Immunology,
19, 1419–1424.



328 CH15 INTERACTIONS BETWEEN ALLERGENS AND THE AIRWAY EPITHELIUM

Vergnolle N, Wallace JL, Bunnett NW, and Hollenberg MD (2001) Protease-activated receptors in
inflammation, neuronal signaling and pain. Trends in Pharmacological Sciences, 22, 146–152.

Waetzig GH and Schreiber S (2003) Review article: mitogen-activated protein kinases in chronic
intestinal inflammation – targeting ancient pathways to treat modern diseases. Alimentary Pharma-
cology and Therapeutics, 18, 17–32.

Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW,
Garrod DR, Cannell MB, and Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery
by disruption of tight junctions. Journal of Clinical Investigation, 104, 123–133.

Wan H, Winton HL, Soeller C, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR,
and Robinson C (2000a) Quantitative structural and biochemical analyses of tight junction dynamics
following exposure of epithelial cells to house dust mite allergen Der p 1. Clinical and Experimental
Allergy, 30, 685–698.

Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, Cannell MB, Garrod DR,
and Robinson C (2000b) Tight junction properties of the immortalized human bronchial epithelial
cell lines Calu-3 and 16HBEo−. European Respiratory Journal, 15, 1058–1068.

Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA,
Garrod DR, and Robinson C (2001) The transmembrane protein occludin of epithelial tight junctions
is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus.
Clinical and Experimental Allergy, 31, 279–294.

Wang H, Ubl JJ, Stricker R, and Reiser G (2002) Thrombin (PAR-1)-induced proliferation in astrocytes
via MAPK involves multiple signaling pathways. American Journal of Physiology – Lung Cell and
Molecular Physiology, 283, C1351–C1364.

Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-Lacava A, Klopp N, Wagenpfeil S,
Zhao Y, Liao H, Lee SP, Palmer CN, Jenneck C, Maintz L, Hagemann T, Behrendt H, Ring J,
Nothen MM, McLean WH, and Novak N (2006) Loss-of-function variations within the filaggrin
gene predispose for atopic dermatitis with allergic sensitizations. Journal of Allergy and Clinical
Immunology, 118, 214–219.

Wong V and Gumbiner BM (1997) A synthetic peptide corresponding to the extracellular domain of
occludin perturbs the tight junction permeability barrier. Journal of Cell Biology, 136, 399–409.

Xiu Q, Fujimura M, Nomura M, Saito M, Matsuda T, Akao N, Kondo K, and Matsushima K (1995)
Bronchial hyperresponsiveness and airway neutrophil accumulation induced by interleukin-8 and the
effect of the thromboxane A2 antagonist S-1452 in guinea-pigs. Clinical and Experimental Allergy,
25, 51–59.



16
The Epithelium as a Regulator
of Airway Inflammation
Richard Leigh and David Proud
Departments of Medicine and Physiology & Biophysics, Institute of Infection,
Immunity and Inflammation, University of Calgary, Alberta, Canada

16.1 Introduction
The airway epithelium is in a unique position at the interface between the host and the external
environment, and is constantly exposed to a wide range of exogenous and endogenous stimuli.
Although classically considered a barrier to inhaled noxious gases, particulates, bacteria,
viruses, allergens, and other substances in inspired air, there is now substantial evidence that
epithelial cells play a critical role in regulating immune-mediated airway inflammation. In
response to a variety of exogenous and endogenous stimuli, airway epithelial cells become
functionally active to produce and release a wide array of biologically active compounds,
including cytokines, growth factors, chemokines, lipid-mediators, peptides, proteases and
reactive oxygen species. These mediators can have important roles, not only in normal phys-
iological processes, but also in the initiation and progression of various airway inflammatory
disorders, such as asthma, smoking-related chronic bronchitis, acute infective bronchitis,
bronchiectasis and cystic fibrosis. The epithelium can also contribute, however, to the regula-
tion of over-exuberant inflammation via its ability to inhibit or catabolize a range of inflam-
matory mediators. This chapter describes our current understanding of the critical role that
epithelial cells play in regulating inflammatory and repair processes in the airway both by the
production of pro-inflammatory mediators and via their catabolic and inhibitory functions.

16.2 Epithelial production of cytokines, growth factors
and chemokines

16.2.1 Cytokines and growth factors

The airway epithelium is a major contributor to the local cytokine network in the airway.
Epithelial cells can respond to numerous stimuli to produce and release a wide array of
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cytokines, chemokines, colony-stimulating factors and growth factors, as well as several
cytokine antagonists. They can also show increased expression of adhesion molecules for
inflammatory cells. All of these responses can regulate the inflammatory status of the airway,
and contribute to the pathogenesis of inflammatory airway disorders.

Cytokines are extra-cellular signalling proteins, usually less than 80 kDa in size, that are
involved in cell-to-cell interactions through specific receptors on the surface of target cells.
They usually have an effect on closely adjacent cells and therefore function in a predomi-
nantly paracrine fashion, although they may also act in an endocrine or autocrine manner.
They act on target cells to cause a wide array of cellular functions including activation,
proliferation, chemotaxis, immunomodulation, release of other cytokines or mediators, cell
growth and differentiation, and apoptosis (Chung and Barnes, 1999). Airway epithelial cell
derived cytokines may, therefore, amplify ongoing inflammatory processes via the recruit-
ment and activation of specific subsets of inflammatory cells, as well as by enhancing their
survival in the airway microenvironment. In addition, airway epithelial cells can initiate
inflammatory cascades by generating cytokines in direct response to viral and bacterial prod-
ucts, noxious gases, and sensitizing chemicals. Airway epithelial cells also represent targets
for cytokines that act in a paracrine fashion, which may then modulate airway epithelial cell
functions.

Epithelial cells are capable of releasing numerous multifunctional cytokines, growth
factors and colony-stimulating factors that can exert effects on multiple cell targets
(Figure 16.1). Among the pleiotropic cytokines produced by epithelial cells, interleukin
(IL)-6 and IL-11 have been studied in most detail. Although cultured epithelial cells consti-
tutively release IL-6 (Cromwell et al., 1992, Subauste et al., 1995), production is greatly
increased by a variety of stimuli, including histamine, IL-1� and TNF� (Cromwell et al.,
1992), viral infection (Subauste et al., 1995), and both fungal and dust mite proteases (King
et al., 1998). In vivo, enhanced epithelial gene expression of IL-6 is seen in bronchial biopsies
from asthmatic subjects, and concentrations of IL-6 are increased in bronchoalveolar lavage
(BAL) fluid from symptomatic asthmatic subjects (Mattoli et al., 1991). Epithelial production
of IL-6 may modulate allergic diseases because it is known to induce B-cell differentia-
tion, T-cell proliferation and activation, neural differentiation, and enhanced mucosal IgA
production (Kishimoto et al., 1992). Transgenic mice that overexpress IL-6 have pronounced
peribronchial infiltration of lymphocytes but, surprisingly, have reduced airway responsive-
ness (AHR) to methacholine (DiCosmo et al., 1994). IL-11 is a cytokine with similarities
to IL-6. Epithelial expression of IL-11 is increased in asthma and during respiratory viral
infections (Einarsson et al., 1996). Although the role of IL-11 in the pathogenesis of airway
diseases is not fully understood, it is known that IL-11 can activate B cells by means of a
mechanism that is T-cell dependent, and bronchial challenge of mice with IL-11 leads to
pronounced AHR and mononuclear cell infiltration (Einarsson et al., 1996). Furthermore,
targeted overexpression of IL-11 in the airway of adult mice induces airway remodelling
characterized by subepithelial fibrosis (Ray et al., 1997).

Epithelial cells also produce thymic stromal lymphopoietin (TSLP), a cytokine that has
attracted particular attention because of its role in the regulation of dendritic cell function
(see Chapter 11). TSLP is an IL-7-like cytokine produced mainly by barrier epithelial cells,
and TSLP expression is increased in the airway of asthmatic subjects and correlates with
symptom severity (Ying et al., 2005). TSLP has been reported to prime dendritic cells to
promote Th2 cell differentiation and may thus play a role in sensitization toward allergens
(Huston and Liu, 2006; Soumelis et al., 2002).
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Figure 16.1 Cytokines and growth factors released by epithelial cells can affect multiple cell types
within the airway. Growth factors such as GM-CSF and G-CSF can enhance the survival and activation of
leukocyte populations, while production of thymic stromal lymphopoietin (TSLP) can prime dendritic
cells to polarize T-cells to a Th2 phonotype. Vascular endothelial growth factor (VEGF), as well as
several chemokines and peptides can enhance angiogenesis. The epithelium also releases a number of
growth factors, including TGF-�, that can enhance the proliferation of fibroblasts and differentiation
to myofibroblasts, such that they will release matrix proteins that can contribute to thickening of the
lamina reticularis

The likely role in airway disease of other pleiotropic cytokines produced from epithelial
cells is more difficult to predict. Although low levels of IL-1� are secreted, large amounts
of IL-1� are seen when cells are exposed to cytotoxic stimuli, or are lysed (Kenney et al.,
1994). Epithelial cells also contain large quantities of intracellular IL-1 receptor antagonist
type I (icIL-1ra), however, so the role of epithelial IL-1� may vary depending on relative
production to that of IL-1ra (Yoon et al., 1999). Epithelial cells obtained from bronchial
brushings from healthy subjects produce the immunoregulatory cytokine IL-10, whereas
production is greatly reduced in cells from patients with cystic fibrosis (Bonfield et al.,
1995). Epithelial cells also produce IL-15 and low levels of TNF�.

The production of interferons by airway epithelial cells has recently attracted considerable
interest, particularly in the context of viral infections. Although it is generally agreed that
epithelial cells do not produce the prototypical type II interferon, IFN-�, there is contro-
versy regarding type I interferons. Although mRNA expression of IFN-� and IFN-� has
consistently been detected, results of protein release have been more variable, perhaps due
to varying stimuli and the relative limitations of current ELISAs. While some investigators
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have failed to detect type I IFNs from cultured epithelial cells infected with rhinovirus
(Spurrell et al., 2005), it has recently been suggested that impaired epithelial production of
IFN-� in response to rhinovirus infection may contribute to viral exacerbations of asthma
(Wark et al., 2005). A recent study also suggests that deficient type III, IFN-�1 (IL-29) and
IFN-�2/3 (IL-28A/B) production may contribute to asthma exacerbations (Contoli et al.,
2006). Further studies are needed to confirm these important observations.

Increased granulocyte-macrophage colony-stimulating factor (GM-CSF) expression has
also been observed in epithelial cells from individuals with symptomatic allergic rhinitis
(Nonaka et al., 1996), and from bronchial biopsies of subjects with asthma (Marini et al.,
1992). Moreover, levels of GM-CSF expression correlate with the extent of eosinophil
infiltration of the airway epithelium (Wang et al., 1994). GM-CSF could modulate allergic
inflammation via its abilities to prolong eosinophil survival and to activate eosinophils,
neutrophils and macrophages to display enhanced cytotoxic activity, generation of mediators
and phagocytosis. Granulocyte colony-stimulating factor (G-CSF) is also produced by airway
epithelial cells and can enhance the survival and activation of neutrophils.

The epithelium is a significant source of a number of growth factors that can act on several
cell types within the airway (Figure 16.1). Airway epithelial cells express several members
of the epidermal growth factor (EGF) family, including EGF, heparin-binding epidermal
growth factor (HB-EGF), isoforms of transforming growth factor �TGF�-�, activin A and
amphiregulin (Knight and Holgate, 2003). The epithelium also expresses three members of
the epithelial growth factor receptor family (EGFR) (c-erbB1, c-erbB2 and c-erbB3), and
when epithelial surfaces are injured, the normal response is for epithelial cells to upregulate
members of the EGFR family. Activation of the EGF receptor leads to mucin gene expression
and epithelial proliferation, differentiation and repair. Interestingly, epithelial expression
of both EGF and EGFR is increased in asthma (Polosa et al., 2002). In culture models,
epithelial cells constitutively produce vascular endothelial growth factor (VEGF) and this is
enhanced in response to respiratory viral infections (Psarras et al., 2006). VEGF production
could contribute to angiogenesis and increased vascular permeability in asthma. Stem cell
factor (SCF) is also produced by the epithelium, and levels of SCF correlate with numbers
of epithelial mast cells in the upper airway (Otsuka et al., 1998).

Epithelial cells in the process of repair, or in response to other stimuli, elaborate a
variety of growth factors that enhance proliferation of fibroblasts and differentiation of these
cells into activated myofibroblasts. These include several isoforms of transforming growth
factor �TGF��, connective tissue growth factor (CTGF), insulin-like growth factors (IGF),
platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). It has
been reported that TGF�1, but not other isoforms, enhances the speed of epithelial wound
repair. Interestingly, in a murine model of allergen-induced airway remodelling, the airway
epithelium was found to be the main source of TGF�1 within the airway wall (Kelly et al.,
2005). Epithelial production of a number of growth factors also has been shown to be
upregulated in response to mechanical strain (Tschumperlin and Drazen, 2006).

16.2.2 Chemokines

Chemokines are a large superfamily of small (approximately 8–15 kDa), structurally related
cytokines with potent leukocyte activation and/or chemotactic activity. Their name is
derived from their ability to induce directed chemotaxis in nearby responsive cells; they are
chemotactic cytokines. Thus far, approximately 50 chemokines have been identified, along
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with some 20 or so receptors (Allen et al., 2007). Chemokines have been characterized
into four subgroups (Colobran et al., 2007). The majority of chemokines are classified as
members of either the �, or CXC, chemokine family, or the �, or CC, chemokine family.
Both of these subfamilies contain four cysteine residues in conserved locations that are
critical to forming their three-dimensional shape. The classification into subfamilies is based
on whether the two amino terminal cysteine residues are immediately adjacent, or separated
by one amino acid. The CXC chemokines contain a single amino acid between the first and
second cysteine residues, while the CC chemokines have adjacent cysteine residues. The
CXC family is further subdivided into two classes, based on the presence or absence of the
amino-terminal sequence Glu-Leu-Arg (ELR). The ELR-containing CXC chemokines are
predominantly chemoattractant for neutrophils, while the non-ELR subgroup is chemoat-
tractant for lymphocytes and other cells. By contrast, CC chemokines generally attract
monocytes, lymphocytes, basophils, and eosinophils. Two smaller subfamilies of chemokines
also exist. The C group is derived from only two highly homologous genes encoding XCL1
(lymphotactin-�) and XCL2 (lymphotactin-�). These two chemokines differ by only two
amino acid residues and both bind to the XCR1 receptor. Lymphokines lack two of the
four-cysteine residues and, thus have only one disulfide bond, but they share homology
with a number of CC chemokines. XCL1 and 2 are potent chemoattractants for T and NK
cells, but not for monocytes or neutrophils. Fractalkine (CX3CL1) is the only member of the
CX3C chemokine family, and has three amino acid residues between the first two cysteine
residues. By contrast to most chemokines, it tends to be tethered to the extracellular surface
of cells that produce it (Colobran et al., 2007). The epithelium can produce a broad array
of chemokines of the CXC, CC and CX3C classes. As such, epithelial cells can regulate the
recruitment of a wide variety of inflammatory cell types into the airway, depending on the
stimuli to which they are exposed, the profile of chemokines produced, and the extent to
which selected inflammatory cell populations are primed to respond (Figure 16.2).

Airway epithelial cells produce both classes of CXC chemokines. The prototypical ELR-
containing CXC chemokine produced in large quantities by epithelial cells is IL-8 (CXCL8),
a potent neutrophil chemoattractant. In vivo, epithelial cell expression of IL-8 is increased
in allergic rhinitis and asthma. Epithelial expression of IL-8 is induced in response to a wide
variety of stimuli, including cytokines, pollutants, allergens, and mechanical strain. Given the
prominent neutrophilic response following exposure of the airway to infectious agents, it is of
interest that inhaled pathogens, particularly respiratory viruses, are potent inducers not only
of IL-8 but also of ENA-78 (CXCL5), Gro-� (CXCL1) and Gro-� (CXCL3). Epithelial cells
also make large amounts of the non-ELR CXC chemokines, monokine induced by �-IFN
(Mig, CXCL9), IFN-inducible protein of 10 kDa (IP-10, CXCL10) and IFN-inducible T-cell
�-chemoattractant (I-TAC, CXCL11). All of these chemokines are ligands for the CXCR3
receptor found predominantly on Type 1 (Th1) lymphocytes and on NK cells. As their
names imply, all of these chemokines are induced by type I and type II interferons. Infection
of epithelial cells with respiratory viruses can also induce CXC chemokines. Interestingly,
while infection of epithelial cells with human rhinovirus induces production of CXCL10,
this occurs independently of interferon induction (Spurrell et al., 2005). Epithelial generation
of most CXC chemokines is not particularly sensitive to inhibition by glucocorticoids.

Epithelial cells also produce many members of the CC chemokine family that can function
as chemoattractants for eosinophils, basophils, monocytes, dendritic cells and lymphocytes,
depending upon their specific receptor usage. Eotaxin (CCL11), eotaxin-2 (CCL24) and
eotaxin-3 (CCL26) are selective ligands for the CCR3 chemokine receptor. Gene expression
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Figure 16.2 Epithelial cells can release chemoattractants for multiple types of inflammatory cells.
Depending upon the specific inciting stimulus, epithelial cells can release chemokines and other
chemoattractants (see text for abbreviations) that can recruit and activate neutrophils, eosinophils,
dendritic cells, monocytes and lymphocytes. Depending upon the spectrum of cells recruited and
activated, a range of pro-inflammatory products will be released. Several of these will feed back to
further activate the epithelium causing a perpetuation of the inflammatory response

of CCL11, CCL24 and CCL26 is increased in the airway epithelium of asthmatic individuals
and can be induced in vitro by exposure of epithelial cells to either IL-4 or IL-13 (van
Wetering et al., 2007). The predominant eosinophil chemoattractant released by epithelial
cells, however, is RANTES (regulated on activation, normal T-cell expressed and secreted,
CCL5). CLL5 levels are increased in the BAL fluids of asthmatic compared with normal
subjects, and eosinophil recruitment after allergen challenge is associated with increased
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levels of CCL5 in BAL fluid. Indeed, CCL5, together with IL-5, is reported to be the major
eosinophil chemoattractant in the asthmatic airway (Venge et al., 1996). Increased expres-
sion of CCL5 also is detected in the epithelium of nasal polyps, in the airway secretions
of subjects during virally induced asthma exacerbations, and in secretions from allergic
subjects after allergen challenge. The airway epithelium also produces mucosal-associated
epithelial chemokine (MEC, CCL28), macrophage inflammatory protein �MIP�-1� (CCL3),
and monocyte chemoattractant protein (MCP)-1 (CCL2). MCP-4 (CCL13) can be induced
by inflammatory stimuli in vitro, and is upregulated in the airway epithelium of asthmatic
patients, as well as in patients with sinusitis. Of particular interest is the ability of epithelial
cells to produce substantial amounts of MIP-3� (CCL20) in response to a variety of stimuli,
including ambient particulates and several cytokines (Reibman et al., 2003). CCL20 is a
ligand for the CCR6 receptor found on immature dendritic cells, and its chemoattractant prop-
erties for these cells could play an important role in linking innate and adaptive immunity.

More recently, airway epithelial cells have been shown to produce thymus and activation-
regulated chemokine (TARC, CCL17) in response to several stimuli, including whole allergen
extract of house dust mite (Heijink et al., 2007). TARC may be critical in Th2 cell recruitment
in allergic airway inflammation. Not only are increased levels of TARC found in BAL
after allergen challenge of allergic asthmatic subjects (Bochner et al., 2003), but increased
epithelial expression of TARC is also seen (Panina-Bordignon et al., 2001). The majority
of Th2 cells express CCR4 (Kim et al., 2001), the receptor ligand for TARC protein, and
an allergen-induced increase in CCR4+ T cells has been observed in asthmatic airway
(Panina-Bordignon et al., 2001).

Fractalkine (CX3CL1) is the only member of the CX3C chemokine family. The specific
receptor for fractalkine, CX3CR1, is expressed on monocytes, T-lymphocytes, mast cells
and NK cells. IFN� stimulates epithelial expression of fractalkine, although the majority of
fractalkine remains membrane tethered (Fujimoto et al., 2001). A recent study performed in
atopic asthmatic patients has reported that segmental allergen challenge resulted in significant
upregulation of BAL fractalkine, and that immunohistochemistry staining before and 24
hours after allergen provocation confirmed airway epithelial staining of fractalkine (Rimaniol
et al., 2003). Interestingly, not only was adhesion of mononuclear cells to IFN� stimulated
epithelial cells in vitro partially inhibited by antibodies to fractalkine, but levels of fractalkine
in BAL fluids from subjects with inflammatory airway diseases correlate with mononuclear
cell counts in the fluids (Fujimoto et al., 2001).

Interestingly, recent studies have demonstrated the presence of several functional
chemokine receptors, including CCR3, CXCR3, and CXCR4 on airway epithelial cells (Beck
et al., 2006; Kelsen et al., 2004; Eddleston et al., 2002), raising the possibility that epithelial
chemokine release also may act in an autocrine fashion.

16.3 Epithelial production of lipid mediators

Epithelial cells have the ability to convert arachidonic acid to a range of biologically active
metabolites. These mediators are expressed both constitutively, and in response to a variety
of stimuli. Once free arachidonic acid is released from membrane phospholipid stores, it is
subject in epithelial cells to oxidation along one of three major metabolic pathways, (1) the
lipoxygenase pathway, which produces the leukotrienes, mid-chain hydroxyeicosatetraenoic
acids (HETEs) and lipoxins; (2) the cyclooxygenase (COX) pathway, which produces the
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prostaglandins, and (3) the cytochrome P-450 monoxygenase pathway, which produces
midchain and �-terminal HETEs as well as cis-epoxyeicosatrienoic acids (EETs).

Although epithelial cells from all mammals examined metabolize arachidonic acid via
lipoxygenase pathways, considerable species variations exist in terms of the dominant
pathway used. Thus, while 5-lipoxygenase activity is evident in canine and ovine epithe-
lial cells, metabolism via 15-lipoxygenase predominates in human airway epithelial cells.
The 15-lipoxygenase pathway converts arachidonic acid to 15-HETE, as well as a variety
of biologically active hydroperoxy, epoxyhydroxy, keto, and dihydroxy acids (Holtzman,
1992). Expression of 15-lipoxygenase is increased in the epithelium of asthmatic individ-
uals, and elevated levels of 15-HETE are found in the BAL fluid of asthmatic subjects
after allergen challenge, where it is thought to potentiate 5-lipoxygenase activity in leuko-
cytes and enhance the early bronchoconstrictor response to inhaled allergen (Kumlin et al.,
1990). Once produced, 15-HETE can enhance epithelial mucus glycoprotein generation and
augment the acute response to allergen challenge in asthmatics (Lai et al., 1990). Another
metabolite, 8S, 15S-diHETE, induces neutrophil chemotaxis. The recruited neutrophils can
then utilize 15-HETE to generate the trihydroxy acid lipoxin A by a transcellular pathway
catalysed by 5-lipoxygenase. Lipoxin A inhibits the cytotoxic activity of human natural killer
(NK) cells, causes superoxide generation by neutrophils, and contracts human bronchi.

Human bronchial epithelial cells express both the COX-1 and COX-2 isoforms of
cyclooxygenase under basal conditions, but the expression of COX-2 is further enhanced
in vitro by inflammatory stimuli, such as IL-1� and bradykinin (Petkova et al., 1999).
Moreover, epithelial expression of COX-2 is markedly enhanced in asthmatic individuals
(Redington et al., 2001). The dominant COX pathway products generated in human epithe-
lial cells are Prostaglandin E2 �PGE2� and PGF2� (Churchill et al., 1989), and production
of both products is enhanced in response to several pro-inflammatory stimuli, including
bradykinin and histamine. Increased levels of both prostanoids also are detected in BAL
fluids of asthmatic and atopic subjects, and levels increase further in response to allergen
provocation (Liu et al., 1991). In vitro, PGE2 has several anti-inflammatory actions. It
inhibits mast cell degranulation and production of LTB4 by alveolar macrophages, and also
mediates relaxation of airway smooth muscle and regulates mucus glycoprotein secretion.
In vivo, inhalation of PGE2 blocks early and late bronchoconstrictor responses to inhaled
allergen and abolishes allergen-induced increase in bronchial reactivity (Pavord et al., 1993).
In addition, it attenuates exercise-induced bronchoconstriction (Melillo et al., 1994). On
the other hand, PGE2 increases cough sensitivity and may play a role in the cough associ-
ated with angiotensin-converting enzyme-inhibitor therapy. By contrast, PGF2� is a potent
bronchoconstrictor mediator (Holtzman, 1992).

Airway epithelial cells also express cytochrome P-450 monoxygenase enzymes with the
capacity to metabolize arachidonic acid into a series of regiospecific and stereospecific
fatty acid epoxides and alcohols. These include midchain and �-terminal HETEs as well as
cis-epoxyeicosatrienoic acids (EETs). Although most P-450 enzymes are primarily expressed
in the liver, the CYP2J isoform of P-450 is present in both ciliated and non-ciliated human
airway epithelial cells, and metabolites of the P-450 pathway affect epithelial ion transport
as well as bronchomotor tone (Jacobs and Zeldin, 2001).

Finally, it should be noted that human bronchial epithelial cells also synthesize platelet
activating factor (PAF), although the majority remains cell associated (Holtzman et al.,
1991). Interestingly, human airway epithelial cells also have functional receptors for PAF
(Kang et al., 1994), stimulation of which, in the presence of arachidonic acid, can induce
production of 15-HETE (Salari and Schellenberg, 1991).
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16.4 Epithelial production of peptide mediators

Airway epithelial cells generate a variety of peptide mediators, including human �-defensin
(HBD)-1–4 and the cathelicidin, LL-37. HBD-1 is constitutively expressed and production
of this molecule is modulated little by inflammatory stimuli. By contrast, HBD-2, 3, and
4 can be induced by a variety of stimuli, including cytokines, such as IL-17, and viral
infection. Interestingly, synergistic induction of HBD-2 is observed when cells are infected
with rhinovirus in the presence of IL-17. Cathelicidin is also constitutively produced, but
expression, again, can be enhanced by inflammatory stimuli. In addition to their roles in host
defence (see Chapter 10), these peptides can contribute to the regulation of inflammation.
Human �-defensins are chemotactic for immature dendritic cells and some types of T cells
(Yang et al., 2004), and so could enhance recruitment of these cell types to the airway. LL-37
is chemotactic for neutrophils, eosinophils and monocytes, and can stimulate angiogenesis
via actions mediated by interactions with the formyl peptide receptor-like 1 (Tjabringa
et al., 2005).

Epithelial cells from various animal species have been reported to produce peptides
including vasopressin, substance P and calcitonin gene-related peptide (CGRP), but there
is little data on production of these peptides by human cells. Human airway epithelial
cells do, however, produce endothelin-1 (ET-1) and endothelin-3 (ET-3), which are potent
bronchoconstrictor peptides. Cultured epithelial cells produce low levels of ET-1 at baseline,
but several stimuli, including infection with respiratory syncytial virus (Behera et al., 1998),
exposure to thrombin, or any of several cytokines, have been shown to enhance ET-1
synthesis and release in vitro. By contrast, production is inhibited upon treatment with
glucocorticoids, IFN�, or PDGF. In vivo, expression of the gene for preproendothelin, and
production of endothelin-1 peptide, is increased in epithelial cells from asthmatic subjects
(Ackerman et al., 1995). Elevated levels of endothelins are also found in BAL fluids from
asthmatic subjects, and BAL endothelin levels correlate with asthma severity (Nomura
et al., 1989). Intranasal administration of endothelin-1 induces sneezing and increased nasal
secretions, but does not induce increased vascular permeability (Riccio et al., 1995).

Once generated, endothelins not only cause bronchoconstriction, but stimulate mucus
production and airway microvascular leakage (Goldie and Henry, 1999). They can also
serve as autocrine regulators capable of stimulating epithelial production of cyclooxyge-
nase and lipoxygenase lipid mediators (Markewitz et al., 1995). Endothelins can induce
smooth muscle proliferation and promote airway remodelling (Goldie and Henry, 1999).
Moreover, there is evidence that endothelin receptor stimulation can potentiate cholin-
ergic nerve-mediated contraction in human airway (Fernandes et al., 1996), supporting
the concept that endothelins may have a mediator role in bronchial obstruction in airway
diseases.

16.5 Epithelial production of reactive nitrogen
and oxygen species

Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have tradition-
ally been thought of as being produced primarily by macrophages, and leukocytes, airway
epithelial cells are increasingly recognized as being an important cellular source of ROS and
RNS. Reactive oxygen species can be formed by a variety of enzymes, including xanthine
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oxidases, cyclooxygenase, NADPH oxidase and the dual oxidases (Duox) 1 and 2, which have
both been detected in airway epithelium (Geiszt et al., 2003). It has been shown that airway
epithelial cells from several species, including humans, release hydrogen peroxide at base-
line (Figure 16.3(A)). Although the amount produced is less than from macrophages, when
taken as a whole, the epithelial surface lining the entire respiratory tract could be a signif-
icant source of reactive oxygen molecules (Kinnula et al., 1991). Moreover, recent studies
have shown that levels of hydrogen peroxide produced at the airway surface from normal
airway epithelial cells are enough to support production of bacteriocidal hypothiocyanate,
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Figure 16.3 Production of reactive oxygen and nitrogen species, as well as antioxidants, by the
epithelium. (A) Epithelial cells endogenously produce reactive oxygen species (ROS), such as superoxide
�O2

−� and hydrogen peroxide �H2O2�, and reactive nitrogen species (RNS), such as nitric oxide (NO). In
addition, they release a range of antioxidants that can help regulate the activity of both endogenous
and exogenous ROS/RNS. These include mucins, lactoferrins, superoxide dismutases (SOD), glutathione
(GSH) and catalase. (B) In the normal airway, generation of antioxidants is sufficient to prevent
excessive effects of ROS/RNS and normal airway function is maintained. (C) In smokers, the huge
additional burden of ROS/RNS derived from cigarette smoke can overwhelm the actions of antioxidants
leading to chronic effects of ROS/NOS on cellular functions and tissue damage
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while production was markedly impaired using epithelial cells derived from patients with
cystic fibrosis (Moskwa et al., 2007). This generation of hydrogen peroxide appeared to be
mediated mainly by Duox enzymatic activity (Moskwa et al., 2007). It should be noted that
epithelial production of hydrogen peroxide can be increased by a variety of pro-inflammatory
stimuli, such as PAF and TNF-� (Rochelle et al., 1998). Reactive oxygen species have
marked effects on the functions of airway cells, including epithelial cells. Oxidant stress is
known to play a role, for example, in epithelial production of several cytokines, chemokines,
and adhesion molecules (Martin et al., 1998; Nakanaga et al., 2007), most likely via the
ability of ROS to alter the expression and activation of transcription factors, such as NF-	B,
and AP-1, that are known to play a role in induction of these molecules.

Among the reactive nitrogen species produced by epithelial cells, nitric oxide (NO)
is the most studied (Figure 16.3(A)). NO is a highly reactive free radical with wide-
ranging biological effects on multiple target cells. In general, it exerts its effects by three
main categories of molecular actions: (1) via donation of electrons to transition metals
forming metal-nitrosyl complexes that can activate or inhibit the function of proteins. A well-
characterized example of this is the activation of soluble guanylyl cyclase, which contains a
heme group. NO disrupts the bond between the ferrous iron of this heme group and histidine
105 of the enzyme leading to increased cGMP synthesis; (2) via S-nitrosylation of thiol
groups in amino acid constituents of proteins or peptides; and (3) via reactions with other
radicals, such as superoxide, leading to the formation of peroxynitrite, which can oxidize
thiol residues in amino acids, leading to altered biological functions.

NO is produced from L-arginine by any of three isoforms of the enzyme, nitric oxide
synthase (NOS). Although airway epithelial cells have been reported to express mRNA for
all three isoforms of NOS, the Type II, or inducible form, of the enzyme (iNOS) is the major
form detected at the protein level (Guo et al., 1995). It has been suggested that epithelial
iNOS activity is the major determinant of levels of NO in exhaled breath (Lane et al., 2004),
and epithelial expression of iNOS, and production of NO, in vitro is increased upon exposure
to a variety of pro-inflammatory stimuli, including cytokines, and infection with any of a
number of respiratory viruses (Proud, 2005). Levels of exhaled NO are altered in several
inflammatory airway diseases. Increased levels of exhaled NO are seen in asthma, chronic
obstructive pulmonary disease, and respiratory viral infections (Kharitonov et al., 1994,
1995; Maziak et al., 1998), leading to the suggestion that NO may contribute to disease
pathogenesis and be a marker of inflammation. By contrast, however, levels of exhaled NO
are decreased in other inflammatory disorders, such as chronic rhinosinusitis (Lindberg et al.,
1997), and epithelial iNOS expression and NO production also are decreased in patients with
cystic fibrosis. Thus, caution is needed in associating the presence of increased NO with a
causative role in pathogenesis.

The initial focus on NO in the airway was as a pro-inflammatory and deleterious medi-
ator, based on its actions as a vasodilator that can enhance vascular permeability under
some conditions, and its ability to induce mucus secretion, modulation of ion transport,
enhancement of COX-2 activity and prostaglandin production, and to cause tissue damage
via formation of peroxynitrite (Bove and van der Vliet, 2006). By contrast, NO can also exert
several positive effects. It is a bronchodilator, positively regulates ciliary beat frequency,
inhibits selective adhesion processes necessary for inflammatory cell recruitment, and also
inhibits the increased vascular permeability seen at inflammatory sites (Bove and van der
Vliet, 2006; Granger and Kubes, 1996). NO also plays an important role in host defence.
It displays direct antiviral effects against several important respiratory viruses, including
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rhinoviruses, respiratory syncytial virus and influenza (Proud, 2005). It can also suppress
viral induction of a range of cytokines and chemokines (Sanders et al., 1998). This is,
perhaps, not surprising, as NO is known to modulate several key signalling pathways that
have been implicated in cytokine induction. These include members of the mitogen-activated
protein kinase family that have been implicated in both transcriptional and posttranscriptional
regulation of virally-induced cytokines, as well as members of the Janus family of kinases
(Schindler and Bogdan, 2001). NO also can nitrosylate a variety of transcription factors,
such as SP1 and EGR-1, that contain Cys2His2 zinc finger type DNA-binding motifs, as
well as transcription factors such as NF-	B and AP-1, that contain cysteine residues close
to their DNA binding regions (Bove and van der Vliet, 2006). Interestingly, in light of these
observations, a recent study of in vivo experimental rhinovirus infections found not only that
levels of epithelial iNOS expression correlated with levels of exhaled NO, but that subjects
with the highest levels of exhaled NO had lower symptom scores and cleared virus more
rapidly (Sanders et al., 2004). It also has been suggested that defective generation of NO
in subjects with cystic fibrosis contributes to the increased susceptibility of such patients
to repeated airway infections (Zheng et al., 2003). Thus, the overall role of NO in airway
diseases is complex and incompletely understood.

16.6 Epithelial production of proteases

Proteases in the airway can have profound effects on epithelial function and on other
airway structural cells to modulate airway inflammation. They can also affect airway
structural/matrix proteins which appear to be critical to the pathogenesis of airway remod-
elling. Although proteases can be derived from inhaled pathogens and from inflammatory
cells, it is now recognized that the epithelial cell is a significant source of proteases that
can modulate the environment in the airway. Although the epithelium is the source of a
variety of proteases, such as cathepsin B and members of the a disintegrin and metallo-
proteinase (ADAM) family of enzymes, particular interest has focused on members of the
family of zinc-dependent matrix metalloproteinases (MMPs) which collectively can degrade
all components of the extracellular matrix, and are thought to be central to the pathogen-
esis of COPD and airway remodelling in asthma. Airway epithelial cells produce MMP-2
(collagenase A), MMP-7 (matrilysin), MMP-9 (gelatinase B) and MMP-12 (metalloelastase).
Levels of MMP2, MMP-9 and MMP-12 are all increased in asthmatic subjects, but MMP-9
appears to be the major MMP in the airway of asthmatics (Kelly and Jarjour, 2003). MMP-9
is strongly expressed in repairing epithelial cells and can be induced by pro-inflammatory
cytokines and by activation of epithelial proteinase-activated receptor (PAR)-2. Levels of
MMP-9 are increased in blood, sputum, BAL and airway biopsies of asthmatic subjects and
in BAL after allergen challenge. The ratio of MMP-9 to its primary inhibitor, tissue inhibitor
of metalloproteinases (TIMP)-1, is selectively increased by some pro-inflammatory stimuli
and is also increased in the airway during acute asthma exacerbations (Cohn et al., 2004).
This increased activity of MMP-9 to TIMP-1 enhances effects on matrix proteins and favors
airway remodelling. MMP-9 can also activate TGF�1, which is a key regulator of fibrotic
pathways. Other MMPs also have the capacity to modulate inflammation and remodelling.
MMP-12 regulates subepithelial fibrosis and eosinophilia in mouse models, while MMP-2
appears to regulate inflammatory cell migration within the lung (Cohn et al., 2004). Although
epithelial cells produce MMPs that can degrade matrix proteins, it should be noted that they
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can also contribute to matrix protein deposition in the airway. They produce fibronectin
and tenascin, and production of these proteins is markedly upregulated at sites of epithelial
injury and repair.

16.7 The role of epithelial cells in the recruitment
of inflammatory cells

The mechanisms by which leukocytes interact with, and migrate through the epithelium
remain relatively poorly understood. It is obvious, however, that recruitment of inflam-
matory cells into the airway is dependent on the presence of various chemoattractants,
including arachidonic acid metabolites, cytokines, chemokines, and peptides. Production of
these chemoattractants by airway epithelial cells is considered to play a critical function
in the recruitment of inflammatory cells into the airway. In addition to chemoattractant
stimuli, however, migration of inflammatory cells to the airway epithelium and the airway
lumen requires specific interactions of leukocyte counterligands with adhesion molecules
on the epithelium. Epithelial cells do not express E-selectin, and it is controversial as to
whether vascular cell adhesion molecule-1 (VCAM-1) is expressed. The role of epithelial
cell adhesion molecule (Ep-CAM), if any, in leukocyte–epithelial interactions is unknown.
However, airway epithelial cells do express intercellular adhesion molecule-1 (ICAM-
1/CD54), and expression is enhanced following exposure to pro-inflammatory cytokines,
as well as in response to respiratory viral infections. Epithelial cells of asthmatics show
increased expression of ICAM-1 compared with normal subjects (Vignola et al., 1993).
ICAM-1 is a counterligand for leukocyte �2 integrins (CD11/CD18), which play a central role
in leukocyte-epithelial adhesion, as preincubation of leukocytes with monoclonal antibodies
to CD18 abrogates this adhesion. Interestingly, blockage of epithelial ICAM-1 is much less
effective in reducing leukocyte adhesion, implying that additional CD18-dependent, ICAM-
1-independent, adhesion mechanisms must also exist (Tosi et al., 1994). Further support for
this concept comes from studies in mice, showing that neutrophil emigration into the alve-
olar spaces during acute Streptococcus pneumoniae infection remained normal in animals in
which the genes for both P-selectin and ICAM-1 were mutated (Bullard et al., 1995). Recent
studies have also examined transepithelial migration of leukocytes in the physiologically
relevant basolateral to luminal direction. Again, interactions between epithelial ICAM-1 and
�2 integrins contribute to this process but blockade of either ICAM-1 or of �2 integrins does
not lead to complete inhibition (Kidney and Proud, 2000).

In terms of alternative epithelial adhesion molecules, there is evidence that �2 integrins
bind to oligosaccharide determinants on epithelial cells. For example, heparin and heparin
sulfate proteoglycans can bind CD11/CD18, although whether this is a major event on
epithelial cells is unclear. Fucosylated proteoglycans also bind to �2 integrins and play a role
in neutrophil adhesion to intestinal epithelial cells, but these data have not yet been extended
to airway epithelial cells (Zen and Parkos, 2003). The junctional adhesion molecule, JAM-
C, is a component of epithelial desmosomes which binds specifically to CD11b/CD18 on
neutrophils. JAM-C gene deficient mice show altered airway responsiveness and increased
numbers of circulating granulocytes (Imhof et al., 2007). In addition, antibodies to JAM-C
inhibit neutrophil transmigration through intestinal epithelial cells, but such studies have not
yet been extended to airway epithelium (Zen et al., 2004).
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16.8 Anti-inflammatory actions of epithelial cells

The capacity of the epithelium to produce the products described above indicate that epithe-
lial cells can be a major contributor to airway inflammation and structural remodelling.
However, in general, the function of the epithelium is to contribute to maintaining normal
airway function. In this context, the epithelial cell plays a role in limiting excessive airway
inflammation by contributing to the catabolism of some proinflammatory mediators and by
inhibiting the actions of others. Two major classes of epithelial products that are important
in this regard are inhibitors of proteases and peptides, and antioxidants.

16.8.1 Production of protease inhibitors and peptidases

As noted above, the airway epithelium is, itself, a source of several proteases that can exert
functional effects in the airway. In addition, however, proteases derived from other host cells,
such as neutrophils, or from inhaled pathogens, including a wide array of allergens, such as
house dust mite, cockroach, fungi, and some pollens, can exert a variety of actions on target
tissues within the airway, including the epithelium itself. For example, proteases derived
from several allergens, as well as neutrophil elastase, induce production of cytokines and
chemokines from epithelial cells, while neutrophil elastase is also a stimulus for epithelial
mucin production (Shao and Nadel, 2005). Moreover, elastase, cathepsin G and several
allergen-derived proteases can compromise epithelial barrier function via disruption of cell–
cell contacts, thereby enhancing access of allergens to underlying antigen-presenting cells
(see Chapter 15). Indeed, studies in mice have revealed that proteolytic activity is an
important factor in host sensitization toward allergens (Kheradmand et al., 2002; Fattouh
et al., 2005).

It is clear, therefore, that while recruitment of neutrophils and other inflammatory cells is
an important component of the host response to inhaled pathogens, excessive exposure of
the airway to proteases derived from pathogens or inflammatory cells can have deleterious
effects on airway function. To help protect the airway from the negative effects of proteases,
epithelial cells produce a range of protease inhibitors. Although epithelial cells themselves
produce MMP-2 and MMP-9 that can metabolize matrix proteins (see above), the epithelium
is also a source of the major inhibitor of these enzymes, TIMP-1. Under normal circum-
stances, the ratio of MMP to TIMP-1 is approximately 1:1 but several pro-inflammatory
stimuli can differentially regulate this ratio to promote or reduce matrix degradation (Yao
et al., 1997). Epithelial cells also produce a range of inhibitors to reduce the activity of
serine and cysteine proteinases. These include secretory leukocyte protease inhibitor (SLPI)
and elafin that are able to regulate the effects of neutrophil elastase on cytokine produc-
tion, glycoconjugate production and downstream tissue damage. Administration of SLPI, the
major elastase inhibitor in the large airway, to patients with cystic fibrosis (CF) reduces both
elastase activity and IL-8 levels in airway secretions (McElvaney et al., 1992). SLPI is a
broad-ranging inhibitor that can limit the actions of multiple proteases, including cathepsin
G, mast cell chymase, and enzymes with tryptic and chymotryptic specificity. By contrast,
Elafin, also called elastase-specific inhibitor (ESI), selectively inhibits both elastase and
proteinase 3. The broad-ranging inhibitory function of epithelial cells is further enhanced by
production of cystatin C, �1-antiprotease inhibitor, and �1-antichymotrypsin. Expression of
several of these inhibitors increases in response to pro-inflammatory cytokines (Sallenave
et al., 1994).
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Epithelial cells also degrade and regulate the actions of several biologically active peptides
produced as part of the airway inflammatory response because they express cell-surface
peptidases, such as neutral endopeptidase and aminopeptidase M (Proud et al., 1994), that
can degrade bradykinin, enkephalins and several other peptides.

16.8.2 Antioxidant production

As noted above, reactive oxygen species (ROS) can exert profound effects in the airway.
In the normal lung, the airway have an effective protection capacity against ROS, with the
epithelial cell being a significant contributor to these protective mechanisms via production
of a range of antioxidants (Figure 16.3 (A) and (B)). Studies on animal models have shown
that mucins provide significant protection against oxidants, and that epithelial production of
these glycoproteins is increased upon oxidant exposure (Cross et al., 1984; Adler and Li,
2001). In addition, the epithelium produces molecules, such as lactoferrin, that can bind free
iron and so could be protective, as metal ions including iron are important in the generation of
oxidant radicals via the Fenton reaction. The primary protection against the activity of super-
oxide radicals are members of the superoxide dismutase (SOD) enzyme family, including
manganese SOD, copper/zinc SOD and extracellular SOD, all of which are widely expressed
in the lung (Kinnula and Crapo, 2003). Epithelial cells produce both manganese SOD and
copper/zinc SOD, which can be induced by several cytokines and are generally thought to
act as important bulk scavengers of superoxide. Epithelial lining fluid also contains a high
content of the sulphydryl-containing antioxidant glutathione (GSH), a molecule that also
has been considered as one of the primary antioxidants in the human lung (Cantin et al.,
1987). Other antioxidants produced by airway epithelial cells include catalase and enzymes
associated with GSH metabolism. The latter group of enzymes includes glutathione perox-
idases (GPXs), glutathione reductase, and glutathione synthase. Catalase and the enzymes
associated with GSH metabolism are involved in hydrogen peroxide metabolism, and due
to the high levels of enzymes associated with GSH metabolism in the epithelial lining fluid,
these enzymes are thought to have central roles in lung protection.

Although the airway contains sufficient antioxidant protection under normal circum-
stances, cigarette smoke contains an enormous burden of oxygen free radicals and high
concentrations of NO, both of which can overwhelm normal defence mechanisms to cause
significant oxidant stress within the airway (Figure 16.3 (B) and (C)). Some antioxidant
enzymes are induced, but the extent of induction is insufficient to protect the airway epithe-
lium and other lung tissues against the deleterious effects of cigarette smoke. Impaired
oxidant–antioxidant balance is thought to be a major factor in the pathogenesis of smoking-
related COPD and functional polymorphisms in enzymes such as SOD may be a contributing
factor to the individual susceptibility to smoking-related lung disease (Kinnula, 2005). Conse-
quently, pharmacological approaches to enhance antioxidant protection have been considered
of potential therapeutic benefit. Variable results have been obtained administering vitamins
with antioxidant functions to patients with COPD. N-acetylcysteine (NAC), which may
enhance glutathione activity, has shown positive effects in animal models and has been
tested in humans with some benefits, but NAC can also have pro-oxidant side effects. Simi-
larly, synthetic compounds with superoxide dismutase and catalase activities have shown
promising results in animal models against a variety of oxidant exposures including cigarette
smoke in the lung but additional studies are needed to assess effectiveness in humans
(Kinnula, 2005).
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16.9 Summary

The epithelial cell can no longer be considered primarily in terms of its function as a barrier.
Rather, it generates a wide variety of products that can modulate numerous aspects of
airway function. It can regulate the content of airway secretions, control inflammatory cell
recruitment to the airway, and modulate airway tone and vascular permeability. Importantly, it
is an important contributor to host immune responses, and a regulator of airway remodelling.
As such, the airway epithelium almost certainly contributes to the pathogenesis of the allergic
inflammatory response of asthma, as well as the inflammatory responses seen in COPD,
infective bronchitis and bronchiectasis. Given that over-exuberant inflammatory responses
of the epithelial cell can have profound effects on airway function, it is clearly a primary
target for novel anti-inflammatory interventions in airway disorders, particularly those drugs
administered by inhalation. Thus, a better understanding of the dynamic properties of the
airway epithelium during acute inflammatory events may provide additional insights into
appropriate targets for therapeutic intervention.
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17.1 The epithelium and airway remodelling

Remodelling of the airway may be considered as altered structure, and as a consequence
function, of the airway in response to a wide range of stimuli, most of which are associated
with epithelial injury and aberrant repair. This aspect of airway disease is intimately linked
to chronic airway inflammation, with both remodelling and inflammation contributing to a
wide range of chronic lung disorders including asthma, COPD, bronchiectasis and cystic
fibrosis. Remodelling of the lung is also central to the pathogenesis of interstitial pulmonary
fibrosis and to a range of organizing pneumonias. However, it is in the field of asthma
that this subject has been most widely researched and this review will therefore concentrate
on asthma as an example of the disease where remodelling contributes to pathophysiology
(Holgate et al., 2004).

It is now clear that, rather than being a single disease, asthma is a spectrum of disorders
that is initiated at different stages through life by a range of environmental factors interacting
with a susceptible genetic background (Wenzel, 2006). Most simply, asthma is divided into
allergic or non-allergic asthma but even within each of these two broad categories there is
enormous heterogeneity, both with respect to clinical and physiological manifestations of
the disease, its symptoms, response to treatment and natural history (Wardlaw et al., 2002).
Both in allergic and non-allergic asthma, Th-2 type T-lymphocyte-driven inflammation
with involvement of mast cells, eosinophils, basophils and macrophages underpins the
chronic inflammatory response that is so characteristic of this disease. It is also the airway
inflammation against which much of the current therapy for asthma is directed, especially
corticosteroids, mast cell stabilizing agents and anti-leukotrienes. Associated with the chronic
inflammatory response are important interactions between the airway and the breathed
environment, with pivotal roles being played by allergens, infectious agents, including
viruses, bacteria and fungi, environmental tobacco smoke and a range of chemicals including
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outdoor air pollutants (Eder et al., 2006). While over 80 per cent of asthma is associated with
atopy (the genetic predisposition to generate IgE against common environmental allergens),
over 50 per cent of the population in the developed world is atopic and yet only 7–9 per cent
express this in the form of asthma (Pearce et al., 1999). Thus, there must be some important
factors that translate the atopic phenotype into the lower airway manifestion of asthma.
Antigen presentation and processing within the airway are likely to be critical processes.
These include factors that determine the response of dendritic cells at the surface of the
airway to inhaled allergens and other stimuli and how they communicate this to T-cells for
amplifying the inflammatory response (Hammad and Lambrecht, 2006). The relationship
between the adaptive immune response to environmental allergens and pathogens in relation
to the subsequent airway response will be discussed later.

As in other chronic inflammatory disorders, such as rheumatoid arthritis, inflammatory
bowel disease and psoriasis, chronic immune and inflammatory responses are associated
with a variable degree of structural change in the target tissue. In the case of asthma, the
extent of inflammation, and the structural changes seen in the airway, are related to disease
severity but are not dependent on either atopy or duration of symptoms (Bai and Knight,
2005). It has also been assumed that airway inflammation is fundamental to the origins
of asthma but this is now being questioned with the discovery that, even early in life, the
onset of asthma is associated with marked structural changes in the relative absence of
airway inflammation (Barbato et al., 2006; Fedorov et al., 2005). Thus, when considering the
concept of ‘remodelling’ of the airway in asthma one should also consider what connection
this has with airway ‘modelling’ during fetal lung branching and morphogenesis (Bousquet
et al., 2000). Interactions between organ morphogenesis and wound-healing responses are
leading to new concepts about how chronic airway inflammation can be supported by a
remodelled airway and vice versa. When considering the individual components of airway
remodelling in asthma there are five features that have been identified (Figure 17.1):

SM

MP

LR

Ep

Figure 17.1 Cross-section of a large airway from a patient who died from asthma. Note the extensive
damage to the airway epithelium. The arrows highlight the marked thickening and hyalinization of the
lamina reticularis (LR) in asthma. SM, smooth muscle; Ep, epithelium; MP, mucous plug. (Reproduced
courtesy of Holgate ST and Polosa R, Lancet 2006 Aug. 26, 368(9537): 780–793)
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1. epithelial damage and impaired repair

2. epithelial mucous metaplasia and submucosal gland hypertrophy and hyperplasia

3. deposition of matrix protein and proteoglycans in the lamina reticularis beneath the
epithelium

4. the deposition of matrix proteins and proteoglycans in the submucosa, smooth muscle
and in the airway adventitia

5. microvascular and neural network remodelling

In chronic asthma, a new theme for pathogenesis is emerging of a damaged epithelium which
repairs incompletely leading to a chronic ‘wound response’ in the airway and the subsequent
secretion of a range of growth factors that drive sub-epithelial remodelling (Davies et al.,
2003; Knight and Holgate, 2003). In order to understand the relationship between the
epithelium and these other events, it is important to break down the pathophysiological
processes involved into several stages.

17.2 Epithelial injury and impaired repair

The human lung is the largest surface that is in continuous contact with the outside world
and presents an estimated area of 100 m2 that comes into contact with inspired air. Every
day approximately 10 000 litres of ambient air are inhaled containing numerous potentially
harmful physical, chemical and biological agents. The airway epithelium provides the inter-
face with the breathed environment and, in this respect, forms a physical barrier against
these agents to provide the first line of defence which is then complemented by mucocil-
iary clearance. Initially thought to be pseudo-stratified, the large conducing airway are now
considered to be lined by a stratified epithelium comprising ciliated epithelial cells, mucus-
producing goblet cells, non-ciliated bronchiolar Clara cells and basal cells (van Winkle
et al., 2004). The conducting airway epithelium is covered by surface liquid approximately
10 �m thick, which comprises a periciliary layer around the microvilli and an overlying
mucus layer. The separation of the airway surface liquid into two layers enable the cilia to
beat and subsequently move mucus onto which inhaled particles are trapped. Under normal
circumstances the epithelium forms a highly regulated and impermeable barrier through the
formation of tight junctions (TJs) at the apical aspect of the columnar cells. These TJs are
comprised of complex proteins including Zona occludens 1–3, occludins and claudins as well
as trans-membrane adhesion proteins (�-catenin, E-cadherin and JAM) that enable commu-
nication between adjacent cells (see Chapter 2) (Shin et al., 2006). In addition, structural
integrity of the epithelium is maintained through cell–cell, and cell–extracellular matrix,
interactions involving desmosomes and hemidesmosones (Roche et al., 1993). Disruption
of the columnar epithelium will enable potentially tissue-damaging agents and infectious
particles to penetrate into the airway tissue, thereby stimulating an immune and inflam-
matory response with subsequent tissue damage (Figure 17.1). In asthma there is both in
vivo and in vitro evidence that the barrier function of the airway epithelium is impaired,
which increases the susceptibility of the airway to injury (Ilowite et al., 1989; Knight, 2002).
Using epithelial cells brushed from normal and asthmatic airway, and subsequently cultured
in vitro and differentiated at an air–liquid interface (ALI), we have demonstrated that, in
asthma, the epithelium is defective in its ability to form effective TJs, thereby enabling
external agents to pass through the epithelium to the basal layer and beyond. Certain environ-
mental factors, such as respiratory viruses and proteolytically active allergens, such as DerPI
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cysteine protease, also have the capacity to disrupt tight junctions and increase epithelial
permeability (Wan et al., 2000).

Since many of the injurious chemical, particulate and biological insults to the airway
mediate their tissue-damaging effects through the generation of reactive oxygen species.
The normal airway epithelium is well equipped with antioxidant enzymes, as well as active
radical traps that helps maintain epithelial integrity (Rahman et al., 2006). However, in
asthma, there is increasing evidence of defective antioxidant pathways, including deficiencies
in superoxide dismutase and glutathione peroxidase. These deficiencies help explain why
the asthmatic airway epithelial epithelium in vitro is more susceptible to oxidant-induced
damage (Bucchieri et al., 2002; Comhair et al., 2001; Rahman et al., 2006).

An important question is whether, in vivo, the asthmatic airway epithelium exhibits
features of chronic damage. Although ‘epithelial desquamation’ has been described as a
pathological feature of asthma death for many years (Laitinen and Laitinen, 1994; Montefort
et al., 1993), its significance has never really been appreciated until relatively recently
(Shahana et al., 2006; Shebani et al., 2005). Bronchial biopsy studies from patients with
asthma of increasing severity, not only demonstrate physical damage to the columnar cell
layer, but also evidence for injury through the expression of cell stress indices, such as
heat shock protein (HSP) 70 (Bertorelli et al., 1998), activation of the caspase enzyme
cascade involved in premature programmed cell death (Bucchieri et al., 2002; Truong-
Tran et al., 2002) and surface expression of epidermal growth factor receptors (EGFRs)
(Hamilton et al., 2003, 2005; Polosa et al., 2002) (Figure 17.2). These markers of ‘injury’ are
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Figure 17.2 Increased expression of the epidermal growth factor receptor (EGFR) in the airway
epithelium in moderate and severe childhood asthma (right) with quantification by image analysis
compared to normal (left). In moderate asthma expression of EGFR is most evident in the basal cells,
whereas in severe disease expression is throughout the epithelium. Note also the mucous metaplasia and
the thickening of the sub-epithelial lamina reticularis. (Reproduced courtesy of Fedorov, I. et al., 2005)
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present even the mildest forms of asthma, but also increase in proportion to disease severity
and chronicity. Almost identical changes are seen in the airway epithelium in children
with early onset asthma (Fedorov et al., 2005), leading to the conclusion that this process
is fundamental to the origins of the disease. Under normal circumstances, injury to the
epithelium, whether initiated by chemical, physical, or biological agents, should stimulate
pathways such as engagement of EGFRs by appropriate ligands (EGF, amphiregulin and
Heparin Binding-EGF) to drive the proliferation and subsequent differentiation that are
features of the primary repair response. In addition to there being evidence of increased
injury and premature apoptosis in asthma, the airway epithelium is also deficient its ability
to repair. This is manifested by the reduced expression of markers of cell proliferation
in the nuclei of basal epithelial cells, such as Ki67 and proliferating cell nuclear antigen
(PCNA), along with an impaired ability of the epithelium to restitute itself following injury
as a result of overexpression of cell cycle inhibitors in the nuclei, such as P21waf (Fedorov
et al., 2005; Knight and Holgate, 2003) (Figure 17.3). This leads to a ‘chronic wound’
scenario, or healing by ‘secondary intention’, that characterizes the epithelial response in
chronic asthma. An abnormal epithelium is also the source of increased production of a
number of cytokines and chemokines including interleukin (IL)-8, GM-CSF, RANTES,
and MCP3, as well as overexpression of receptors, such as protease-activated receptor 2
(PAR2) (Knight and Holgate, 2003). Kicic and colleagues (Kicic et al., 2006) have reported
that airway epithelial cells obtained from children with asthma and grown to confluence
in vitro demonstrate increased production of prostaglandin E2 and IL-6, and evidence of
increased (rather than decreased) epithelial proliferation. Because the functional and cellular
abnormalities reported in asthmatic epithelial cells are preserved with successive passage in
culture, it is thought that, as found in adult asthma, these defects may well be intrinsic to
the origins of the disease and not the secondary to airway wall inflammation.
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Figure 17.3 Image analysis to quantify the expression of the proliferation marker Ki67 (left) and
the cell cycle inhibitor p21 (right) in the nuclei of the airway epithelium in moderate and severe
childhood asthma compared to normal control. (Reproduced courtesy of Fedorov, I. et al., 2005)
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17.3 Changes to the epithelial laminar reticularis
(basal laminar)

In both adults and children, another highly characteristic feature of asthma is the hyalinization
and thickening of the laminar reticularis beneath the epithelial basement membrane
(Figure 17.4). This pathological abnormality is accompanied by an increase in the number
and activity of sub-epithelial myofibroblasts, with their capacity to lay down new matrix
proteins at the site, including tenasin C, fibronectin and, types I, III and IV collagens
(Karjalainen et al., 2003; Roche et al., 1989). The fact that these changes are present in
biopsies from the airway of children with asthma soon after its inception (Figure 17.5),
suggests that they start at, or soon after, the disease origin (Payne et al., 2003; Pohunek et al.,
2005; Saglani et al., 2005). The mechanisms involved in this ‘modelling’ of the basal lamina
are not known, although, in a range of animal models, similar changes can be induced when
the epithelium is injured chronically to stimulate the release of a range of profibrotic growth
factors, especially transforming growth factor �TGF�-� (Leung et al., 2006; Locke et al.,
2007). The airway epithelium has the capacity to generate fibroblast growth factor (FGF)-1,
FGF-2, platelet-derived growth factors, IgEs and TGF-�2, all of which are able to interact
with fibroblasts to cause their proliferation or differentiation into myofibroblasts (Zhang
et al., 1999). Because these growth factors are overexpressed in the airway epithelium of

Normal Mild asthma Severe asthma

Figure 17.4 Transmission electron micrographs of normal (A), mild (B) and severe (C) asthmatic
epithelium to show goblet cells (s), thickened lamina reticularis (lr) and epithelial damage
characteristic of severe disease. Note the spaces between the epithelial cells evident in mild asthma.
f, fibroblast; m, macrophage; b, basal epithelial cell
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Figure 17.5 Haematoxylin and eosin stained sections of airway biopsies from children aged 7–9
with moderate and severe asthma showing the hyaline thickening of the lamina reticularis and goblet
cell metaplasia (right) and the quantification of the collagen layer by image analysis when compared
to normal control children (left). (Reproduced courtesy of Fedorov, I et al., 2005)

patients with asthma, it has been assumed that the epithelial cell is the principal source for the
profibrogenic factors that contribute to thickening of the subepithelial basal lamina. Factors
that may contribute to the induction of growth factor secretion include mechanical stress
imposed upon the epithelium as well as an interaction with inflammatory cells, especially
eosinophils (Choe et al., 2003; Phipps et al., 2004).

Eosinophils are considered to be fundamental to the inflammatory response of asthma but
despite having a major impact in reducing circulating and sputum eosinophils, the blocking
anti-IL5 monoclonal antibody mepolizumab, when administered to patients with asthma,
only reduced tissue eosinophils in the airway by approximately 50 per cent (Flood-Page
et al., 2003a), possibly due to loss of IL-5 receptors from a proportion of eosinophils as they
enter the airway from the circulation. While anti-IL-5 has no effect on the allergen-induced
early- or late-phase reactions, bronchial hyperresponsiveness or clinical manifestations of
chronic asthma, three infusions of mepolizumab over a period of 10 weeks resulted in
reduced immunostaining for tenascin C, collagen III and lumican in the lamina reticularis
(Flood-Page et al., 2003b), implying a role for eosinophils in contributing to this pathological
feature of asthma (Figure 17.6). Human eosinophils are an important source of TGF-�, which
has been shown to drive differentiation of sub-epithelial fibroblasts into myofibroblasts (Kay
et al., 2004). Interestingly, thickening and hyalinization of the lamina reticularis of the
epithelial basement membrane is also a characteristic of cough-variant asthma (eosinophilic
bronchitis) (Brightling et al., 2003) indicating that, while being a marker of epithelial injury
and aberrant repair, this change need not be associated with bronchial hyperresponsiveness
and variable airway obstruction that characterizes asthma.
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Figure 17.6 Immunoreactive tenascin in the sub-epithelial basement membrane region in normal
(left), asthmatic before (middle) and 12 weeks after (right) three injections of the IL-5 blocking
monoclonal antibody mepolizumab. Note the increased tenascin in asthma and its loss after anti-IL-5
treatment. (Reproduced with permission from Flood-Page, P. et al., 2003b)

17.4 Submucosal smooth muscle adventitial deposition
of matrix

Using high-resolution computed tomography (HRCT) there is good evidence to show that
asthma chronicity and severity is associated with thickening of the airway walls (Lee et al.,
2004b; Vignola et al., 2004). Pathological analysis has also shown the deposition of matrix
proteins, such as collagens I and III, as well as proteoglycans in the submucosa and airway
smooth muscle that may, in part, be responsible for this airway wall thickening (Pepe
et al., 2005; Pini et al., 2007). Using either HRCT (Park et al., 1997), or an ultrasound
bronchoscopic probe (Shaw et al., 2004), to examine airway dimensions, bronchial hyper-
responsiveness has been shown to be inversely related to airway wall thickness suggesting
that the latter may initially be a compensatory response to help protect the airway against
repeated contraction. In the long term, however, airway wall thickening associated with
deposition of matrix will lead to an irreversible component of airflow obstruction and it is
this that is most commonly referred to as airway wall ‘remodelling’.

The presence of activated fibroblasts in the conducting airway has recently aroused further
interest in the possibility that epithelial cells themselves may undergo transdifferentiation
to fibroblasts, or that primitive ‘fibrosites’ may be recruited from the bone marrow via the
circulation into the asthmatic airway (Nihlberg et al., 2006). While there is some evidence for
epithelial parenchymal transition in interstitial lung disease (Kim et al., 2006) and in animal
models (Wu et al., 2007), evidence that this process plays a role in airway remodelling in
asthma is lacking. However, repeated allergen provocation of asthmatic airway can lead to
the recruitment of primitive fibrocytes into the airway and bronchoalveolar lavage fluid, with
a possibility that these contribute to airway wall remodelling (Schmidt et al., 2003). The
precise functions of matrix proteins in the remodelled asthmatic airway remain unknown,
and our understanding is further hampered by not having any good methods to measure the
functional significance of matrix protein deposition. Nevertheless, the relentless decline in
baseline lung function that is known to occur in chronic asthma over time, and that is only
partly modified by corticosteroid therapy, is thought to be in large part the result of the
remodelling component of asthma (Postma and Timens, 2006; ten Brinke et al., 2001).
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17.5 Airway smooth muscle

There is overwhelming evidence that the airway smooth muscle in asthma is highly abnormal.
Not only does it exhibit abnormal contractile features but it also is a potent source of
pro-inflammatory cytokines, chemokines, growth factors and other mediators (Hirst, 2003).
Although there has been much debate stretched over many years about the nature of the
airway smooth muscle in asthma, its increase in volume represents a combination of hyper-
trophy and hyperplasia. In addition, the airway smooth muscle is an important source of
matrix proteins that include collagen I and a range of proteoglycans, including versican and
biglycan (de Medeiros et al., 2005; Parameswaran et al., 2006). Of particular interest is
the increase in proteoglycans and other matrix proteins between smooth muscle bundles in
the asthmatic airway suggesting an important role in controlling their contractility and also
altering the impact that this has in reducing airway luminal dimensions (Pepe et al., 2005; Pini
et al., 2007). Airway smooth muscle in asthma is also able to support a chronic inflammatory
response including the persistence of mast cells with their capacity to secrete mediators
that could influence smooth muscle contraction and proliferative behaviour (Begueret et al.,
2007). It is possible that what diffentiates cough variant asthma (eosinophilic bronchitis)
from true asthma with variable airflow obstruction is a change in the structure–function
relationships, and inflammatory cell infiltrate, in the smooth muscle compartment (Agarwal
and Gupta, 2006).

Based upon an active role of the epithelium and underlying membrane in asthma patho-
genesis, it is of particular interest to look for genes that may identify susceptibility to
bronchial hyperresponsiveness as a sub-phenotype of asthma. One such gene, ADAM33,
has been identified through positional cloning (Holgate et al., 2006; Van Eerdewegh et al.,
2002). Mutations in this gene, have been linked not only to impaired lung function in infancy
and bronchial hyperresponsiveness later in life (Haitchi et al., 2005; Van Eerdewegh et al.,
2002) but also to accelerated decline in baseline lung function over time irrespective of
treatment (Gosman et al., 2007; Jongepier et al., 2004; van Diemen et al., 2005). ADAM33
is a complex molecule comprising of 23 exons with multiple functions that not only include
its metalloprotease activity but also its effect in promoting cell migration, cell fusion and
changes in cell function through intercellular signalling (Holgate et al., 2006). At least six
splice variants of ADAM33 exist, but their respective functions are unknown (Powell et al.,
2004). One possibility is that ADAM33, in serving as a proteolytic enzyme capable of liber-
ating growth factors from their cell-bound precursors, could be involved in smooth muscle
proliferation and differentiation. A similar role has recently been described for ADAM12 in
cardiac hypertrophy (Asakura et al., 2002; Fedak et al., 2006).

17.6 Vascular remodelling

Although it has been widely recognized that the microvasculature in asthma is pivotal to
airway wall edema and in the recruitment of immune and inflammatory cells into the airway,
it is only recently that the importance of the microvascular bed has been appreciated in
relation to the remodelling response (Hashimoto et al., 2005). Both in children (Barbato
et al., 2006), and in adults (Feltis et al., 2006; Hashimoto et al., 2005), the number of, and
state of activation of, small blood vessels in the airway wall of asthmatics is greatly increased.
Factors associated with this are being pursued, with much interest focusing on vascular



360 CH17 THE EPITHELIUM AND AIRWAY REMODELLING

endothelial growth factor (VEGF), which is generated both by the damaged epithelium and
by a number of inflammatory and structural cells in the airway wall itself (Abdel-Rahman
et al., 2006; Bhandari et al., 2006; Feltis et al., 2006; Lee et al., 2004a). VEGF can cause
microvascular leakage as well as drive microvascular proliferation (McDonald, 2001).

17.7 Neural networks

There is a long history of nerves being involved in asthma pathogenesis but relatively
little is known about the factors that influence their control (Groneberg et al., 2004). The
discovery of a family of nerve growth factors (NGFs, neurotrophins) produced by epithelial
cells that can stimulate neural proliferation (Hazari et al., 2007), and interact with other
elements of the airway, including mast cells (Kassel et al., 2001) and eosinophils (Hahn
et al., 2006), has reinforced the idea that neural pathways are an important component of
the inflammatory and remodelling responses. Circulating levels of NGF have been closely
associated with asthma chronicity and severity (Bonini et al., 1996) and the fact that the
epithelium is a major source of NGF (Bonini et al., 1996; Fox et al., 2001) raises the
important issue of whether the epithelium itself helps to orchestrate the neural response.
Both local and central reflex pathways have been implicated in control of smooth muscle
tone, vascular permeability, mucus secretion and inflammation. However, no single set of
neurotransmitters appear to dominate, and this may explain the rather disappointing results
obtained with selective neuropeptide and muscarinic antagonists in asthma therapy.

17.8 Production of mucus

One feature that characterizes chronic asthma is the production of excess and altered mucus
that blocks the peripheral airway and is difficult to expectorate. There is strong evidence that,
in asthma, there is goblet cell metaplasia involving the conducting airway (Ordonez et al.,
2001). The goblet cells also spread down to the more peripheral airway (Shimura et al.,
1996) and secrete abnormally large amounts of the highly viscous mucins 5AC and 5B,
which may contribute, along with DNA and eosinophil basic proteins, to the tenacious mucus
that is so characteristic of this disease (Rose and Voynow, 2006). Factors that lead to goblet
cell metaplasia have been extensively studied and include the activation of the EGF family
of receptors on epithelial cells during repair by TGF� that is released from its membrane
precursor by ADAM 17 (TACE) (Burgel and Nadel, 2004; Deshmukh et al., 2005). In
addition, IL-4 and IL-13 also induce the production of TGF�, which, through an autocrine
pathway, mediates the mucous metaplasia characteristic of Th-2 mediated inflammation
in asthma (Lordan et al., 2002). Finally, reactive oxygen species generated by epithelial
damage through activation of dual oxidase 1 (Duox1) (a homologue of glycoprotein p91phox)
stimulates TGF� cleavage from its membrane precursor to promote mucous metaplasia
(Shao and Nadel, 2005). These pathways that engage growth factor release are likely to be
of increasing importance in the chronic mucus production associated with severe refractory
disease, especially that which involves the peripheral airway where goblet cell metaplasia
has been observed almost down to the alveoli not only in asthma but also in cystic fibrosis
(Burgel et al., 2007).
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17.9 Concluding comments

While airway inflammation is undoubtedly fundamental to the pathogenesis of chronic
asthma, and underlies its therapeutic response to corticosteroids, increasingly airway wall
remodelling is being appreciated as an important component of the disease, particularly in
patients who are refractory to anti-inflammatory therapies. Studies in children and in adults
suggest that aberrant communication between the airway epithelium and underlying struc-
tures can account for a proportion of the remodelling response and that this relationship
can be captured by the term ‘epithelial mesenchymal trophic unit’ (EMTU). The EMTU
is fundamental to branching morphogenesis during lung development in the fetus, utilizing
many of the growth factors that are recruited in airway wall remodelling and chronic
asthma to drive airway growth and binary division (Araya et al., 2006; Davies et al., 2003).
ADAM33, in addition to being a susceptibility gene in chronic asthma and bronchial hyper-
responsiveness, is also expressed preferentially in primitive mesenchymal cells involved in
human lung morphogenesis, suggesting that this molecule has dual functions both in lung
development, and in chronic asthma and its progression over time. Recognizing that the
epithelium is chronically damaged in asthma, with defective formation of tight junctions,
new therapeutics could be targeted to this aspect of the disease with the ability to return the
epithelium to normal function and restore its barrier functions against environmental insults.
Discovery that epidermal growth factor (EGF) and keratinocyte growth factor (KGF) can
both restore epithelial integrity in asthmatic cultures and induce the normal formation of
tight junctions provides one example of how therapies influencing this part of the asthma
process may be beneficial beyond the use of anti-inflammatory and immune modulating
treatments. The successful use of EGF in the treatment of corticosteroid refractory ulcerative
colitis (Dieckgraefe et al., 2006; Sinha et al., 2003) and the use of KGF in preventing
mucositis in patients undergoing chemotherapy for cancer and marrow transplantation (Adis
International Ltd, 2004) again supports the view that increasing the resistance of the airway
epithelium against the environment is a feasible way of treating asthma which does not rely
on suppressing inflammation.
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18.1 Introduction

Glucocorticoids (corticosteroids, glucocorticosteroids or often just steroids) are among the
most effective and widely used anti-inflammatory medications for the treatment of inflam-
matory airway diseases including asthma, allergic rhinitis, chronic obstructive pulmonary
disease, fibrosis, and others (Rhen and Cidlowski, 2005; Barnes, 2006). In the context of
airway diseases, the airway epithelium is a key source of inflammatory mediators and is
now recognized for its important immuno-modulatory role (Mills et al., 1999). Further-
more, the airway epithelial cell is the first cell type to receive external insults, which may
include noxious chemicals, cold air, dust, carbon and other particulates, viruses, bacteria
and their products (Mills et al., 1999; Proud and Chow, 2006). In addition, cytokines, such
as interleukin (IL) 1� or tumour necrosis factor �TNF��, which are released from activated
macrophages, lead to epithelial cell activation. This position at the interface with the external
environment, combined with its ability to produce inflammatory mediators, makes the airway
epithelium a critical target for inhaled therapeutic agents. In this context, glucocorticoids
are, without doubt, the most significant anti-inflammatory agents that are delivered to the
airway epithelium and these act to down-regulate, or repress, the expression of multiple
inflammatory mediators that are produced in response to inflammatory insults. Mechanisms
for this effect will be discussed in detail in the main bulk of this chapter and, in addition,
various other aspects of glucocorticoid action on the airway epithelium shall be considered.

The Pulmonary Epithelium in Health and Disease    Edited by David Proud
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18.2 Expression of inflammatory genes by epithelial cells
is reduced by glucocorticoids

Following inflammatory insult, for example by the pro-inflammatory cytokines IL-1� or
TNF�, epithelial cells are stimulated to produce multiple cytokines (e.g. IL-1�� TNF�,
IL-6, granulocyte/macrophage colony-stimulating factor (GM-CSF)), chemokines (e.g. IL-
8, regulated on activation, normal T-cell expressed and secreted (RANTES), monocyte
chemoattractant peptide (MCP)-1), inflammatory enzymes (e.g. cyclooxygenase (COX-2),
inducible nitric oxide synthase (iNOS)), adhesion molecules (intercellular adhesion molecule
(ICAM)-1), as well as a variety of other mediators, including lipids and host defence
molecules and products (see Chapter 16). However, in the presence of glucocorticoids, the
expression, or production, of many of these mediators, although possibly not host defence
proteins, is strongly inhibited (Schleimer, 2004). Thus, in pulmonary epithelial cells, the
expression of classic inflammatory cytokines and chemokines including IL-6, IL-8 and
GM-CSF are strongly induced by stimuli such as TNF� or IL-1�, and these responses are
repressed by glucocorticoids such as dexamethasone (Levine et al., 1993; Adkins et al.,
1998; Kwon et al., 1994). Furthermore, such effects are also evident in the asthmatic
epithelium in vivo and in primary human airway epithelial cells (HAEC) treated with soluble
factors from Staphyloccus aureus (Fragaki et al., 2006; Wang et al., 1994). Likewise, the
chemoattractants MCP-1, MCP-4, eotaxin and RANTES are induced in pulmonary epithelial
cells, including type II alveolar and bronchial epithelial cells, and are also repressed by
dexamethasone (Paine et al., 1993; Stellato et al., 1995, 1999; Lilly et al., 1997). The
repressive effect of glucocorticoids extends to the expression of inflammatory proteins, such
as cyclooxygenase (COX) 2 and inducible nitric oxide synthase (iNOS) (Mitchell et al.,
1994; Kleinert et al., 1996; Newton et al., 1998a), as well as adhesion molecules, such as
ICAM-1 and vascular cell adhesion molecule (VACM)-1 (van de Stolpe et al., 1993; Atsuta
et al., 1999), which are both expressed on airway epithelial cells and collectively contribute
to the inflamed state.

18.3 Modulation of transcription by GR at simple GREs

Despite the cloning of the glucocorticoid receptor in 1985 (Hollenberg et al., 1985), the
mechanisms by which inflammatory gene expression is repressed by glucocorticoids still
require considerable elucidation. Certainly, the realization that GR is modular in structure
was instrumental to defining the core paradigm of glucocorticoid action (Giguere et al.,
1986). Thus, binding of glucocorticoid to the ligand binding domain (LBD) promotes nuclear
translocation of GR as a result of dissociation from heat shock protein (hsp) 90. Histori-
cally, this effect was thought to occur in the cytoplasm, but more recent studies suggest
that dissociation from hsp90 occurs in the nucleus and that it is the ligand-dependent
loss and recruitment of other associated proteins that is important for translocation to
the nucleus (Pratt et al., 2004; Davies et al., 2002) (Figure 18.1). In the nucleus, GR
can bind and dimerize, via the DNA binding domain (DBD), to imperfect DNA palin-
dromes (consensus: 5′ - GGT ACA NNN TGT TCT - 3′) (Luisi et al., 1991), known as
glucocorticoid response elements (GREs). This allows transcriptional activation (transacti-
vation) by virtue of the activation functions AF1 and AF2 that are present in GR (Rhen
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Figure 18.1 Schematic showing the activation of a simple GRE following the binding of glucocorti-
coid ligand to GR. The schematic depicts glucocorticoid passing through the plasma membrane (pm)
where it binds to the glucocorticoid receptor (GR) causing exchange of FKBP51 for FKBP52 and binding
of dynein. The ligand-bound GR complex then translocates across the nuclear membrane (nm) and into
the nucleus where hsp90, FKBP52 and dynein dissociate. Binding of ligand-bound GR and dimerization
on a simple GRE is depicted. This allows transcriptional activation of target genes to produce mRNA
and then protein. Adapted from J Bio Chem 277: 4597–4600

and Cidlowski, 2005). Thus, genes including tyrosine amino transferase (TAT), tryptophan
oxygenase and phosphoenol pyruvate carboxykinase (PEPCK) were shown to have positive
glucocorticoid responsive sites in their promoter regions, and this appeared to account for
inducibility by glucocorticoids (Newton, 2000; Schacke et al., 2002). While this scheme
of GR acting at simple positive GREs was thought to account for many of the metabolic
effects of glucocorticoids (Schacke et al., 2002) (Figure 18.2), anti-inflammatory proper-
ties attributed to transactivation were less obvious. For example, lipocortin I (annexin I)
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Figure 18.2 Different types of transcriptional response elicited by the glucocorticoid receptor (GR)
in the nucleus. GR may be recruited to transcriptional promoter regions by binding DNA either as a
homodimer in the context of simple GRE sites (i, iv), or as a composite site (ii, v) that binds DNA
in conjunction with other transcription factors, or finally via interaction with another transcription
factor, but without actually contacting the DNA itself (i.e. tethering) (iii, vi). In each scenario there
may be positive or negative effects on transcription and the GRE site is accordingly described as a
positive or negative GRE. The nature of the response, either positive of negative, elicited by GR needs
to be communicated to the basal transcriptional machinery, which is here represented as TATA binding
protein (TBP) and RNA polymerase II (Pol II)

is a glucocorticoid-inducible protein that represses phospholipase (PL) A2 activity in a
variety of cells, including the pulmonary epithelium (Flower and Rothwell, 1994). Like-
wise the induction of secretory leukocyte protease inhibitor (SLPI) by glucocorticoids in
airway epithelial cells may be of anti-inflammatory benefit (Abbinante-Nissen et al., 1995).
However, such effects do not explain the ability of glucocorticoids to reduce the expression
of pro-inflammatory genes and this is usually attributed to other mechanisms (Barnes, 2006;
Rhen and Cidlowski, 2005).

Analogy to the positive GRE led to speculation regarding the existence of simple
negative GRE sites (nGREs) by which glucocorticoids could bind to DNA and down-
regulate inflammatory gene transcription (Figure 18.2). Indeed simple nGRE sites were
proposed in the transcriptional promoter regions of a number of genes including the pro-
opiomelanocortin (POMC) gene, which is responsible for adrenocorticotropic hormone
(ACTH) expression, the prolactin gene and the osteocalcin gene (Schacke et al., 2002;
Newton, 2000). In these cases, the nGRE site corresponded poorly to a consensus positive
GRE, and binding of GR was suggested to prevent the recruitment of positive factors that
were required for gene transcription (Figure 18.2). However, transrepressive mechanisms
of this nature are unlikely to explain the repression of inflammatory genes in the epithe-
lium by glucocorticoids, as simple nGRE sites are not noted in the regulatory regions of
inflammatory genes.
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18.4 Inflammatory genes contain binding sites for
transcriptional activators and these mediate
glucocorticoid-dependent repression

The characterization of the transcriptional promoter regions of major inflammatory genes
revealed key roles for transcription factors including; activator protein (AP)-1, the func-
tionally related activating transcription factors (ATFs), CCAAT/enhancer binding protein
(C/EBP�) (NF-IL6) and, in particular, NF-�B. Importantly, glucocorticoid-dependent inhi-
bition of inflammatory gene transcription seemed to occur via those sites (NF-�B, AP-1
etc.) that were established as being important in transcriptional activation (Barnes, 2006).
Thus, glucocorticoid-dependent repression of IL-8 expression correlated with the inhibition
of transcriptional activity from an IL-8 promoter construct and this effect was principally
mediated via the NF-�B site in this promoter (Mukaida et al., 1994). Very similar stories
were also developed for the rat cytokine-induced neutrophil chemoattractant (CINC/gro)
gene and the human iNOS gene (Ohtsuka et al., 1996; Kleinert et al., 1996). In each of
these reports, glucocorticoids repressed the DNA binding activity of NF-�B (Ohtsuka et al.,
1996; Mukaida et al., 1994). Likewise, glucocorticoid-dependent repression of intercellular
adhesion molecule (ICAM)-1 and E-selectin expression also involved the NF-�B site, but
in these cases no effect on NF-�B DNA binding was reported (van de Stolpe et al., 1994;
Brostjan et al., 1997). Such discrepancies are common and may be explained by differences
in experimental protocols. For example, in A549 pulmonary cells dexamethasone showed
little immediate inhibitory effect on IL-1�-induced NF-�B DNA binding induced for up to
two hours, whereas stimulations of 6 h, or following long (24 h) glucocorticoid pretreatments,
resulted in clear reductions in NF-�B DNA binding (Newton et al., 1998a). Reasons for this
could involve the repression of p50/p105 �NF�B1�, since mRNA expression of this gene
is repressed by glucocorticoids (Newton et al., 1998a), and/or the induction of inhibitor of
�B �I�B�� (see below).

In 1995, the expression of I�B�, the endogenous inhibitor protein for NF-�B, was shown
to be increased following glucocorticoid treatment and this then led to reduced NF-�B DNA
binding (Scheinman et al., 1995). Whilst this effect is clearly a case of glucocorticoid-
dependent transactivation, since transcriptional activation of I�B� was involved (Scheinman
et al., 1995; Wissink et al., 1998), the induction of I�B� is not necessary for repression of
NF-�B-dependent transcription in pulmonary A549 cells (Wissink et al., 1998). Furthermore,
glucocorticoid-dependent inducibility of I�B� in pulmonary A549 cells was considerably
more modest (Wissink et al., 1998), indeed when stimulated with TNF� or IL-1�, there was
no evidence for increased I�B� expression, and NF-�B DNA binding was unaltered over a
time frame (0.5–2 h) in which glucocorticoid-dependent repression of gene expression was
known to occur (Newton et al., 1998a; Ray et al., 1997). Virtually, identical results were
also reported in endothelial cells suggesting that glucocorticoid-dependent transactivation
of I�B� may not be a major acute anti-inflammatory mechanism in either epithelial or
endothelial cells (Brostjan et al., 1996).

18.5 Nuclear events mediate transrepression

In order to explain the ability of glucocorticoids to transrepress NF-�B-dependent transcrip-
tion, mechanisms that invoke interference, by GR, of the transcriptional activation process
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have been proposed in a variety of cell types, including airway epithelial cells (see (Adcock
et al., 2004; De Bosscher et al., 2003). Thus, a direct interaction between NF-�B and GR
(Ray and Prefontaine, 1994; Scheinman et al., 1995), was suggested to account for the
ability of glucocorticoids to repress NF-�B-dependent transcription (Caldenhoven et al.,
1995), without requiring effects on either I�B� expression or on NF-�B DNA binding
(De Bosscher et al., 1997), or site occupancy (Nissen and Yamamoto, 2000). As direct DNA
binding by GR is not necessary, such forms of transrepression are described as tethering
nGREs (Figure 18.2).

In parallel with, and to some extent preceding, this work on NF-�B, studies examining the
glucocorticoid-dependent repression of AP-1 have led to a similar story. Thus, glucocorticoid-
dependent repression of the collagenase 1 (Col 1) gene promoter was localized to an AP-1
site that was also critical in transcriptional activation (Jonat et al., 1990). Whilst no effect on
AP-1 DNA binding was noted in one study (Jonat et al., 1990), inhibition of AP-1 binding
was seen in a second study (Yang-Yen et al., 1990). Critically, this AP-1 site was sufficient
to confer steroid-dependent repression, and a direct interaction between AP-1 and GR was
proposed to account for the mutual antagonism observed between these two pathways (Jonat
et al., 1990; Yang-Yen et al., 1990). The effect of glucocorticoids on AP-1 DNA binding
was subsequently readdressed and the occupancy of AP-1 sites was found not to be altered
suggesting, as with NF-�B, a direct interference with transcription as the mechanism of
inhibition (Konig et al., 1992).

One apparent consequence of transrepression by direct interference was the observation
that both AP-1 and NF-�B showed a mutual antagonism with GR and this was suggested
to result from competition for co-activators, in particular, CREB binding protein (CBP)
(Sheppard et al., 1998; McKay and Cidlowski, 2000). However, other studies dispel this
notion and instead suggest that interference with the basal transcriptional apparatus is
the explanation for transrepression of both NF-�B and AP-1 (De Bosscher et al., 2000,
2001), possibly via recruitment of the p160 family member, GR interacting protein (GRIP)

Ac

Ac Ac

CBP

X Y

GR
HDAC

TBP

Pol II

P-TEFb

Figure 18.3 Transcriptional repression by GR in a tethering conformation. At tethering nGREs, as
may occur with NF-�B, or AP-1, repression is achieved via the recruitment of histone deacetylase and
the loss of a regulatory kinase. GR exerts a repressive effect by recruiting p160 family members (not
shown) and one or more histone deacetylases (HDAC), which deacetylate the DNA in the promoter
region leading to closing of the chromatin structure and GR to promote interaction with NF-�B.
Acetyl groups (Ac) are shown leaving the promoter and GR. Finally, GR-dependent loss of the Pol
II C-terminal domain kinase, P-TEFb, reduces phosphorylation of Pol II and reduces transcription of
specific target genes
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(Rogatsky et al., 2001, 2002). Thus, phosphorylation of the C-terminal domain of RNA
polymerase (Pol) II was prevented by dexamethasone, possibly following GR-dependent
loss of a regulatory kinase complex, and this mediated promoter-selective inhibition of
NF-�B-dependent genes (Nissen and Yamamoto, 2000; Luecke and Yamamoto, 2005). In
keeping with the idea of post-translational modification, and the fact that histone acetylation
is necessary for activated transcription of inflammatory genes, glucocorticoids were shown
to decrease the acetylation induced by IL-1� at the human granulocyte macrophage-colony
stimulating factor (GM-CSF) promoter (Ito et al., 2000). This process should lead to a
less favourable promoter conformation and appears to operate by reducing CBP-associated
histone acetylase (HAT) activity, recruitment of histone deacetylase (HDAC) 2 to the p65-
CBP complex, and possibly by promoting deacetylation of GR itself (Ito et al., 2000, 2006)
(Figure 18.3).

18.6 Transactivation plays an important
anti-inflammatory role

In the above sections, evidence is presented for the existence of mechanisms of transrepres-
sion that, for example, lead to reduced activity of NF-�B and AP-1 and then to reduced
expression of inflammatory genes. However, to say that this type of repression explains all the
anti-inflammatory effects of glucocorticoids is to overlook large bodies of data that implicate
critical roles for both post-transcriptional control processes and glucocorticoid-dependent
gene expression (Newton, 2000; Stellato, 2004; Abraham and Clark, 2006). Furthermore,
in our assessment, current data do not convincingly exclude GR-dependent gene activation
from playing important roles in the anti-inflammatory effects of glucocorticoids. Given this
point of view, the question as to the relative importance of transcriptional repression (tran-
srepression) by glucocorticoids, as opposed to other forms of repression, becomes relevant.
In this respect, it is critical to recall that both the potency and efficacy of GR-dependent
transcription can be modulated by GR numbers relative to co-activator/co-repressor numbers
(Szapary et al., 1999; Wang et al., 2004). Therefore, studies in which GR is overexpressed,
as commonly occurs in the analysis of transrepression, are likely to produce an overrepresen-
tation of that glucocorticoid-dependent function. Consequently, it is important to consider
the endogenous, or physiological, levels of GR in assessing the relative contribution of
particular mechanisms to the overall repression.

Despite the above focus on transrepression, in A549 pulmonary epithelial cells
dexamethasone-dependent transrepression of an NF-�B reporter was no more that 40 or 50
per cent and this correlated with the actual transcription rate of known NF-�B-dependent
genes, including COX-2 and IL-8, as assessed by both nuclear run on transcription and
analysis of the transient accumulation of unspliced nuclear RNA intermediates (Newton
et al., 1998a, 1998b; Chivers et al., 2006). Similarly, analysis of IL-8 transcription rate in
primary human airway epithelial cells was also not substantially repressed by dexametha-
sone, yet IL-8 expression was significantly reduced (Chang et al., 2001). Again, in A549
cells the induction of IL-11 expression by TGF� was strongly repressed by dexamethasone
via mechanisms that did not primarily involve reductions in IL-11 transcription rate (Wang
et al., 1999). Thus, considerable data exists for a key role of post-transcriptional mecha-
nisms of repression by glucocorticoids in a variety of cell types that includes the pulmonary
epithelium.
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18.7 Post-transcriptional effects and a role for
glucocorticoid-dependent gene expression

The suggestion that transcriptional repression by glucocorticoids does not account for
the full repressive effect of these compounds observed at the level of gene expression
supports the prospect of additional repressive mechanisms. Thus, post-transcriptional
processes, in particular mRNA de-stabilization, have been proposed in the glucocorticoid-
dependent repression of IL-1 and LPS-induced COX-2 expression in multiple cell
systems (Newton et al., 1998b; Ristimaki et al., 1996; Lasa et al., 2001), mitogen-induced
IL-4R� expression (Mozo et al., 1998), TNF�-induced expression of GM-CSF, IL-8 and
IL-6 in fibroblasts (Tobler et al., 1992), IL-1� expression in LPS and phorbol ester-
stimulated monocytes (Kern et al., 1988; Lee et al., 1988), TGF�-induced IL-11 (Wang
et al., 1999) and LPS-induced iNOS expression in macrophage (Korhonen et al., 2002). In
terms of inflammatory gene expression, these results are, perhaps, not surprising as mRNA
stabilization is a major regulator of gene expression and it is logical that these processes
would also be targeted by glucocorticoids in epithelial cells (Stellato, 2004; Newton, 2000;
Mata et al., 2005; Fan et al., 2005). Importantly, numerous investigators show that the
ability of glucocorticoids to repress the expression of target genes, when added after an
inducing stimulus such as IL-1� or LPS, is prevented by co-incubation with inhibitors of
transcription or translation (for examples see Lee et al. (1988), Ristimaki et al. (1996),
Korhonen et al. (2002), Tobler et al. (1992), Chang et al. (2001), Newton et al. (1998b)
and Staples et al. (2003)). Thus a key role for de novo glucocorticoid-dependent gene
expression is implicated in the glucocorticoid-dependent repression of these inflammatory
genes (Newton, 2000). In this regard, AUUUA motifs, or AU-rich elements (ARE), which
are located in the 3′ untranslated regions (UTR) of many unstable RNAs, have proved to
be critical in signal-induced mRNA stabilization of inflammatory genes (Fan et al., 2005).
Many unstable cytokine and inflammatory gene mRNAs, including, for example, IL-6, IL-8
and COX-2, are stabilized via their AREs due to the actions of the p38 mitogen activated
protein kinase (MAPK) pathway (Winzen et al., 1999; Lasa et al., 2000, and see Clark et al.
(2003) and Dean et al. (2004)). Furthermore, in addition to mediating mRNA stabilization,
AREs can also mediate glucocorticoid-dependent mRNA decay (Peppel et al., 1991; Lasa
et al., 2001). While numerous ARE-binding proteins have been identified, the details of
the mRNA stabilization and destabilization processes remain unclear (Dean et al., 2004).
However, the ARE binding protein, tristetraprolin (TTP) is believed to regulate gene expres-
sion, for example TNF� (Mahtani et al., 2001), by promoting deadenylation and mRNA
destabilization (Lai et al., 1999). Mice lacking TTP show elevated levels of TNF� and
develop chronic inflammation in a manner that is consistent with a role for TTP the normal
feedback control of inflammatory gene expression (Brook et al., 2006; Carballo et al.,
1998). In the context of glucocorticoid actions, dexamethasone has been reported to induce
TTP expression in pulmonary A549 cells, raising the possibility that the normal regulatory
roles of TTP are exploited by anti-inflammatory pathways (Smoak and Cidlowski, 2006).

18.8 MKP-1, an anti-inflammatory glucocorticoid-inducible
gene

The involvement of the p38 MAPK in mRNA stabilization of inflammatory genes provides
a mechanistic explanation for mRNA destabilization following glucocorticoid treatment
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(Clark, 2003). Glucocorticoids block the activation of p38 MAPK via a process that is
prevented by transcriptional inhibitors (Lasa et al., 2001). This suggests the involvement
of glucocorticoid-dependent gene expression and, indeed, glucocorticoids very profoundly
induce the expression of MAPK phosphatase (MKP)-1, also known as dual specificity
phosphatase 1 (Lasa et al., 2002; Chen et al., 2002; Kassel et al., 2001). Dephosphorylation of
p38 MAPK by MKP-1 will destabilize mRNA and lead to repression of cytokine expression
(Lasa et al., 2002; Chen et al., 2002).

The effects of glucocorticoid-dependent induction of MKP-1 are by no means limited,
however, to destabilization of p38 MAPK-dependent mRNAs. The p38 pathway is impli-
cated in the activation of various transcription factors, including ATF-1, ATF-2, as well as
directly in the expression AP-1 components (see (Newton and Holden, 2003). Therefore, the
inhibition of p38, which inhibits AP-1 transcriptional activity (Wesselborg et al., 1997), by
the glucocorticoid-dependent induction of MKP-1 may lead to the transcriptional repression
of many inflammatory genes, for example E-selectin, that are regulated by AP-1 and/or
ATF factors (Furst et al., 2007). Likewise, many reports indicate positive effects of the p38
MAPK on NF-�B-dependent transactivation (Wesselborg et al., 1997, Newton and Holden,
2003). Thus, increased expression of MKP-1 could negatively impact on the expression
of NF-�B-dependent genes. Furthermore, since analysis of selective p38 MAPK inhibitors
specifically implicated a role for this kinase in the translational control of inflammatory
cytokines (Lee et al., 1994), it is highly likely that glucocorticoids acting via MPK-1 will
also inhibit cytokine translation in the pulmonary epithelium.

MKP-1 may also act on other members of the MAPK family of kinases. For example
the extracellular regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) have
also be shown to be MKP-1 substrates and may, therefore, be subject to glucocorticoid-
dependent inhibition by this phosphatase (Franklin and Kraft, 1997; Kassel et al., 2001;
Slack et al., 2001). In addition to preventing serum response element (SRE) and Elk-1
activation (Wu et al., 2005), MPK-1-dependent inhibition of JNK may directly repress AP-1
dependent transcription (Liu et al., 1995). Furthermore, the JNK pathway is implicated in
the translational control of TNF� biosynthesis induced by LPS, and this can be targeted by
glucocorticoids (Swantek et al., 1997).

18.9 Other glucocorticoid-inducible genes with
anti-inflammatory potential in the epithelium

Whilst MKP-1 has received considerable attention as an anti-inflammatory glucocorticoid-
inducible gene (Abraham and Clark, 2006), the fact that glucocorticoid-dependent repression
of inflammatory gene expression is only partially lost in MKP-1−/− animals indicates the
existence of further repressive mechanisms (Abraham et al., 2006). In this context there
are now numerous other glucocorticoid-inducible genes that have been described that may
also be expected to show anti-inflammatory effect. For example, glucocorticoids induce the
expression of the Clara cell secretory 10 kDa protein (CC10), in part via the activation of
the CCAAT/enhancer binding proteins (C/EBPs) (Berg et al., 2005; Cassel et al., 2000).
Furthermore, this gene is protective in the context of pulmonary allergic inflammation (Chen
et al., 2001). Likewise glucocorticoid-inducible leucine zipper (GILZ) is a transcriptional
regulator that is very highly glucocorticoid-inducible in airway epithelial cells (Eddleston
et al., 2007). Importantly, GILZ is implicated in the repression of AP-1 and NF-�B, so
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an anti-inflammatory activity for this protein by repressing classical inflammatory genes is
fairly clear (Mittelstadt and Ashwell, 2001; Eddleston et al., 2007).

18.10 Effect of glucocorticoids on lipid mediator production
by epithelial cells

The airway epithelium is a well established source of lipid mediators, which include
cyclooxygenase and 15-lipoxygenase products as well as platelet-activating factor (PAF)
(Martin et al., 1997). More recently the airway epithelium has been found to possess the
5-lipoxygenase pathway and may synthesize leukotrienes �LT�C4 and B4 (Jame et al., 2007).
Furthermore the increased expression of the 5-lipoxygenase enzyme, following stimulation
with Ca2+ ionophore, appeared to be down-regulated by dexamethasone. More tradition-
ally the production of cyclooxygenase products, for example prostaglandin �PG�E2 and
PGF2� is induced by inflammatory stimuli that may include pro-inflammatory cytokines
�IL-1�� TNF�� and elevation of intracellular Ca2+ levels, for example following stimu-
lation with bradykinin (Saunders et al., 1999; Newton et al., 2002). In this context the
expression of COX-2 is necessary for induced prostaglandin production, and this enzyme is
very profoundly repressed by glucocorticoids via both the down-regulation of COX-2 gene
transcription and mRNA destabilization (Mitchell et al., 1994; Newton et al., 1998b). In
addition, the downstream enzyme, microsomal prostaglandin E synthase (mPGES), which is
required for PGE2 production, is both induced by pro-inflammatory cytokines and repressed
by dexamethasone (Thoren and Jakobsson, 2000). However, glucocorticoids also exert a
profound repressive effect upstream on the release of arachidonic acid from epithelial cells,
and this will contribute to the reduction of prostaglandin production (Chivers et al., 2004).
Mechanisms for this effect are varied and traditionally explained by the ability of glucocorti-
coids to induce lipocortin 1 expression and, thereby, inhibit cytosolic phospholipase (cPL) A2

activity (Flower and Rothwell, 1994). However, other more rapid mechanisms may also exist
which do not involve genomic processes (Croxtall et al., 2000, 2002). Finally, the activation
of cPLA2 and the release of arachidonic acid requires the activation of both the ERK and
p38 MAPKs (Newton et al., 2000). As noted above, the ability of glucocorticoids to induce
the expression of MKP-1 to dephosphorylate and switch off MAPKs provides an additional
mechanism of repression of prostaglandin production. Furthermore these effects, on both the
regulation and activation of cPLA2, may explain the reductions in PAF or other downstream
metabolites that are generated via other pathways (15-lipoxygenase, 5-lipoxygenase) which
also utilize this enzyme (Schleimer, 1993).

18.11 Remodelling, viruses, glucocorticoids
and the epithelium

In the above sections, we have seen how glucocorticoids are highly effective in combating
inflammatory responses of the epithelium. In the past, the ability to prevent inflammation
would be expected to lead to attenuated airway remodelling that is commonly associated with
diseases such as asthma. However, more recently, airway remodelling has been described
prior to the onset of symptoms, as well as in young children, suggesting that remodelling
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may not necessarily follow inflammation, but could develop simultaneously with, or even
precede, inflammation (Tang et al., 2006). Therefore, preventing inflammation may not
necessarily lead to improvements in remodelling and it is relevant to assess the effect of
glucocorticoids directly on remodelling responses. In this context, the epithelium is known
to produce remodelling factors such as TGF� and VEGF, and the expression of these
mediators is reduced by glucocorticoids (Beckett and Howarth, 2003). Furthermore, basement
membrane thickening is also reduced by glucocorticoid treatment (Hoshino et al., 1998).
Likewise goblet cell hyperplasia and mucus hypersecretion are prominent features of airway
remodelling and again these responses are reversed by glucocorticoid treatment, primarily
due to effects on the underlying inflammation, but also due to a possible direct repression
of mucin gene expression (Rogers, 2004; Lu et al., 2005; Chen et al., 2006).

With the idea that remodelling may occur at the same time, or even before, symptoms
in asthma, the concept arises that certain respiratory viruses may promote remodelling or
other phenotypic changes that could lead to later airway disease (Holtzman et al., 2002;
Proud and Chow, 2006). In this context, numerous reports suggest that glucocorticoids are
of lesser effect in the context of viral exacerbations of airway disease, and overall only
a modest benefit is suggested (Proud and Chow, 2006). Thus, while some studies report
little effect of dexamethasone on inflammatory mediator production, or ICAM-1 expression,
by epithelial cells infected with either respiratory syncytial virus or rhinovirus (Grunberg
et al., 2000; Carpenter et al., 2002), contradictory reports exist (Suzuki et al., 2000). Finally,
expression of VEGF from epithelial cells is enhanced by rhinovirus and this is blocked by
the glucocorticoid, fluticasone (Volonaki et al., 2006). Thus remodelling changes induced by
viral infection, which may later predispose to later disease, could be attenuated by concurrent
glucocorticoid therapy.

18.12 Ion and other channels in the epithelium
and the effect of glucocorticoids

Like the collecting ducts in the kidney, the airway epithelium is capable of vectorial transport
of both solutes and water between the airway lumen and the sub-epithelial layers (Matthay
et al., 2002; Folkesson and Matthay, 2006) (Figure 18.4). The basic paradigm is that active
transport of both Na+ and Cl− from the lumen, through the epithelial/alveolar cells to
the basolateral side, promotes the passive movement of water into the extracellular space
(see Chapter 5). The pumping of Na+ from the airway lumen predominantly occurs via
the epithelial sodium channel (ENaC), which exists as a number of distinct ��� �� ��
subunits, as well as via other channels such as cyclic nucleotide gated channels (CNG) in
the apical membrane (Figure 18.4). In order to prevent Na+ build-up within the cell and
to maintain a concentration gradient, Na+/K+ ATPases are positioned in the basolateral
membrane. These pump Na+ out of the cell into the interstitial space and bring K+ into
the cell. This results in a net movement of Na+ across the cell. Flow of water across the
cell may be facilitated by the expression of water channels known as aquaporins (AQPs)
(Matthay et al., 2002). Thus the expression of AQP3 is found in epithelial cells of the
large airway, whereas AQP4 appears to be general to all epithelial cells in the airway
and AQP5 is found on the apical membranes of type I alveolar cells, as well as more
generally in airway and alveolar cells (Borok and Verkman, 2002). By contrast, AQP1 is
predominantly found on endothelial cells, but there are suggestions of expression on alveolar
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Figure 18.4 Regulation of airway fluid clearance by glucocorticoids. Airway and alveolar cells sit
with their apical surface towards the lumen and the basolateral surface on a basement membrane that
links them to the interstitial part of the lung. The apical surface expresses the epithelial sodium pump
(ENaC), which is responsible for bringing Na+ into the cell. Parallel uptake of Cl− via various chloride
channels, which may include the cystic fibrosis trans-membrane receptor (CFTR), cyclic nucleotide-
gated channels (CNG), or other channels, maintains electrical neutrality. Sodium is removed from the
cell by the Na+/K+ ATPase, which pumps Na+ into the interstitial space. The transfer of water may be
facilitated by the presence of water channels, or aquaporins (AQP). This process is markedly upregulated
by glucocorticoids, which activate gene expression of components of ENaC, the Na+/K+ ATPase and
certain AQPs. Furthermore, glucocorticoids upregulate the serum and glucocorticoid-inducible kinase
(SGK), which can phosphorylate a number of targets including ENaC to stimulate ENaC activity and
reduce degradation. The upregulation of ENaC, AQP, Na+/K+ ATPase or SGK is depicted via a simple
GRE, but this may not necessarily be the case. Note: this figure does not attempt to represent the full
balance of the electrochemical, osmotic and other gradients that may exist as only selected pumps,
channels or ions/molecules are depicted

cells (Borok and Verkman, 2002). In the kidney, many of these processes are regulated by
the mineralocorticoid receptor following the binding of aldosterone. However, in the lung,
glucocorticoids, for example from inhaled medications, may bind to GR and elicit similar
effects, in part due to the highly homologous nature of these two receptors in the DNA-
binding domains and the commonality of their DNA recognition sites (Lu et al., 2006).
In A549 type II cells, dexamethasone increased the expression of AQP3 (Tanaka et al.,
1997), whereas AQP1 expression is more generally upregulated by glucocorticoid in rat
lungs (King et al., 1996). Together, these results may help to explain the increased alveolar
fluid clearance that is observed following dexamethasone treatment (Folkesson et al., 2000).
However, glucocorticoids also show an ability to positively modulate the sodium pump
and Na/K ATPase in the epithelial cell (Matthay et al., 2002). Indeed, components of both
ENaC and the Na/K ATPase are upregulated by glucocorticoids in alveolar and epithelial
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cells (Dagenais et al., 2001; Otulakowski et al., 2006; Chalaka et al., 1999). Interestingly,
viral stimulation leads to reduced expression of AQP1 and 5, and TNF� reduces ENaC
expression. Such effects could have considerable relevance to pathological edema in infection
or inflammation (Towne et al., 2000; Dagenais et al., 2006). However, the upregulation of
AQPs by glucocorticoids (above), and the finding that TNF�-reduced ENaC expression was
reversed by glucocorticoids indicates the potential for a positive effect of glucocorticoids on
lung edema (Dagenais et al., 2006). The regulation of Na+, and thereby, water influx can
be further modified by the serum and glucocorticoid-inducible kinase (SGK) 1, which, in
addition to stimulating ENaC expression, is capable of phosphorylating ENaC to enhance
activity (Pearce and Kleyman, 2007). However, this kinase is also induced by glucocorticoids
in the lung and this provides a further level of positive control by glucocorticoids on
fluid clearance from the airway/alveolar space (Itani et al., 2002). Thus, glucocorticoids
offer a variety of mechanisms and pathways by which increased fluid clearance from the
airway/alveolar space may be achieved.

18.13 Maturation of the fetal airway epithelium

Infant respiratory distress syndrome (RDS) is associated with preterm birth and is, in part,
due to the lack of maturity of the airway epithelium (Bolt et al., 2001). Key components of
this syndrome are the lack of surfactant proteins and the inability to adequately clear fluid
from the airway. Clues as to the mechanism for this effect are provided by GR-deficient
mice, which show reduced expression of the surfactant proteins (SPs), SP-A and C, as well
as the water channels AQP1, AQP5 and T1� (Cole et al., 2004). This is consistent with the
long-standing clinical practice of glucocorticoid administration to rapidly promote fetal lung
maturation (Bolt et al., 2001). The ability of glucocorticoids to promote fluid clearance by
the epithelial and alveolar epithelium is well documented and this appears to hold true for the
fetal lung epithelium, since glucocorticoids both improve RDS and increase the expression
of ENaC� (Helve et al., 2004; Otulakowski et al., 2006). Furthermore, glucocorticoids, in
the context of a cAMP elevating stimulus, may also increase the expression of the surfactant
proteins SP-A, B, C and D (Gonzales et al., 2002; Wade et al., 2006). Since deficiencies in
surfactant protein expression are known to cause RDS, such effects of glucocorticoids are
likely to be highly beneficial on the epithelium in the context of pre-term delivery, where
reductions in airway inflammation may also be advantageous (Bolt et al., 2001).

18.14 Non-genomic actions of glucocorticoids

The possibility that steroid hormones may act via non-genomic mechanisms is not a new
concept as certain responses, which can occur within minutes of steroid administration, have
been known for many years (Losel et al, 2003; Falkenstein et al., 2000). Losel and Wehling
list a number of criteria that may be helpful in defining or identifying non-genomic actions
for steroid hormones (Table 18.1). For example, in a guinea pig model of allergic asthma, the
synthetic glucocorticoid, budesonide, inhibited certain allergic reactions within 10 minutes
of administration, a time frame inconsistent with current thinking regarding genomic mech-
anisms of action (Zhou et al., 2003). Furthermore, the finding that glucocorticoids attenuate
itch responses in the context of allergic rhinitis (in humans) provides strong support for the
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Table 18.1 Characteristics of a response which may suggest a non-genomic mode of
glucocorticoid action

• Occurs in cells which do not posses a functional nucleus. e.g. platelets, erythrocytes.

• The response is refractory to inhibition of transcription (e.g. actinomycin D) or translation
(e.g. cycloheximide).

• Occurs very rapidly, i.e. within minutes, which is generally thought to be inconsistent with
altered gene expression via changes in transcription and/or translation.

• May be elicited by agonists that cannot access the interior of the cell, i.e. is then inconsistent
with binding to a receptor that then translocates to the nucleus.

Criteria derived from Losel and Wehling (2003).

previous study (Tillmann et al., 2004). Certainly, the rapid onset of action is highly sugges-
tive of a non-genomic action, although it is worth considering that some genes (e.g. c-fos) are
capable of induction within minutes of a stimulus. At the cellular level in human bronchial
epithelial cells, it is interesting to note that dexamethasone has been suggested to stimulate
the Na+/H+ exchanger and inhibit ATP-induced Ca2+-dependent Cl− secretion via rapid
gene expression-independent processes (Urbach et al., 2002, 2006; Verriere et al., 2005).
A further effect that may have biological and pharmacological significance is that glucocor-
ticoids can prevent the stimulation of both PLA2 activity and arachidonic acid release from
A549 cells via a process that is refractory to transcriptional inhibition (Croxtall et al., 2000).
Importantly, the rank orders of potencies for a number of clinically relevant glucocorticoids
was totally different in respect of this, and other outputs, when compared against classical
anti-inflammatory effects such as the repression of COX-2 expression (Croxtall et al., 2002).
Such data is consistent with suggestions of pertussis toxin-sensitive modes of glucocorticoid
action and raises the possibility of membrane associated, non-GR, receptors for glucocor-
ticoids that could even include G-protein coupled receptors (Qiu et al., 2003; Losel et al.,
2003; Stellato, 2004; Tasker et al., 2006).

18.15 Summary

In conclusion, glucocorticoids acting on the airway epithelium can modulate a variety of
responses by eliciting changes in gene expression, as well as via direct effects. In terms of the
anti-inflammatory effects of glucocorticoids, there is considerable data concerning the ability
to transrepress key transcription factors such as NF-�B or AP-1. There also is an increasing
body of data that indicates the importance of glucocorticoid-inducible genes, which may
then act to transcriptionally, post-transcriptionally, translationally or post-transcriptionally
to dampen down the expression or activity of inflammatory genes (Figure 18.5). These
processes are now well established in a number of cell types, but do require considerable
validation in the context of the airway epithelium. In respect to the control of fluid and
salt balance, as well as lung maturation, glucocorticoids induce the expression of a number
of key genes that are critical to these processes. Finally, there is increasing evidence for
non-genomic effects of glucocorticoids, and these may even involve receptor-dependent
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Figure 18.5 Impact of glucocorticoid-inducible genes on inflammatory gene expression. A schematic
representation of the signalling cascades leading to inflammatory gene expression is depicted with
possible targets and sites of action for putative anti-inflammatory glucocorticoid-inducible genes.
Activation of a pro-inflammatory cascade, following binding of cytokine to its cognate receptor in
the plasma membrane (pm), is shown occurring via a number of kinases (K1–3). The signal crossed
the nuclear membrane (nM) and leads to transcription factor (TF) activation and the production of
inflammatory gene mRNA. Under the influence of further kinase cascades (here K1–3), the mRNA
is stabilized and translated into protein. Finally, many proteins are exported into the extracellular
space for function. Sites of action of glucocorticoid-inducible genes are indicated. The glucocorticoid-
inducible type II IL-1 receptor (IL-1R) acts as a decoy receptor to prevent activation of the cell
by IL-1. Mitogen-activated protein kinase phosphatase (MKP)-1 is an inhibitor of the MAP kinase
family and therefore impacts on numerous cellular mechanisms including activation of transcription,
mRNA stability and translation. Inhibitor of �B �I�B�� and GILZ inhibit key inflammatory transcription
factors (NF-�B and AP-1). Tristetraprolin (TTP) promotes deadenylation and degradation of mRNA.
Lipocortin-1 inhibits PLA2. Finally secretory leukocyte protease inhibitor (SLPI) is a potent inhibitor
of serine proteases
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events other than by GR. In general, neither non-genomic effects, nor anti-inflammatory
effects occurring via gene induction, are currently considered in sufficient detail in terms
of potential therapies for the lung. These areas require considerable investigation and could
offer an opportunity for improving treatment modalities that act on the airway epithelium.

Acknowledgements

Work in Dr Newton’s laboratory is supported by the Canadian Institutes of Health Research
(CIHR) and the Alberta Heritage Foundation for Medical Research (AHFMR).

References

Abbinante-Nissen JM, Simpson LG, and Leikauf GD (1995) Corticosteroids increase secretory leuko-
cyte protease inhibitor transcript levels in airway epithelial cells. Am J Physiol 268: L601–L606.

Abraham SM and Clark AR (2006) Dual-specificity phosphatase 1: a critical regulator of innate
immune responses. Biochem Soc Trans 34: 1018–1023.

Abraham SM, Lawrence T, Kleiman A, Warden P, Medghalchi M, Tuckermann J, Saklatvala J, and
Clark AR (2006) Antiinflammatory effects of dexamethasone are partly dependent on induction of
dual specificity phosphatase 1. J Exp Med 203: 1883–1889.

Adcock IM, Ito K, and Barnes PJ (2004) Glucocorticoids: effects on gene transcription. Proc Am
Thorac Soc 1: 247–254.

Adkins KK, Levan TD, Miesfeld RL, and Bloom JW (1998) Glucocorticoid regulation of GM-CSF:
evidence for transcriptional mechanisms in airway epithelial cells. Am J Physiol 275: L372–L378.

Atsuta J, Plitt J, Bochner BS, and Schleimer RP (1999) Inhibition of VCAM-1 expression in human
bronchial epithelial cells by glucocorticoids. Am J Respir Cell Mol Biol 20: 643–650.

Barnes PJ (2006) How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Phar-
macol 148: 245–254.

Beckett PA and Howarth PH (2003) Pharmacotherapy and airway remodelling in asthma? Thorax 58:
163–174.

Berg T, Didon L, Barton J, Andersson O, and Nord M (2005) Glucocorticoids increase C/EBPbeta
activity in the lung epithelium via phosphorylation. Biochem Biophys Res Commun 334: 638–645.

Bolt RJ, van Weissenbruch MM, Lafeber HN, and Delemarre-van de Waal HA (2001) Glucocorticoids
and lung development in the fetus and preterm infant. Pediatr Pulmonol 32: 76–91.

Borok Z and Verkman AS (2002) Lung edema clearance: 20 years of progress: invited review: Role
of aquaporin water channels in fluid transport in lung and airways. J Appl Physiol 93: 2199–2206.

Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, Saklatvala J, and Clark AR (2006)
Posttranslational regulation of tristetraprolin subcellular localization and protein stability by P38
mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol
26: 2408–2418.

Brostjan C, Anrather J, Csizmadia V, Stroka D, Soares M, Bach FH, and Winkler H (1996)
Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve
induction of IkappaBalpha synthesis. J Biol Chem 271: 19612–19616.

Brostjan C, Anrather J, Csizmadia V, Natarajan G, and Winkler H (1997) Glucocorticoids inhibit
E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J Immunol 158: 3836–3844.

Caldenhoven E, Liden J, Wissink S, van de SA, Raaijmakers J, Koenderman L, Okret S, Gustafsson
JA, and van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a
possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9: 401–412.



REFERENCES 383

Carballo E, Lai WS, and Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis
factor-alpha production by tristetraprolin. Science 281: 1001–1005.

Carpenter LR, Moy JN, and Roebuck KA (2002) Respiratory syncytial virus and TNF alpha induction
of chemokine gene expression involves differential activation of Rel A and NF-kappa B1. BMC
Infect Dis 2: 5.

Cassel TN, Nordlund-Moller L, Andersson O, Gustafsson JA, and Nord M (2000) C/EBPalpha and
C/EBPdelta activate the Clara cell secretory protein gene through interaction with two adjacent
C/EBP-binding sites. Am J Respir Cell Mol Biol 22: 469–480.

Chalaka S, Ingbar DH, Sharma R, Zhau Z, and Wendt CH (1999) Na�+�-K�+�-ATPase gene regulation
by glucocorticoids in a fetal lung epithelial cell line. Am J Physiol Lung Cell Mol Physiol 277:
L197–L203.

Chang MM, Juarez M, Hyde DM, and Wu R (2001) Mechanism of dexamethasone-mediated
interleukin-8 gene suppression in cultured airway epithelial cells. Am J Physiol Lung Cell Mol
Physiol 280: L107–L115.

Chen LC, Zhang Z, Myers AC, and Huang SK (2001) Cutting edge: altered pulmonary eosinophilic
inflammation in mice deficient for Clara cell secretory 10-KDa protein. J Immunol 167: 3025–3028.

Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, and Liu Y (2002) Restraint of proinflammatory cytokine
biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated
macrophages. J Immunol 169: 6408–6416.

Chen Y, Nickola TJ, DiFronzo NL, Colberg-Poley AM, and Rose MC (2006) Dexamethasone-mediated
repression of MUC5AC gene expression in human lung epithelial cells. Am J Respir Cell Mol Biol
34: 338–347.

Chivers JE, Cambridge LM, Catley MC, Mak JC, Donnelly LE, Barnes PJ, and Newton R (2004) Differ-
ential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E
release. Eur J Biochem 271: 4042–4052.

Chivers JE, Gong W, King EM, Seybold J, Mak JC, Donnelly LE, Holden NS, and Newton R (2006)
Analysis of the dissociated steroid, RU24858, does not exclude a role for inducible genes in the
anti-inflammatory actions of glucocorticoids. Mol Pharmacol 70: 2084–2095.

Clark AR (2003) MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids?
J Endocrinol 178: 5–12.

Clark AR, Dean JL, and Saklatvala J (2003) Post-transcriptional regulation of gene expression by
mitogen-activated protein kinase P38. FEBS Lett 546: 37–44.

Cole TJ, Solomon NM, Van Driel R, Monk JA, Bird D, Richardson SJ, Dilley RJ, and Hooper SB
(2004) Altered epithelial cell proportions in the fetal lung of glucocorticoid receptor null mice. Am
J Respir Cell Mol Biol 30: 613–619.

Croxtall JD, Choudhury Q, and Flower RJ (2000) Glucocorticoids act within minutes to inhibit recruit-
ment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-
independent mechanism. Br J Pharmacol 130: 289–298.

Croxtall JD, Van Hal PT, Choudhury Q, Gilroy DW, and Flower RJ (2002) Different glucocorticoids
vary in their genomic and non-genomic mechanism of action in A549 cells. Br J Pharmacol 135:
511–519.

Dagenais A, Denis C, Vives MF, Girouard S, Masse C, Nguyen T, Yamagata T, Grygorczyk C,
Kothary R, and Berthiaume Y (2001) Modulation of alpha-ENaC and alpha1-Na + -K + -ATPase
by CAMP and dexamethasone in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 281:
L217–L230.

Dagenais A, Frechette R, Clermont ME, Masse C, Prive A, Brochiero E, and Berthiaume Y (2006)
Dexamethasone inhibits the action of TNF on ENaC expression and activity. Am J Physiol Lung
Cell Mol Physiol 291: L1220–L1231.

Davies TH, Ning YM, and Sanchez ER (2002) A new first step in activation of steroid recep-
tors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 277:
4597–4600.



384 CH18 MODULATION OF EPITHELIAL CELL FUNCTION BY GLUCOCORTICOIDS

De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers W, and Haegeman G (1997)
Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct
interference with transactivation. Proc Natl Acad Sci U S A 94: 13504–13509.

De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, Boone E, and Haegeman G (2000)
Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of P65 with the basal
transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci U S A 97:
3919–3924.

De Bosscher K, Vanden Berghe W, and Haegeman G (2001) Glucocorticoid repression of AP-1 is not
mediated by competition for nuclear coactivators. Mol Endocrinol 15: 219–227.

De Bosscher K, Vanden Berghe W, and Haegeman G (2003) The interplay between the glucocorticoid
receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression.
Endocr Rev 24: 488–522.

Dean JL, Sully G, Clark AR, and Saklatvala J (2004) The involvement of AU-rich element-binding
proteins in P38 mitogen-activated protein kinase pathway-mediated MRNA stabilisation. Cell Signal
16: 1113–1121.

Eddleston J, Herschbach J, Wagelie-Steffen AL, Christiansen SC, and Zuraw BL (2007) The anti-
inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in
epithelial cells. J Allergy Clin Immunol 119: 115–122.

Falkenstein E, Tillmann HC, Christ M, Feuring M, and Wehling M (2000) Multiple actions of steroid
hormones – a focus on rapid, nongenomic effects. Pharmacol Rev 52: 513–556.

Fan J, Heller NM, Gorospe M, Atasoy U, and Stellato C (2005) The role of post-transcriptional
regulation in chemokine gene expression in inflammation and allergy. Eur Respir J 26: 933–947.

Flower RJ and Rothwell NJ (1994) Lipocortin-1: cellular mechanisms and clinical relevance. Trends
Pharmacol Sci 15: 71–76.

Folkesson HG and Matthay MA (2006) Alveolar epithelial ion and fluid transport: recent progress.
Am J Respir Cell Mol Biol 35: 10–19.

Folkesson HG, Norlin A, Wang Y, Abedinpour P, and Matthay MA (2000) Dexamethasone and thyroid
hormone pretreatment upregulate alveolar epithelial fluid clearance in adult rats. J Appl Physiol 88:
416–424.

Fragaki K, Kileztky C, Trentesaux C, Zahm JM, Bajolet O, Johnson M, and Puchelle E (2006) Down-
regulation by a long-acting beta2-adrenergic receptor agonist and corticosteroid of Staphylococcus
aureus-induced airway epithelial inflammatory mediator production. Am J Physiol Lung Cell Mol
Physiol 291: L11–L18.

Franklin CC and Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase
(MAPK) phosphatase MKP-1 preferentially inhibits P38 MAPK and stress-activated protein kinase
in U937 cells. J Biol Chem 272: 16917–16923.

Furst R, Schroeder T, Eilken HM, Bubik MF, Kiemer AK, Zahler S, and Vollmar AM (2007)
MAPK phosphatase-1 represents a novel anti-inflammatory target of glucocorticoids in the human
endothelium. FASEB J 21: 74–80.

Giguere V, Hollenberg SM, Rosenfeld MG, and Evans RM (1986) Functional domains of the human
glucocorticoid receptor. Cell 46: 645–652.

Gonzales LW, Guttentag SH, Wade KC, Postle AD, and Ballard PL (2002) Differentiation of human
pulmonary type II cells in vitro by glucocorticoid plus CAMP. Am J Physiol Lung Cell Mol Physiol
283: L940–L951.

Grunberg K, Sharon RF, Hiltermann TJ, Brahim JJ, Dick EC, Sterk PJ, and Van Krieken JH (2000)
Experimental rhinovirus 16 infection increases intercellular adhesion molecule-1 expression in
bronchial epithelium of asthmatics regardless of inhaled steroid treatment. Clin Exp Allergy 30:
1015–1023.

Helve O, Pitkanen OM, Andersson S, O’Brodovich H, Kirjavainen T, and Otulakowski G (2004)
Low expression of human epithelial sodium channel in airway epithelium of preterm infants with
respiratory distress. Pediatrics 113: 1267–1272.



REFERENCES 385

Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, and
Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor
CDNA. Nature 318: 635–641.

Holtzman MJ, Morton JD, Shornick LP, Tyner JW, O’Sullivan MP, Antao A, Lo M, Castro M,
and Walter MJ (2002) Immunity, inflammation, and remodeling in the airway epithelial barrier:
epithelial-viral-allergic paradigm. Physiol Rev 82: 19–46.

Hoshino M, Nakamura Y, Sim JJ, Yamashiro Y, Uchida K, Hosaka K, and Isogai S (1998)
Inhaled corticosteroid reduced lamina reticularis of the basement membrane by modulation
of insulin-like growth factor (IGF)-I expression in bronchial asthma. Clin Exp Allergy 28:
568–577.

Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, and Thomas CP
(2002) Glucocorticoid-stimulated lung epithelial Na�+� transport is associated with regulated ENaC
and Sgk1 expression. Am J Physiol Lung Cell Mol Physiol 282: L631–L641.

Ito K, Barnes PJ, and Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase
2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20:
6891–6903.

Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, and Adcock IM (2006) Histone
deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression.
J Exp Med 203: 7–13.

Jame AJ, Lackie PM, Cazaly AM, Sayers I, Penrose JF, Holgate ST, and Sampson AP (2007) Human
bronchial epithelial cells express an active and inducible biosynthetic pathway for leukotrienes B(4)
and C(4). Clin Exp Allergy 37: 880–892.

Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, and Herrlich P (1990) Antitumor
promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid
hormone. Cell 62: 1189–1204.

Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, and Cato AC (2001) Glucocorticoids
inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20:
7108–7116.

Kern JA, Lamb RJ, Reed JC, Daniele RP, and Nowell PC (1988) Dexamethasone inhibition of
interleukin 1 beta production by human monocytes. Posttranscriptional mechanisms. J Clin Invest
81: 237–244.

King LS, Nielsen S, and Agre P (1996) Aquaporin-1 water channel protein in lung: ontogeny, steroid-
induced expression, and distribution in rat. J Clin Invest 97: 2183–2191.

Kleinert H, Euchenhofer C, Ihrig-Biedert I, and Forstermann U (1996) Glucocorticoids inhibit the
induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription
factor nuclear factor-kappa B. Mol Pharmacol 49: 15–21.

Konig H, Ponta H, Rahmsdorf HJ, and Herrlich P (1992) Interference between pathway-specific
transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering
AP-1 site occupation in vivo. EMBO J 11: 2241–2246.

Korhonen R, Lahti A, Hamalainen M, Kankaanranta H, and Moilanen E (2002) Dexamethasone inhibits
inducible nitric-oxide synthase expression and nitric oxide production by destabilizing MRNA in
lipopolysaccharide-treated macrophages. Mol Pharmacol 62: 698–704.

Kwon OJ, Au BT, Collins PD, Baraniuk JN, Adcock IM, Chung KF, and Barnes PJ (1994) Inhibition
of interleukin-8 expression by dexamethasone in human cultured airway epithelial cells. Immunology
81: 389–394.

Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, and Blackshear PJ (1999) Evidence
that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of
tumor necrosis factor alpha MRNA. Mol Cell Biol 19: 4311–4323.

Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, and Clark AR (2000) Regulation of cyclooxy-
genase 2 MRNA stability by the mitogen-activated protein kinase P38 signaling cascade. Mol Cell
Biol 20: 4265–4274.



386 CH18 MODULATION OF EPITHELIAL CELL FUNCTION BY GLUCOCORTICOIDS

Lasa M, Brook M, Saklatvala J, and Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2
MRNA by inhibiting mitogen-activated protein kinase P38. Mol Cell Biol 21: 771–780.

Lasa M, Abraham SM, Boucheron C, Saklatvala J, and Clark AR (2002) Dexamethasone causes
sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-
mediated inhibition of MAPK P38. Mol Cell Biol 22: 7802–7811.

Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ,
Heys JR, and Landvatter SW (1994) A protein kinase involved in the regulation of inflammatory
cytokine biosynthesis. Nature 372: 739–746.

Lee SW, Tsou AP, Chan H, Thomas J, Petrie K, Eugui EM, and Allison AC (1988) Glucocorticoids
selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of
interleukin 1 beta MRNA. Proc Natl Acad Sci U S A 85: 1204–1208.

Levine SJ, Larivee P, Logun C, Angus CW, and Shelhamer JH (1993) Corticosteroids differentially
regulate secretion of IL-6, IL-8, and G-CSF by a human bronchial epithelial cell line. Am J Physiol
265: L360–L368.

Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg
ME, Drazen JM, and Luster AD (1997) Expression of eotaxin by human lung epithelial cells:
induction by cytokines and inhibition by glucocorticoids. J Clin Invest 99: 1767–1773.

Liu Y, Gorospe M, Yang C, and Holbrook NJ (1995) Role of mitogen-activated protein kinase
phosphatase during the cellular response to genotoxic stress. Inhibition of C-Jun N-terminal kinase
activity and AP-1-dependent gene activation. J Biol Chem 270: 8377–8380.

Losel R, andWehling M. (2003) Nongenomic actions of steroid hormones Nat. Rev. Mol. Cell. Biol.
4: 46–55.

Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, and Wehling M
(2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83: 965–1016.

Lu W, Lillehoj EP, and Kim KC (2005) Effects of dexamethasone on Muc5ac mucin production by
primary airway goblet cells. Am J Physiol Lung Cell Mol Physiol 288: L52–L60.

Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM,
Weigel NL, Wilson EM, McDonnell DP, and Cidlowski JA (2006) International Union of Pharma-
cology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid,
mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58: 782–797.

Luecke HF and Yamamoto KR (2005) The glucocorticoid receptor blocks P-TEFb recruitment by
NFkappaB to effect promoter-specific transcriptional repression. Genes Dev 19: 1116–1127.

Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, and Sigler PB (1991) Crystallographic
analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505.

Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, and Clark AR (2001) Mitogen-activated protein
kinase P38 controls the expression and posttranslational modification of tristetraprolin, a regulator
of tumor necrosis factor alpha MRNA stability. Mol Cell Biol 21: 6461–6469.

Martin LD, Rochelle LG, Fischer BM, Krunkosky TM, and Adler KB (1997) Airway epithelium as an
effector of inflammation: molecular regulation of secondary mediators. Eur Respir J 10: 2139–2146.

Mata J, Marguerat S, and Bahler J (2005) Post-transcriptional control of gene expression: a genome-
wide perspective. Trends Biochem Sci 30: 506–514.

Matthay MA, Folkesson HG, and Clerici C (2002) Lung epithelial fluid transport and the resolution
of pulmonary edema. Physiol Rev 82: 569–600.

McKay LI and Cidlowski JA (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear
factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol
14: 1222–1234.

Mills PR, Davies RJ, and Devalia JL (1999) Airway epithelial cells, cytokines, and pollutants.
Am J Respir Crit Care Med 160: S38–S43.

Mitchell JA, Belvisi MG, Akarasereenont P, Robbins RA, Kwon OJ, Croxtall J, Barnes PJ, and Vane JR
(1994) Induction of cyclo-oxygenase-2 by cytokines in human pulmonary epithelial cells: regulation
by dexamethasone. Br J Pharmacol 113: 1008–1014.



REFERENCES 387

Mittelstadt PR and Ashwell JD (2001) Inhibition of AP-1 by the glucocorticoid-inducible protein
GILZ. J Biol Chem 276: 29603–29610.

Mozo L, Gayo A, Suarez A, Rivas D, Zamorano J, and Gutierrez C (1998) Glucocorticoids inhibit IL-4
and mitogen-induced IL-4R alpha chain expression by different posttranscriptional mechanisms.
J Allergy Clin Immunol 102: 968–976.

Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S, Kasahara T, and Matsushima K (1994)
Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-kappa B is target for
glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269: 13289–13295.

Newton R (2000) Molecular mechanisms of glucocorticoid action: what is important? Thorax 55:
603–613.

Newton R and Holden N (2003) Inhibitors of P38 mitogen-activated protein kinase: potential as
anti-inflammatory agents in asthma? BioDrugs 17: 113–129.

Newton R, Hart LA, Stevens DA, Bergmann M, Donnelly LE, Adcock IM, and Barnes PJ (1998a) Effect
of dexamethasone on interleukin-1beta-(IL-1beta)-induced nuclear factor-kappaB (NF-kappaB) and
kappaB-dependent transcription in epithelial cells. Eur J Biochem 254: 81–89.

Newton R, Seybold J, Kuitert LM, Bergmann M, and Barnes PJ (1998b) Repression of
cyclooxygenase-2 and prostaglandin E2 release by dexamethasone occurs by transcriptional and
post-transcriptional mechanisms involving loss of polyadenylated MRNA. J Biol Chem 273:
32312–32321.

Newton R, Cambridge L, Hart LA, Stevens DA, Lindsay MA, and Barnes PJ (2000) The MAP
kinase inhibitors, PD098059, UO126 and SB203580, inhibit IL-1beta-dependent PGE(2) release via
mechanistically distinct processes. Br J Pharmacol 130: 1353–1361.

Newton R, Eddleston J, Haddad E, Hawisa S, Mak J, Lim S, Fox AJ, Donnelly LE, and Chung
KF (2002) Regulation of kinin receptors in airway epithelial cells by inflammatory cytokines and
dexamethasone. Eur J Pharmacol 441: 193–202.

Nissen RM and Yamamoto KR (2000) The glucocorticoid receptor inhibits NFkappaB by interfering
with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 14:
2314–2329.

Ohtsuka T, Kubota A, Hirano T, Watanabe K, Yoshida H, Tsurufuji M, Iizuka Y, Konishi K, and
Tsurufuji S (1996) Glucocorticoid-mediated gene suppression of rat cytokine-induced neutrophil
chemoattractant CINC/Gro, a member of the interleukin-8 family, through impairment of NF-kappa
B activation. J Biol Chem 271: 1651–1659.

Otulakowski G, Rafii B, Harris M, and O’Brodovich H (2006) Oxygen and glucocorticoids modulate
alphaENaC MRNA translation in fetal distal lung epithelium. Am J Respir Cell Mol Biol 34:
204–212.

Paine R, III, Rolfe MW, Standiford TJ, Burdick MD, Rollins BJ, and Strieter RM (1993) MCP-1
expression by rat type II alveolar epithelial cells in primary culture. J Immunol 150: 4561–4570.

Pearce D and Kleyman TR (2007) Salt, sodium channels, and SGK1. J Clin Invest 117: 592–595.
Peppel K, Vinci JM, and Baglioni C (1991) The AU-rich sequences in the 3′ untranslated region mediate

the increased turnover of interferon MRNA induced by glucocorticoids. J Exp Med 173: 349–355.
Pratt WB, Galigniana MD, Harrell JM, and DeFranco DB (2004) Role of Hsp90 and the Hsp90-binding

immunophilins in signalling protein movement. Cell Signal 16: 857–872.
Proud D and Chow CW (2006) Role of viral infections in asthma and chronic obstructive pulmonary

disease. Am J Respir Cell Mol Biol 35: 513–518.
Qiu J, Wang CG, Huang XY, and Chen YZ (2003) Nongenomic mechanism of glucocorticoid

inhibition of bradykinin-induced calcium influx in PC12 cells: possible involvement of protein
kinase C. Life Sci 72: 2533–2542.

Ray A and Prefontaine KE (1994) Physical association and functional antagonism between the
P65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad
Sci U S A 91: 752–756.



388 CH18 MODULATION OF EPITHELIAL CELL FUNCTION BY GLUCOCORTICOIDS

Ray KP, Farrow S, Daly M, Talabot F, and Searle N (1997) Induction of the E-selectin promoter by
interleukin 1 and tumour necrosis factor alpha, and inhibition by glucocorticoids. Biochem J 328:
707–715.

Rhen T and Cidlowski JA (2005) Antiinflammatory action of glucocorticoids – new mechanisms for
old drugs. N Engl J Med 353: 1711–1723.

Ristimaki A, Narko K, and Hla T (1996) Down-regulation of cytokine-induced cyclo-oxygenase-2
transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J 318:
325–331.

Rogatsky I, Zarember KA, and Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor
activity at a collagenase-3 response element that mediates regulation by phorbol esters and
hormones. EMBO J 20: 6071–6083.

Rogatsky I, Luecke HF, Leitman DC, and Yamamoto KR (2002) Alternate surfaces of transcriptional
coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts.
Proc Natl Acad Sci U S A 99: 16701–16706.

Rogers DF (2004) Airway mucus hypersecretion in asthma: an undervalued pathology? Curr Opin
Pharmacol 4: 241–250.

Saunders MA, Belvisi MG, Cirino G, Barnes PJ, Warner TD, and Mitchell JA (1999) Mecha-
nisms of prostaglandin E2 release by intact cells expressing cyclooxygenase-2: evidence for a
‘two-component’ model. J Pharmacol Exp Ther 288: 1101–1106.

Schacke H, Docke WD, and Asadullah K (2002) Mechanisms involved in the side effects of
glucocorticoids. Pharmacol Ther 96: 23–43.

Scheinman RI, Cogswell PC, Lofquist AK, and Baldwin AS, Jr. (1995) Role of transcriptional activation
of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283–286.

Schleimer RP (1993) An overview of glucocorticoid anti-inflammatory actions. Eur J Clin Pharmacol
45 (Suppl 1): S3–S7.

Schleimer RP (2004) Glucocorticoids suppress inflammation but spare innate immune responses in
airway epithelium. Proc Am Thorac Soc 1: 222–230.

Sheppard KA, Phelps KM, Williams AJ, Thanos D, Glass CK, Rosenfeld MG, Gerritsen ME, and
Collins T (1998) Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling
by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem 273: 29291–29294.

Slack DN, Seternes OM, Gabrielsen M, and Keyse SM (2001) Distinct binding determinants for
ERK2/P38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map
kinase phosphatase-1. J Biol Chem 276: 16491–16500.

Smoak K and Cidlowski JA (2006) Glucocorticoids regulate tristetraprolin synthesis and post-
transcriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 26:
9126–9135.

Staples KJ, Bergmann MW, Barnes PJ, and Newton R (2003) Evidence for post-transcriptional
regulation of interleukin-5 by dexamethasone. Immunology 109: 527–535.

Stellato C (2004) Post-transcriptional and nongenomic effects of glucocorticoids. Proc Am Thorac
Soc 1: 255–263.

Stellato C, Beck LA, Gorgone GA, Proud D, Schall TJ, Ono SJ, Lichtenstein LM, and Schleimer RP
(1995) Expression of the chemokine RANTES by a human bronchial epithelial cell line. modulation
by cytokines and glucocorticoids. J Immunol 155: 410–418.

Stellato C, Matsukura S, Fal A, White J, Beck LA, Proud D, and Schleimer RP (1999) Differential
regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid
budesonide. J Immunol 163: 5624–5632.

Suzuki T, Yamaya M, Sekizawa K, Yamada N, Nakayama K, Ishizuka S, Kamanaka M,
Morimoto T, Numazaki Y, and Sasaki H (2000) Effects of dexamethasone on rhinovirus
infection in cultured human tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 278:
L560–L571.



REFERENCES 389

Swantek JL, Cobb MH, and Geppert TD (1997) Jun N-terminal kinase/stress-activated protein
kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha
(TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK.
Mol Cell Biol 17: 6274–6282.

Szapary D, Huang Y, and Simons SS, Jr. (1999) Opposing effects of corepressor and coactivators in
determining the dose–response curve of agonists, and residual agonist activity of antagonists, for
glucocorticoid receptor-regulated gene expression. Mol Endocrinol 13: 2108–2121.

Tanaka M, Inase N, Fushimi K, Ishibashi K, Ichioka M, Sasaki S, and Marumo F (1997) Induction
of aquaporin 3 by corticosteroid in a human airway epithelial cell line. Am J Physiol 273:
L1090–L1095.

Tang ML, Wilson JW, Stewart AG, and Royce SG (2006) Airway remodelling in asthma: current
understanding and implications for future therapies. Pharmacol Ther 112: 474–488.

Tasker JG, Di S, and Malcher-Lopes R (2006) Minireview: rapid glucocorticoid signaling via
membrane-associated receptors. Endocrinology 147: 5549–5556.

Thoren S and Jakobsson PJ (2000) Coordinate up- and down-regulation of glutathione-dependent
prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and leukotriene
C4. Eur J Biochem 267: 6428–6434.

Tillmann HC, Stuck BA, Feuring M, Rossol-Haseroth K, Tran BM, Losel R, Schmidt BM,
Hormann K, Wehling M, and Schultz A (2004) Delayed genomic and acute nongenomic action of
glucocorticosteroids in seasonal allergic rhinitis. Eur J Clin Invest 34: 67–73.

Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M, and Fey MF (1992) Glucocorticoids
downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human
fibroblasts. Blood 79: 45–51.

Towne JE, Harrod KS, Krane CM, and Menon AG (2000) Decreased expression of aquaporin (AQP)1
and AQP5 in mouse lung after acute viral infection. Am J Respir Cell Mol Biol 22: 34–44.

Urbach V, Walsh DE, Mainprice B, Bousquet J, and Harvey BJ (2002) Rapid non-genomic inhibition
of ATP-induced Cl-secretion by dexamethasone in human bronchial epithelium. J Physiol 545:
869–878.

Urbach V, Verriere V, Grumbach Y, Bousquet J, and Harvey BJ (2006) Rapid anti-secretory effects
of glucocorticoids in human airway epithelium. Steroids 71: 323–328.

van de Stolpe A, Caldenhoven E, Raaijmakers JA, van der Saag PT, and Koenderman L (1993)
Glucocorticoid-mediated repression of intercellular adhesion molecule-1 expression in human
monocytic and bronchial epithelial cell lines. Am J Respir Cell Mol Biol 8: 340–347.

van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers JA, Johnson JP, and
van der Saag PT (1994) 12-O-Tetradecanoylphorbol-13-acetate- and tumor necrosis factor
alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone.
Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem 269:
6185–6192.

Verriere VA, Hynes D, Faherty S, Devaney J, Bousquet J, Harvey BJ, and Urbach V (2005) Rapid
effects of dexamethasone on intracellular PH and Na + /H+ exchanger activity in human bronchial
epithelial cells. J Biol Chem 280: 35807–35814.

Volonaki E, Psarras S, Xepapadaki P, Psomali D, Gourgiotis D, and Papadopoulos NG (2006)
Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced
epithelial production of remodelling-associated growth factors. Clin Exp Allergy 36: 1268–1273.

Wade KC, Guttentag SH, Gonzales LW, Maschhoff KL, Gonzales J, Kolla V, Singhal S, and
Ballard PL (2006) Gene induction during differentiation of human pulmonary type II cells in vitro.
Am J Respir Cell Mol Biol 34: 727–737.

Wang JH, Trigg CJ, Devalia JL, Jordan S, and Davies RJ (1994) Effect of inhaled beclomethasone
dipropionate on expression of proinflammatory cytokines and activated eosinophils in the bronchial
epithelium of patients with mild asthma. J Allergy Clin Immunol 94: 1025–1034.



390 CH18 MODULATION OF EPITHELIAL CELL FUNCTION BY GLUCOCORTICOIDS

Wang J, Zhu Z, Nolfo R, and Elias JA (1999) Dexamethasone regulation of lung epithelial cell and
fibroblast interleukin-11 production. Am J Physiol 276: L175–L185.

Wang Q, Blackford JA, Jr., Song LN, Huang Y, Cho S, and Simons SS, Jr. (2004) Equilibrium inter-
actions of corepressors and coactivators with agonist and antagonist complexes of glucocorticoid
receptors. Mol Endocrinol 18: 1376–1395.

Wesselborg S, Bauer MK, Vogt M, Schmitz ML, and Schulze-Osthoff K (1997) Activation of
transcription factor NF-kappaB and P38 mitogen-activated protein kinase is mediated by distinct
and separate stress effector pathways. J Biol Chem 272: 12422–12429.

Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch
K, and Holtmann H (1999) The P38 MAP kinase pathway signals for cytokine-induced MRNA
stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism.
EMBO J 18: 4969–4980.

Wissink S, van Heerde EC, vand der BB, and van der Saag PT (1998) A dual mechanism mediates
repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 12: 355–363.

Wu JJ, Zhang L, and Bennett AM (2005) The noncatalytic amino terminus of mitogen-activated
protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional
regulation. Mol Cell Biol 25: 4792–4803.

Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, and Karin M (1990)
Transcriptional interference between C-Jun and the glucocorticoid receptor: mutual inhibition of
DNA binding due to direct protein–protein interaction. Cell 62: 1205–1215.

Zhou J, Kang ZM, Xie QM, Liu C, Lou SJ, Chen YZ, and Jiang CL (2003) Rapid nongenomic effects
of glucocorticoids on allergic asthma reaction in the guinea pig. J Endocrinol 177: R1–R4.



19
The Airway Epithelium as a Target
for the Therapeutic Actions of
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19.1 Introduction

The topical application of drugs for the treatment of airway inflammatory disorders such as
asthma and chronic obstructive pulmonary disease (COPD) is a widely adopted method of
administration as it directly targets the organ of interest and, theoretically, should be associ-
ated with a reduced adverse-events profile over drugs given orally, where marked systemic
exposure can be problematic. An additional advantage is that drugs given by inhalation will
first come into contact with the airway epithelium, for which profound pro-inflammatory
roles are now recognized (Barnes, 1996; Schwiebert et al., 1996). The ability of airway
epithelia to elaborate lipids, chemokines, cytokines and pro-fibrotic mediators, makes this
tissue a primary and critical target for the anti-inflammatory actions of inhaled corticos-
teroids (ICS) (Barnes, 1996). Moreover, the airway epithelium must also be considered an
important target for the activity of inhaled long-acting �2-adrenoceptor agonists (LABAs)
as these drugs, in some way, enhance the clinical efficacy of ICSs to a level that cannot
be achieved by the corticosteroid alone. Emerging evidence indicates that LABAs probably
achieve this effect by augmenting the efficacy of ICSs at the level of airway epithelial cells
(and other target tissues) rather than eliciting mechanistically-distinct, complementary anti-
inflammatory activity. The importance of the epithelium as a site of drug action may also
extend to muscarinic receptor antagonists (also known as anticholinergics). Indeed, acetyl-
choline (ACh) is produced by, and can also activate, airway epithelia to release mediators
of inflammation that may have relevance to the pathophysiology of COPD.
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The primary purpose of this chapter is to detail the structure and function of
�2-adrenoceptors expressed by human airway epithelial cells and how targeting this receptor
with LABAs enhances corticosteroid action. The possibility that agonism of �2-adrenoceptors
on epithelial cells can also regulate tone of the underlying airway smooth muscle is also
discussed. Finally, it has been proposed that muscarinic receptor antagonists possess anti-
inflammatory activity in chronic airway diseases unrelated to their ability to promote bron-
chodilatation. This is a novel and highly attractive idea and is discussed here in respect of
airway epithelial cells.

19.2 The �2-adrenoceptor as a therapeutic target

19.2.1 �2-Adrenoceptors on human airway epithelial cells

The human �2-adrenoceptor gene is located on the long arm of chromosome 5 and codes for
an intronless, 1200 bp product of 413 amino acids (46.5 kDa) that responds to the endogenous
hormones adrenaline and noradrenaline. Relative to most other structural, resident and pro-
inflammatory cells within the lung, airway epithelial cells express a relatively high density
of functional �2-adrenoceptors (Penn et al., 1994), which has been estimated at 7000–9000
sites/cell (Kelsen et al., 1995; Penn et al., 1994). Similar levels are also found on a number
of human airway epithelial cells lines including BEAS-2B (Kelsen et al., 1997a, 1997b),
16HBE14o- and Calu-3 (Abraham et al., 2004). Only human airway smooth muscle (HASM)
cells are believed to express a significantly higher number of �2-adrenoceptors (30 000–
40 000 sites/cell) (Johnson, 2002).

19.2.2 Functional effects of �2-adrenoceptor agonists human airway
epithelial cells

Although �2-adrenoceptor agonists given as a monotherapy are not anti-inflammatory, they
do elicit a number of non-bronchodilator actions on pro-inflammatory and immune cells
(structural, infiltrated and resident) that may be of some clinical benefit. There is reasonable
evidence from in vitro and in vivo studies that �2-adrenoceptor agonists increase ciliary beat
frequency (Devalia et al., 1992; Lansley et al., 1992; Nishimura et al., 2002; Sanderson
and Dirksen, 1989; Verdugo et al., 1980; Yang et al., 1996), which presumably accounts
for the ability of these drugs to improve mucociliary transport (Foster et al., 1976; Sackner
et al., 1976; Yeates et al., 1986). Hastie et al. (1997) have also found that the short-acting
�2-adrenoceptor agonist, salbutamol, upregulates in vivo the expression of stress proteins
in human airway epithelial cells including heat shock protein (HSP)-72 and HSP-73. This
finding also may be of therapeutic relevance given that the induction of a stress response can
protect against a secondary insult (Mizzen and Welch, 1988). Similarly, the suggested delete-
rious ability of corticosteroids to induce apoptosis of human airway epithelial cells is blocked
by short-acting and LABAs (salbutamol and formoterol respectively) (Tse et al., 2003).

The inhibitory activity of �2-adrenoceptors agonists on responses that, classically, are
considered to be pro-inflammatory has not been studied in great detail. However, procaterol,
a potent, short-acting compound, is reported to suppress the release, from BEAS-2B cells, of
several interleukin (IL)-1�/tumour necrosis factor-� �TNF��-induced cytokines/chemokines
including regulated upon activation, normal T-cell-expressed and secreted (RANTES),
granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-8 (Koyama et al.,
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1999). Similar data were obtained using primary human airway epithelial cells with the
LABAs formoterol (Korn et al., 2001) and salmeterol (Sabatini et al., 2003), although
those results were not confirmed in another study with salbutamol using cells harvested
from both normal and asthmatic subjects (Gormand et al., 1995). �2-adrenoceptor agonists
also have been found to attenuate the upregulation of certain adhesion molecules including
intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (Oddera et al.,
1998; Sabatini et al., 2003).

In contrast, several potentially adverse effects of �2-adrenoceptor agonists on airway
epithelial cell function have been documented. In particular, treatment of BEAS-2B and
16-HBE14o- cells with salbutamol enhanced cell proliferation (Nishimura et al., 2002)
implying that regular administration of this class of drugs as a monotherapy could, theoreti-
cally, contribute to airway remodelling that characterizes both asthma and COPD.

19.2.3 Airway epithelial cell �2-adrenoceptors and the regulation
of airway smooth muscle tone

Elegant studies by Liggett and his colleagues (McGraw et al., 2000) have revealed new
insights in to the regulation of airway smooth function by �2-adrenoceptors expressed on
airway epithelial cells. Specifically, the investigators have discovered that the density of
�2-adrenoceptors on epithelial cells has an impact on the tone of the underlying smooth
muscle. Thus, using the rat Clara cell secretory protein promoter, which resulted in targeted
overexpression (twofold) in mice of epithelial cell �2-adrenoceptor number, McGraw et al.
(2000) found that the dose of methacholine (MCh) required to increase, over baseline,
airway resistance by 200 per cent was significantly higher when compared to non-transgenic
littermates. The protection afforded against MCh-induced bronchoconstriction in the trans-
genic animals was the same as that produced by salbutamol given by inhalation to mice not
expressing the transgene (McGraw et al., 2000). These data are consistent with a multi-state
model of G-protein-coupled receptors where the effector, adenylyl cyclase in this case, is
activated by the receptor in the absence of agonist. Obviously, to account for this model
it is necessary to propose that the equilibrium in the absence of agonist normally favours
the inactive conformation. In the experiments described by McGraw et al. (2000) a twofold
overexpression of �2-adrenoceptors on the airway epithelium allowed sufficient spontaneous
coupling to severely limit MCh-induced tone in the absence of agonist. The mechanism
underlying this protective effect is unknown, but it is not apparently due to the enhanced
release from the epithelium of nitric oxide or prostaglandin E2 (McGraw et al., 2000).
Assuming the pharmacological behaviour of the murine �2-adrenoceptor can be extrapo-
lated to humans, these transgenic animals exhibit, what may be described as, an anti-asthma
and/or anti-COPD phenotype. These data thus tempt speculation that targeted overexpression
of �2-adrenoceptors to airway epithelial cells could provide a genetic therapy for airway
inflammatory diseases where bronchodilatation is a desired therapeutic outcome.

19.2.4 Enhancement of ICS action by LABAs

The critical clinical observation

In 1994, Greening and colleagues conducted a double-blind, parallel group trial of 6 months
duration in 426 asthmatic subjects who were symptomatic despite maintenance therapy with
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the ICS, beclomethasone dipropionate (BDP; 200 �g b.i.d.). Subjects were randomized to
receive either salmeterol xinafoate (50 �g b.i.d.) and BDP (200 �g b.i.d.; n= 220) delivered
via separate inhaler devices, or BDP alone at a higher dose of 500 �g (b.i.d.; n = 206).
Both treatment options significantly improved lung function (mean morning peak expiratory
flow rate (PEFR)), but the LABA/ICS combination therapy was superior at all time points.
Other endpoints that favoured salmeterol/BDP over high-dose BDP alone included diurnal
variation in PEFR, daytime and night-time symptoms, and rescue bronchodilator consump-
tion. Significantly, there was no significant difference between the two treatment groups in
exacerbation rate indicating that salmeterol, given chronically with BDP, was not associated
with any risk of asthma deterioration over the duration of the study. Thus, the addition
of salmeterol to a standard dose of BDP was more effective clinically than increasing, by
250 per cent, the dose of BDP (Greening et al., 1994).

Confirmation of effect

The superior clinical benefit of salmeterol and BDP given in combination was confirmed
subsequently in more severe subjects in whom asthma was not controlled on BDP (500 �g
b.i.d.) or equivalent (Woolcock et al., 1996). In this double-blind, parallel group study of
6 months’ duration 738 subjects at 72 centres in Australia were randomized to receive
either salmeterol (50 or 100 �g b.i.d.) in combination with BDP (500 �g b.i.d.), delivered
by separate inhaler devices, or BDP alone at a higher dose (1000 �g b.i.d.). Consistent with
the results of Greening et al. (1994), subjects taking either dose of salmeterol showed mean
improvements of >45 and >30 L/min in their morning and evening PEFR respectively,
which was markedly superior to that achieved in individuals on the higher dose of BDP
only (PEFR morning: 16 L/min; PEFR evening 6 L/min). Moreover, rescue bronchodilator
use and symptoms in those subjects taking either dose of salmeterol were significantly
lower when compared to individuals in the BDP (1000 �g b.i.d.) treatment group. There
was no significant difference in the clinical benefit afforded by the two doses of salmeterol
suggesting that the dose of 100 �g (b.i.d.) is supra-maximal. Exacerbation rates did not
differ among the three treatment groups confirming, again, that there was no deterioration
in asthma control in those individuals taking the combination therapy. Thus, the addition of
salmeterol to BDP was more effective clinically than doubling the dose of BDP.

Superiority of LABA/ICS combination therapy is class-specific

Since the seminal report of Greening et al. (1994), many trials have been conducted
comparing the clinical effectiveness in asthma of LABA/ICS combination therapies with a
higher-dose of an ICS alone. What has emerged, unambiguously, is that the clinical superi-
ority of salmeterol and BDP in combination over higher dose ICS alone is unequivocal and
class-specific (i.e. it is not peculiar to salmeterol or BDP, but a generic effect of LABAs and
ICSs when used in combination). For example, in a multi-centre, double-blind, parallel group
study of 6 months’ duration involving 496 symptomatic asthmatic patients with a history
of exacerbations on ICS (500–800 �g b.i.d.), Ind et al. (2003) demonstrated that adding
salmeterol (50 �g b.i.d.) to another ICS, fluticasone propionate (250 �g b.i.d.), was clinically
superior to doubling the dose of that corticosteroid. Thus, the salmeterol/fluticasone combi-
nation significantly improved mean morning PEFR by 42.1 L/min, which was more than
twice the improvement achieved with fluticasone given as a monotherapy at either 250 �g
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(b.i.d.) or 500 �g (b.i.d.). Similar data in favour of the combination therapy were obtained
when symptoms and exacerbation rate were used as endpoints (Ind et al., 2003).

In addition, the landmark FACET (Formoterol And Corticosteroids Establishing Therapy)
study also confirmed the superiority of the combination therapy when exacerbation rate
was used as the primary outcome measure. Indeed, the exacerbation rate in subjects with
moderately severe asthma was lower when the LABA, formoterol (9 �g b.i.d.,) was added to
low and high dose of another corticosteroid, budesonide (i.e. 100 �g or 400 �g b.i.d.) when
compared to the ICS alone (Pauwels et al., 1997). The clinical superiority of LABA/ICS
combination therapies also extends to subjects with mild persistent asthma in whom the
optimal treatment regime is uncertain. Thus, the OPTIMA (Oxis and Pulmicort Turbuhaler
In the Management of Asthma) study convincingly demonstrated that adding formoterol
(4�5 �g b.i.d.), to low-dose budesonide (100 �g b.i.d.) for 1 year in subjects with mild asthma
was more effective than doubling the dose of ICS in increasing the time to first severe
asthma exacerbation (O’Byrne et al., 2001).

Implications for treatment

Compelling evidence now supports the concept that the addition of a LABA to a regular
ICS is more effective at improving asthma control, lung function and reducing exacerbation
frequency than increasing, even quadrupling, the dose of ICS (Barnes, 2001a; Greening
et al., 1994; Kankaanranta et al., 2004; O’Byrne et al., 2001, 2005; Pauwels et al., 1997;
Shrewsbury et al., 2000; Woolcock et al., 1996). Based upon the results of a large number
of clinical trials, the recently updated GINA (Global INitiative for Asthma) guidelines now
recommend combination therapies for asthma where symptoms are not adequately controlled
on low-dose ICS. Moreover, the results of the TORCH (TOwards a Revolution in COPD
Health) study published in February 2007 in the New England Journal of Medicine (Calverley
et al., 2007) found that the combination of fluticasone and salmeterol significantly improved
lung function and health status, and reduced exacerbation rate and risk of death in patients
with COPD. Significantly, these effects were substantially superior to the clinical efficacy
of either agent given alone as a monotherapy (Calverley et al., 2007). It is likely, therefore,
that current international guidelines will soon be amended, endorsing the use of LABA/ICS
combinations for the treatment of moderate/severe COPD.

19.2.5 LABA/ICS interactions: additivity or synergy?

Despite the therapeutic advantages of LABA/ICS ‘combination’ therapies, the mechanistic
basis for their superior efficacy remains vague. According to traditional dogma, LABAs bind
to cell surface �2-adrenoceptors and augment the activity of one or more isoforms of adenylyl
cyclase by a Gs�-dependent mechanism. This catalysis increases the intracellular concen-
tration of cyclic adenosine-3′� 5′-monophosphate (cAMP) and activates cAMP-dependent
protein kinase (PKA) with an ultimate functional consequence such as bronchodilatation
(Figure 19.1) (Giembycz and Newton, 2006).

In the context of this classical pathway, there is good evidence that ICSs improve
�2-adrenoceptor-mediated signalling in the lung. Indeed, corticosteroids increase
�2-adrenoceptor density (Mak et al., 1995a, 1995b), reduce functional desensitization of the
receptor (Chong et al., 1997) and enhance both Gs� expression and coupling to adenylyl
cyclase (Kalavantavanich and Schramm, 2000). However, the mechanism by which LABAs
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Figure 19.1 Classical �2-adrenoceptor (�2-AR) signalling in which the �2-AR couples via Gs� to
adenylyl cyclase (AC), increases the formation of cAMP and activates PKA to elicit responses such as
smooth muscle relaxation

enhance GR-dependent signalling is largely unexplored. It has been shown that budes-
onide can suppress TNF-�-induced GM-CSF release from human airway epithelial cells
by a mechanism that is enhanced by formoterol (Korn et al., 2001). Similar effects have
been reported with salmeterol on the inhibition, by fluticasone, of both IL-8 and eotaxin
release from HASM cells (Pang and Knox, 2000, 2001). These general findings have been
extended to studies in which viruses have been used as stimuli, to assess the potential
efficacy of ICS/LABA combination therapies in exacerbations of asthma and COPD. Thus,
exposure of BEAS-2B cells to rhinovirus resulted in the elaboration of two factors puta-
tively involved in airway remodelling (vascular endothelial growth factor, fibroblast growth
factor-2) by a mechanism that was inhibited by both fluticasone and, to a lesser extent,
salmeterol. Significantly, these two drugs acted synergistically when used in combination
(Volonaki et al., 2006). Fluticasone and salmeterol have also been shown to inhibit, in
an additive or even synergistic manner, rhinovirus-induced chemokine (CXCL5, CXCL8,
CXCL10, CCL5) release from BEAS-2B cells (Edwards et al., 2006) and this efficacy
seemingly can be extrapolated to murine in vivo systems (Singam et al., 2006). Indeed,
the airway hyper-responsiveness and inflammation in sensitized mice exposed to respira-
tory syncytial virus is more effectively suppressed by the combination of salmeterol and
fluticasone than either drug alone. While, collectively, these studies demonstrate that a corti-
costeroid and a LABA in combination suppress pro-inflammatory cytokine production in
an additive or, possibly, synergistic manner, little information has been published on the
underlying molecular mechanism(s). At least two plausible theories that are not mutually
exclusive may account for the clinical superiority of LABA/ICS combination therapies over
ICSs alone:

1. LABAs and ICSs activate mechanistically-distinct pathways that combine to produce
an additive response.

2. LABAs augment the activity of ICSs through a common mechanism(s) to produce a
synergistic response.

Evidence for which of these two theories might best account of the enhanced efficacy
of LABA/ICS combination therapies comes from clinical studies. Thus, despite the ability
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in vitro of LABAs given as a monotherapy to suppress several induces of inflammation (see
section above), they do not evoke significant/clinically-relevant anti-inflammatory effects in
vivo (Howarth et al., 2000; Roberts et al., 1999). This fact argues against a major role for
separate mechanisms that combine to elicit an additive effect. Conversely, Pauwels et al.
(1997) reporting for the FACET International Study Group, found that formoterol reduced
exacerbation rate and asthma severity in patients taking inhaled budesonide to a greater
degree than those subjects who received the same dose of budesonide as a single medication.
Those data suggest that, contrary to masking the underlying inflammation (a concern when
�2-adrenoceptor agonists are administered chronically as a monotherapy (reviewed in Sears
and Taylor (1994))), LABAs enhance the clinical efficacy of ICSs to a level that cannot
be achieved by the ICS alone. Moreover, in COPD, persuasive evidence is available that
the superiority of the combination therapy is due to enhanced anti-inflammatory activity
(Barnes et al., 2006). Thus, while ICSs given as a monotherapy to subjects with COPD do
not reduce key pro-inflammatory cell numbers resident within the lung (Gizycki et al., 2002;
Hattotuwa et al., 2002; Keatings et al., 1996), a significant widespread anti-inflammatory
activity has been noted with a LABA/ICS combination therapy in both airway biopsies and
in induced sputum (Barnes et al., 2006). Thus, these data favour an interpretation consistent
with a positive interaction (synergy) between LABAs and ICSs.

19.2.6 Modelling the enhancement of ICS action by LABAs

Repression of inflammatory gene expression by ICSs is believed to occur by at least two
general mechanisms that are not mutually exclusive. The classical mode of corticosteroid
action is termed transrepression in which the activity of key pro-inflammatory transcription
factors, such as nuclear factor (NF)-	B and activator protein (AP)-1, is inhibited (Barnes,
2001b). However, in simple systems corticosteroids have been shown to be relatively weak
inhibitors of NF-	B- and AP-1-dependent transcription (Chivers et al., 2004) implying that
additional processes must be operative to account for their anti-inflammatory effect. In this
respect, a less well documented mechanism that, paradoxically, might be more clinically
relevant is the induction (transactivation) by corticosteroids of anti-inflammatory genes,
which then repress pro-inflammatory processes (Clark, 2003; Lasa et al., 2002; Newton
et al., 1998; Newton, 2000).

The ability of LABAs to enhance the transactivation of anti-inflammatory genes in
human airway epithelial cells has been investigated in some detail. In one study, Kaur
and colleagues (Kaur et al., 2008) modelled this response utilizing a classical glucocorti-
coid response element (GRE)-dependent luciferase reporter construct stably transfected in
to BEAS-2B cells, which contains two tandem copies of a consensus GRE site upstream
of a minimal �-globin promoter (Chivers et al., 2004). In this simple system, LABAs did
not activate the GRE reporter construct, but markedly potentiated corticosteroid-induced
transcription. This is illustrated graphically in Figure 19.2. Thus, dexamethasone activated
the GRE-dependent reporter construct in a concentration-dependent manner with a mean
EC50 of 26.2 nM. Salmeterol, at a concentration (100 nM) that maximally activated cAMP-
response element-dependent transcription, had no effect on the potency of budesonide
(mean EC50 = 20 nM), but augmented, 2.2-fold, the induction of the luciferase gene at all
concentrations of dexamethasone above 3 nM. Qualitatively identical data were obtained
with other LABA/ICS combinations including salmeterol/fluticasone, salmeterol/budesonide,
formoterol/fluticasone, formoterol/budesonide and formoterol/dexamethasone (Kaur et al.,
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Figure 19.2 Enhancement by salmeterol of dexamethasone-induced action of a GRE reporter
construct in BEAS-2B airway epithelial cells. BEAS-2B cells stably harbouring a GRE reporter construct
were treated with salmeterol (100 nM) in the absence and presence of dexamethasone (0.1 nM to
1�M). After 6 h, cells were harvested for luciferase assay. Data are expressed as fold-induction and
are plotted as means ± s.e. mean of four independent determinations. See text for further details

2008). These results unequivocally demonstrate that LABAs and corticosteroids can interact
synergistically and that this is a class-specific effect.

In addition to enhancing GRE-dependent transcription, formoterol was corticosteroid-
sparing in this model (Figure 19.2) (Kaur et al., 2008). Thus, dexamethasone, at a concen-
tration of 1 �M, produced a 15.2-fold induction of the luciferase gene. However, in the
presence of salmeterol (100 nM), which was inactive, the same degree of gene induction was
achieved at a concentration of dexamethasone (2.2 nM) that was 60-fold lower (Figure 19.2).
Although outside the remit of this chapter, it is important to state that these effects in BEAS-
2B cells were also seen in primary HASM cells harbouring the same reporter construct
indicating that the synergistic interaction between LABAs and ICSs was not peculiar to the
epithelial cell line and is probably characteristic of all corticosteroid responsive cells that
express �2-adrenoceptors.

Further studies also found that the enhancement by LABAs of corticosteroid-induced gene
was abolished by the selective �2-adrenoceptor antagonist, ICI 118551, and mimicked by
forskolin implicating a process that requires �2-adrenoceptor-mediated activation of adenylyl
cyclase. Furthermore, the elevation of cAMP is likely to result in the activation of the
classical signalling pathway (Figure 19.1) as the synergy between LABAs and ICSs was
lost in cells infected with an adenovirus vector encoding a highly-selective inhibitor of PKA
(Kaur et al., 2008).

19.2.7 Do LABAs enhance GRE-dependent transcription of ‘real’ genes?

A crucial detail to establish is whether the synergy between LABAs and corticosteroids
obtained with the GRE-reporter construct also occurs for the induction by corticosteroids of
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real anti-inflammatory genes. If so, then the process of enhanced transactivation described
above could explain, at least in part, the therapeutic benefit of LABA/ICS combination
therapies in asthma and COPD, especially in those clinical situations where the dose of ICS
is close to, or at the top of, the dose–response curve.

Kaur et al. (2008) have examined the effect of LABAs on a number of potential,
corticosteroid-inducible anti-inflammatory genes expressed by airway epithelial cells to
gauge the credibility of the data obtained on the GRE-reporter construct. Two of these are
discussed here: glucocorticoid-induced leucine zipper (GILZ), a gene that when induced
suppresses the elaboration of pro-inflammatory cytokines from human airway epithelial cells
in response to a variety of stimuli (Eddleston et al., 2007), and p57kip2, a potent, tight-
binding inhibitor of several cyclin-dependent kinase complexes involved in G1 and S phase,
which negatively regulates cell proliferation (Lee et al., 1995). As shown in Figure 19.3(a),
exposure of BEAS-2B cells to dexamethasone increased p57kip2 mRNA in a time-dependent
manner (12.9- and 26.5-fold at 6 h and 18 h respectively) whereas salmeterol had little, if
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Figure 19.3 Effect of salmeterol on the induction by dexamethasone of GILZ and p57kip2. BEAS-2B
cells were treated with dexamethasone �1�M� salmeterol �0�1�M�, a combination of the two drugs or
vehicle for 0.5 to 18 h and harvested for real-time PCR analysis of p57kip2, GILZ and GAPDH using the
SYBR GreenER method. Data are expressed as a ratio to the house-keeping gene GAPDH. See text for
further details
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any, effect (1.97- and 1.43-fold induction at the same time-points respectively). When cells
were exposed to salmeterol and dexamethasone concurrently a marked synergistic induction
of the p57kip2 gene was evoked at all time-points beyond 0.5 h where mRNA levels were
measured. Thus, the effect of dexamethasone and salmeterol on the expression of p57kip2,
alone and in combination, mirrors very closely the data obtained with the GRE-reporter
construct (Figure 19.2). In contrast, while dexamethasone similarly promoted a robust induc-
tion of the GILZ gene and salmeterol was inactive, the combination of both drugs elicited
an effect that was the same as the corticosteroid alone (Figure 19.3(b)). In this situation,
the GILZ gene does not behave in a manner predicted by the GRE reporter. Collectively,
these data imply that LABAs are capable of augmenting transcription only of a subset
of corticosteroid-sensitive genes and that the degree to which they are able to enhance
GRE-dependent transcription will vary from gene to gene.

19.2.8 How do LABAs enhance the action of ICSs?

Arguably, a ‘holy grail’ of combination therapy research has been to discover the molecular
mechanism(s) by which LABAs augment corticosteroid action. LABAs have been shown
to enhance the translocation of the glucocorticoid receptor (GR) from the cytosol to the
nucleus, even in the absence of exogenous corticosteroid (Eickelberg et al., 1999; Roth
et al., 2002, Usmani et al., 2005). This, so-called, ligand-independent translocation, which
is a well recognized action of cAMP on other steroid hormone receptors (Cenni and Picard,
1999; Weigel and Zhang, 1998), has been reported in a variety of cell types relevant to
the treatment of respiratory diseases (Eickelberg et al., 1999; Roth et al., 2002), including
airway epithelial cells (Usmani et al., 2005); it has also been observed in vivo in human
subjects (Usmani et al., 2005). Historically, therefore, it has been suggested that enhanced
nuclear translocation of the GR in to the nucleus may account for the superior clinical
benefit of LABA/ICS combination therapies. Further support for this assertion is that the
combination therapy is associated with increased binding of the GR to GREs on target genes
(Korn et al., 1998; Miller-Larsson and Selroos, 2006), which could be consistent with the
enhanced GR:DNA binding seen in cells overexpressing PKA (Rangarajan et al., 1992).

Despite these data, there is evidence from a number of studies that, when considered
together, question the overall importance of this mechanism. Reference to Figure 19.2
shows that although salmeterol enhanced GRE-dependent transcription it did not, by itself,
activate the reporter construct and had no effect on the potency of dexamethasone (i.e. the
EC50 values in the absence and presence of salmeterol were not significantly different).
This finding supports data obtained from clinical studies where one would predict that
the ligand-independent translocation of GR to the nucleus evoked by LABAs would be
anti-inflammatory, which it is not (Howarth et al., 2000; Roberts et al., 1999). In addi-
tion, salmeterol enhanced GRE-dependent transcription in the presence of concentrations of
dexamethasone that will promote the translocation of all the GR to the nucleus (Figure 19.2)
(Chivers et al., 2004). This finding is clinically relevant as there are some asthmatic subjects
who are not well controlled by high-dose ICS that, arguably, promote the translocation of all
available GR to the nucleus. In contrast, asthma control in many of these same individuals
is achieved following the administration of a LABA in combination with the same ICS at a
lower dose. Indeed, >75 per cent of the GR in airway epithelial cells is found in the nucleus
following the administration of a moderate dose of inhaled BDP �800 �g� to asthmatic
subjects (Usmani et al., 2005). Based on these data, it is difficult to rationalize further GR
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translocation as the primary mechanism for the improvement in asthma and COPD control
produced by the addition of a LABA, especially in those individuals receiving high-dose
ICS. Alternative explanations are required.

One attractive possibility is that LABAs, by virtue of their ability to elevate cAMP,
increase the expression of functional GRs. Indeed, pretreatment of human skin fibrob-
lasts with dibutyryl-cAMP increases 2.6-fold the number of specific 
3H�dexamethasone
binding sites (Oikarinen et al., 1984). Comparable data have been derived from rat
hepatoma cells treated with 8-Br-cAMP or forskolin in which GR number was signifi-
cantly increased by a mechanism attributable, at least in part, to GR mRNA stabilization
(Dong et al., 1989). Of significance is that an increase in GR density is paralleled by
enhanced GRE-dependent transcription (Hirst et al., 1990; Szapary et al., 1996; Zhang
et al., 2007).

Another highly likely possibility, that is not mutually exclusive with the mechanisms
described above, is that LABAs enhance GR-mediated transcription by mechanisms that
operate predominantly within the nucleus (i.e. on the transcriptional process itself). This is
probably very complex, involving numerous transcriptional co-factors, co-activators, changes
in chromatin structure, acetylation, methylation and/or other modifications that impact on
transcription. More daunting, perhaps, from a research perspective is that such effects are
probably gene-specific. Nevertheless, in hepatoma cells, PKA has been shown to stabilize
the interaction of the ligand-bound GR with DNA, which may require the involvement of
the transcription factor, hepatocyte nuclear factor 3, whose binding to DNA is similarly
stabilized (Espinas et al., 1995).

19.2.9 The epithelium as a site of action for LABAs

Although the non-bronchodilator actions of �2-adrenoceptor agonists are of modest clinical
relevance in the management of asthma and COPD (cf. airway smooth muscle relaxation),
their ability to augment the efficacy of ICSs to a level that cannot be achieved by the
corticosteroid alone is a highly important and extremely relevant clinical observation. The
balance of evidence now indicates that LABAs, at least in part, enhance the anti-inflammatory
effect of ICSs. In this respect LABAs, which are not anti-inflammatory per se, may be
likened to powerful positive ‘allosteric’ modulators, which modify the conformation of
ligand-bound GR (and/or the binding of necessary co-factors and co-activators) such that it
interacts with DNA in a manner that is optimized for the transcription of anti-inflammatory
genes. Moreover, it is likely that the airway epithelium is a major site of such ‘allosterism’.

19.3 The muscarinic receptor as a therapeutic target

19.3.1 ACh as a pro-inflammatory mediator in COPD

N -Quaternary muscarinic receptor antagonists (or anticholinergics) such as ipratropium
bromide (Atrovent®), oxitropium bromide (Oxivent®) and the long-acting compound,
tiotropium bromide (Spivira®), are recommended as drugs of choice in many treatment
guidelines for COPD as they effect rapid bronchodilatation, improve dyspnoea and enhance
quality of life. Indeed, the Global Initiative for Chronic Obstructive Lung Disease (GOLD)
recommends muscarinic receptor antagonists for all stages of COPD. In clinical studies, these
drugs show at least equivalent efficacy as bronchodilators when compared to conventional
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�2-adrenoceptor agonists (Gross, 1988; Lefcoe et al., 1982; Tashkin et al., 1986). Moreover,
the efficacy of these drugs can relate to the degree of vagal tone in the airway, which
may be significantly increased in patients with COPD (Gross et al., 1989). In addition
to providing symptomatic relief, muscarinic receptor antagonists may evoke therapeutic
effects, demonstrable experimentally and in clinical practice, that are not simply explained
by bronchodilatation. In particular, these drugs reduce the number of hospitalizations due to
exacerbations, and the duration of a hospitalization (Barr et al., 2006; Brusasco et al., 2003;
Casaburi et al., 2002; Niewoehner et al., 2005; Powrie et al., 2007; Vincken et al., 2002).
Ipratropium has been reported to further reduce exacerbations in patients with COPD taking
salmeterol or salbutamol (Friedman et al., 1999; van Noord et al., 2000). With tiotropium,
a reduction in the decline in lung function has also been suggested but not established
(Casaburi et al., 2002). These chronic indices of efficacy are conventionally associated with
an anti-inflammatory effect of a drug rather than simple bronchodilatation (Disse, 2001),
suggesting that the parasympathetic nervous system can modulate pro-inflammatory cell
function in COPD. Of major significance is the knowledge that ACh is synthesized by non-
neuronal cells including airway epithelial cells (Koyama et al., 1992, 1998; Proskocil et al.,
2004), T-lymphocytes, B-lymphocytes, mast cells, monocytes/macrophages, neutrophils and
eosinophils (see Gosens et al., 2006; Wessler and Kirkpatrick, 2001). Moreover, a 14-fold
increase in tissue ACh content has been reported in chronic inflammatory skin diseases,
including atopic dermatitis (Wessler et al., 2003). Thus, an association between enhanced
tissue ACh content and mucosal inflammation is not unprecedented. Based on these data
it is possible that certain pro-inflammatory and immune cells are activated in COPD by
a receptor-mediated process in response to an exaggerated release of ACh from neuronal
and non-neuronal sources. Furthermore, nicotine from cigarette smoke could amplify the
pro-inflammatory effect of endogenous ACh by acting at nicotinic receptors (typically, but
not exclusively, �7) on a number of pro-inflammatory and immune cells (de Jonge and
Ulloa, 2007) including the airway epithelium (Klapproth et al., 1998; Plummer et al., 2005;
Proskocil et al., 2004).

19.3.2 ACh and the airway epithelium

Bronchial airway epithelial cells are efficient producers of, and reservoirs for, non-neuronal
ACh Indeed, in the presence of neostigmine, which blocks the degradation of ACh by
cholinesterases, monkey bronchial epithelial cells are reported to secrete, spontaneously, ACh
(Proskocil et al., 2004). Choline acetyltransferase (ChAT), which catalyses the transfer of an
acetyl group from acetyl-co-enzyme A to choline to form ACh, also has been convincingly
demonstrated in ciliary, secretory and brush border epithelium as well as in epithelial cells
of submucosal glands (see Wessler and Kirkpatrick 2001; Figure 19.4). However, unlike
neurons, airway epithelial cells do not have the capacity to concentrate ACh as they are
devoid of cholinergic vesicles. Accordingly, the epithelial cell ACh content is considerably
lower than that found in cholinergic nerve terminals. Epithelial cells also express a high-
affinity choline transporter, several nicotinic receptor subunits (�4��7� �2 and �3��5� �2� �4

in monkey and human respectively) and the muscarinic M1- and M3-receptor subtypes
(Gosens et al., 2006; Maus et al., 1998; Proskocil et al., 2004).

Taken together the available data suggest that airway epithelial cells can both secrete ACh
and be activated in an autocrine and/or paracrine manner by ACh released from other neuronal
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Figure 19.4 Human bronchial epithelium (e) and underlying smooth muscle (SM) stained with a
rabbit polyclonal anti-ChAT antibody. Magnification ×200. Reproduced from Pulmonary Pharmacology
and Therapeutics, 14, Fig 2, pg. 427, ©c Elsevier, 2001, with permission from Elsevier

and non-neuronal sources. Indeed, exposure of airway epithelial cells to ACh results in the
release of a variety of pro-inflammatory mediators including GM-CSF (Klapproth et al.,
1998), 15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraeoic acid (Salari and Chan-Yeung, 1989) and
neutrophil, eosinophil and monocyte chemotactic factors, such as leukotriene B4 (Koyama
et al., 1992, 1998). It is tempting to speculate that anticholinergic drugs, especially those
with a long duration of action such as tiotropium, may antagonize the muscarinic actions of
ACh on the airway epithelium and other target tissues and so attenuate inflammation. Such
an effect could theoretically account for those beneficial effects (i.e. reduced hospitalization
times) that cannot easily be explained by bronchodilatation.

19.4 Concluding remarks

It is now readily appreciated that the airway epithelium plays a complex role in health and
disease. Clearly, the epithelial cell layer provides a physical protective barrier between the
airway lumen and the underlying smooth muscle (both bronchial and vascular); it also has
impressive metabolic functions where it can degrade bio-active compounds such as histamine
and neurokinins. In contrast, the airway epithelium is intimately involved in the pathogenesis
of chronic inflammation that characterizes asthma and COPD, and, thus, provides a primary
target for the therapeutic actions of ICSs. What now is clearly apparent is the importance of
the airway epithelium as a site of action for other drugs used routinely in the treatment of
respiratory diseases. This is certainly true for LABAs in their capacity to enhance the anti-
inflammatory actions of ICSs, but could also apply to long-acting anticholinergics, which
may have a negative impact on airway inflammation by blocking the muscarinic actions of
neuronal and non-neuronal ACh. Further research in this area clearly is required to formally
identify the receptors (muscarinic and/or nicotinic) responsible for mediating potentially
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adverse effects of ACh as this could allow, in the future, the development of a novel class
of bronchodilator with improved anti-inflammatory efficacy.
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20.1 Introduction

The lung has long been a target for drug delivery. Aerosol delivery to the pulmonary airway
has been shown to be as effective as a 50–100-fold greater dose of the same medication,
delivered systemically (Newhouse and Corkery, 2001). This high therapeutic index provides
local therapeutic benefit while reducing associated side effects.

Historically, delivery via inhalation has been targeted to the conducting airway. The lung
is now also thought to be a good site for delivery of proteins and peptides for both local and
systemic therapy. The large surface area of the lung parenchyma �100 m2� provides a highly
permeable barrier �0�2–0�7 �m� between air and blood compared to the surface area of the
conducting airway �3 m2� or the skin (less than 2 m2) (Patton, 1996). While the biology of the
lung makes it an attractive target for noninvasive drug delivery, many mechanisms function
to prevent airborne particles from entering the body. Medical aerosols must circumvent or
bypass airway defences to reach their intended targets within the airway and lungs. Once
inhaled, drugs deposited in the airway either exert local actions, are absorbed through the
airway passing into the circulation for system action, are cleared from the lungs, or are
degraded via drug metabolism.

Advances in our knowledge of transport systems, and improved aerosol delivery systems,
holds the promise of improved drug bioavailability. In order for inhalation to offer a viable
alternative to parenteral routes for protein administration, we need to be able to control the
distribution, absorption, metabolism and clearance of drugs from the airway.

Inhalation technology can improve the ability to deliver proteins and peptides. Preserving
the molecular integrity of a formulation and delivering it to the appropriate target in the lung
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are critical for effective therapy. Aerosol characteristics and breathing patterns can help to
target an aerosol to specific regions of the lung, from central airway to the acinus.

20.2 Drug targeting

Particle size affects deposition patterns, clearance, safety and physicochemical properties.
Particles with mass mean aerodynamic (MMAD) greater than 5 �m tend to deposit in the
upper airway, and are considered nonrespirable, while those 0.5 to 5�m are considered the
respirable fraction with distribution in the central and peripheral airway. Ultrafine particles,
less than 100 nm, readily translocate across the pulmonary epithelium into the bloodstream
and appear to bypass macrophage clearance (Kreyling et al., 2006) but have been associated
with toxicity (Oberdoster et al., 2005). Large porous particles with geometric diameters
between 5 and 30 �m (and density less than water) have been shown to have pulmonary
delivery efficiencies up to 60 per cent. These larger particles also appear to resist macrophage
clearance (Dunbar et al., 2002).

The aerosol mode of administration can target medications to airway secretions, the
epithelial cells, or systemically. There are more than 70 aerosol products for therapeutic
inhalation, consisting of more than 20 active ingredients. Today, most medications are
targeted to the airway epithelium, including the neuromuscular plexus (bronchodilators) and
inflammatory cells (corticosteroids). Drugs such as the P2Y2 ion channel activators are
targeted directly to the ciliated epithelium. Mucolytics, proteases, and antibiotics are targeted
to secretions in the airway rather than to the epithelial cells.

In order for a drug to exert its desired effect, it needs to reach the target surface. This could
be the mucus layer, receptors on the pulmonary epithelial surface, or absorption through
the cell and the endothelium. Upon reaching the lung periphery, barriers include surface
lining fluid, lung surfactant, epithelium, interstitium, basement membrane and the pulmonary
endothelium (Figure 20.1).

Very small particles targeted to the alveolus can be effective for systemic delivery
of macromolecules through the extensive pulmonary vascular bed. Insulin was the first
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medication introduced for systemic administration through aerosol administration, but other
peptides and macromolecules are under development. Considerations for systemic adminis-
tration include cost, convenience, efficacy, and safety (Mallet et al., 1997).

20.2.1 Delivery to the conducting airway

Topical administration of inhaled aerosols have been commonly used to treat airway diseases
(Table 20.1). In the central airway the role of the bronchial circulation in redistribution of
inhaled drugs and the absorption and clearance of a specific inhaled drug can influence
efficacy and safety. The presence of specific receptors in the airway enable targeting aerosol
delivery with drugs that bind to these receptors. Receptors for �2-agonists (such as albuterol)
are present in high density in the airway epithelium from large bronchi through the terminal
bronchioles (Usmani et al., 2005). Airway smooth muscle has a greater density of �-receptors

Table 20.1 A list of medications now approved
for aerosol delivery �∗�, and under investigation
for the treatment of pulmonary diseases

∗Antibacterials
∗Antivirals
Antifungals
∗Bronchodilators
Immunosuppressive drugs
∗Non-steroidal anti-inflammatory drugs
∗Steroids
Surfactants
siRNAs
∗Prostaglandins
∗Mucolytics
Mucokinetics
Antitussives
Expectorants
Gene therapy vectors
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in the bronchioles than the bronchi (Carstairs et al., 1985) The alveolar wall contains
>90% of all �-receptors and in this location they are thought to regulate fluid absorption
(Berthiaume et al., 1987). For use as a bronchodilator, therefore, �2-agonists should be
targeted to the conducting airway.

Muscarinic M3 and M1 receptors (target of anticholinergic medications such as iprat-
ropium and tiotropium bromide) are found in high density in submucosal glands and airway
ganglia, with lower density in smooth muscles throughout the airway, nerves in intrapul-
monary bronchi and in alveolar walls (Mak and Barnes, 1990) This suggests that for greatest
efficacy, anticholinergic medications should be targeted to the larger conducting airway.

A small amount of histamine aerosol deposited predominantly in the large conducting
airway is as effective as an order of magnitude larger dose delivered diffusely, suggesting
that histamine receptors are primarily in the conducting airway and surface concentration
affects response (Ruffin et al., 1978).

Anti-inflammatory therapy is targeted to numerous effector cells, including eosinophils,
macrophages, lymphocytes and dendritic cells throughout the airway and alveolar tissue
(Carrol et al., 1997; Kraft et al., 1996). It is now recognized that both the airway epithelum
(Chanez et al., 2004) and the airway smooth muscle (Panettari, 2004) can also secrete
inflammatory mediators when stimulated and may play a much larger role in the progression
of inflammatory airway diseases than once realized.

20.2.2 Systemic delivery

Systemic delivery of macromolecules has principally been limited to intravenous, intramus-
cular, and subcutaneous routes. Oral administration does not work well for many macro-
molecules, as proteins are often digested before they can be absorbed into the bloodstream.
The large size of these molecules limit absorption through nasal mucosa and skin without
the use of penetration enhancers (Illum and Fischer, 1997).

Systemic delivery of some macromolecule (protein) drugs via the pulmonary route can
provide a higher bioavailability than other noninvasive ports of entry (10–200 times greater
than nasal and gastrointestinal) (Table 20.2). This has been attributed to the enormous

Table 20.2 Medications currently being used �∗�
and under investigation for systemic delivery by
pulmonary aerosol administration

∗Insulin
Heparin
Levodopa
Ergotamine
Calcitonin
Human growth hormone (hGH)
Sildenofil
Antiproteases (alpha-1 antitrypsin)
∗Vaccines
Gene therapy vectors
Morphine
Fentenyl
Alprazolam
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surface area, thin diffusion layer, slow surface clearance, and slow antiprotease defence
system (Patton, 1996). Since 1925, it has been known that proteins, such as insulin (with a
molecular weight of 5.7 kDa), delivered as aerosol can be absorbed from the lung (Gaensslen,
1925). The larger the protein, however, the greater the barrier to absorption. Macromolecules
greater than 40 kDa (5–6 nm in diameter) tend to be slowly absorbed over many hours;
for example inhaled �1-antitrypsin (45–51 kDa) has a Tmax of up to 48 hours (Byron and
Patton, 1994).

Inhaled proteins and peptides have a more rapid onset of action than occurs with subcu-
taneous administration, but have a relative bioavailability only 8–22 per cent of that for
subcutaneous injection (Kim et al., 2003). This suggests that achieving equivalent systemic
doses by inhalation requires more drug to be given, resulting in potentially greater acute
effects, and also higher cost of goods when given by inhalation.

These limitations have stimulated efforts to enhance permeability and slow enzymatic
degradation. Permeation enhancers are not required for inhalation, but may increase bioavail-
ability. Early enhancers (e.g., surfactants, fatty acids, bile salts, citric acids) altered the
curvature of the phospholipid-based pulmonary epithelium, but raised safety concerns for the
integrity of epithelium (Okamoto et al., 2002). Tetradecyl-�-maltoside (TDM) is a nonionic
detergent that can briefly open tight junctions. TDM has a low critical micelle concentration
(CMC) relative to bile salts and other charged surfactants, with permeation activity observed
at lower concentrations, as shown for low molecular weight heparin (Yang et al., 2004)
and insulin (Hussain et al., 2006). High molecular weight polymers, such as chitosan, with
bioadhesive properties also show promise for enhancing particle retention and absorption
(Yamada et al., 2005).

20.3 Removal of aerosol particles from the lung

Airway surface fluid is composed of the pericilliary fluid lubricating the cilia below a more
viscous mucous gel layer (Figure 20.2). For aerosol particles to settle on the conducting
airway, they must pass through this layer to reach the epithelium. Absorption of aerosols
may be limited by mucus clearance from the airway. Particles deposited in the conducting
airway are largely removed through mucociliary clearance. The rate of mucus clearance
varies with the region of the airway, the number of ciliated cells, their beat frequency
and stroke power, as well as the quality and quantity of mucus. Ciliated epithelial cells
cover 30–65 per cent of the airway epithelial surface (Blake and Sleigh, 1974). Mucus
transport velocity decreases as the percentage of these cells decreases between the trachea
(∼50 per cent) to the fifth generation of the airway (∼15 per cent) (Serafini and Michaelson,
1977). In lung disease, mucociliary clearance is reduced by impaired ciliary function,
and/or quantity and consistency of mucus, decreasing clearance of aerosols deposited in the
conducting airway.

Soluble particles can be absorbed in the conducting airway (Edsbacker, 2002). From
the submucosal region, particles are absorbed into either the systemic circulation, the
bronchial circulation or the lymphatic system. Lipophilic molecules pass easily through
the airway epithelium via passive transport. Hydrophilic molecules cross via extra-
cellular pathways, such as through tight junctions, or by active transport via endocytosis
(Summers, 1991).
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Figure 20.2 Medications can be targeted to different layers in the airway depending on their
intended use and their ability to be transported into or through these layers. This diagram shows the
primary component layers of the surface epithelium in the large conducting airway and medications
that are now or potentially could be targeted to these layers

20.3.1 Alveolar macrophages

Aerosol particles deposited in the alveolar and terminal airway space can be subject to
absorptive or non-absorptive removal. Absorptive removal includes uptake by macrophages
and epithelial cells (Sibile and Reynolds, 1990). Alveolar macrophages are the predominant
phagocytic cell in the distal airway for the lung defence against inhaled micro-organisms,
particles and other toxic agents. There are up to seven alveolar macrophages per alveolus
in the lungs of healthy nonsmokers (Stone et al., 1992). Macrophages ingest insoluble
particles that are deposited in the alveolar region and are then either cleared by the lymphatic
system, or moved into the ciliated airway along currents in alveolar fluid and then cleared
via the mucociliary escalator (Folkesson et al., 1996). This process can take months to
complete.

The adhesion of airborne particles to alveolar macrophages is mediated through electro-
static interaction, or via specific receptors. Particles are then internalized through surface
cavitation, or vacuole and pseudopod formation (Stossel, 1977). In the case of proteins,
internalization is followed by further digestion (metabolization) by peptidases. Activated
macrophages may then secrete a variety of cytokines and chemokines and can migrate to
the ciliated airway epithelium for transport via mucociliary clearance or penetrate through
the respiratory epithelium into the interstitial space (Sorokin, 1970).
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The internalization of airborne particles depends on the particle size, and on the compo-
sition of coating material. Both features can be used to selectively control drug uptake
by alveolar macrophages. While particles of 3 �m diameter are better internalized than
6 �m particles, particles smaller than 0�26 �m appear to be much less actively ingested by
macrophages (Lauweryns and Baert, 1977).

20.4 Barriers to drug absorption from the lung

20.4.1 Epithelial barrier

Systemic uptake can be enhanced by delivering the drug to the deep lung where it can
translocate across the alveolar epithelium. Systemic delivery of some large molecules,
usually proteins, via the pulmonary route provides a higher bioavailability than other
noninvasive ports of entry. There are large quantitative differences in the transepithe-
lial transport of compounds in the upper airway as compared to to the lower respiratory
tract. The relative contributions of absorption across the large airway and translocation
through alveoli are important to local and systemic delivery. Transport of drugs across
the epithelium of the conducting airway is limited by a smaller surface area, and limited
regional blood flow. With standard aerosol devices, the upper airway filter out 70–90
per cent of medical aerosols with the remainder reaching the parynchema (Groneberg
et al., 2003).

The pulmonary epithelium is the limiting barrier for protein absorption. The mechanisms
by which macromolecules are absorbed across the alveolar capillary membrane remain poorly
understood. The normal air/blood barrier appears to differentially restrict the passage of large
proteins, as evident by the finding that concentrations of macromolecules in bronchoalveolar
lavage fluid (BALF) are extremely low compared with smaller proteins like albumin (Holter
et al., 1986). Understanding how exogenous and endogenous proteins traverse the air–blood
barriers of the lung is likely to improve the ability to deliver drugs from the lung into the
systemic circulation and target drugs to lung parenchymal cells.

The pulmonary blood–gas barrier is composed of the alveolar epithelium, capillary
endothelium, and the extracellular matrix consisting of basement membranes of the two cell
layers. The distal air spaces of the lung are lined with a continuous epithelium comprising
type I and II alveolar epithelial cells, joined by tight junctions, which help to keep the air
spaces relatively dry for efficient gas exchange. Type I pneumocytes account for 95 per cent
of the alveolar surface (Groneberg et al., 2003). Intercellular junctions differ between alve-
olar type 1 epithelium and alveolar capillary endothelial cells. Type I cells have smaller pore
size (0.6–1.0 nm) and greater tight junction depth �0�26 �m� than endothelial cells (4–5.8 nm
and 0�17 �m, respectively) and this has been associated with 1000 times lower epithelial
permeability to substances such as sucrose (Taylor and Gaar, 1970). Endocytotic vesicles
may function as carriers in the absorption process of larger proteins such as insulin. While
the main recognized function of type II pneumocytes is the production of surfactant proteins
and differentiation into type I cells, they also express a number of transport proteins and
receptors (Taylor and Gaar, 1970).

Three other types of tight junction have been identified for extra- and intrapulmonary
airway, differing in the degree of luminal fibril interconnections. Type I tight junctions are
largely found between extrapulmonary ciliated cells. Type II junctions are primarily present
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in smaller airway and between Clara cells. Type III tight junctions are found between mucous
cells with a secretory cycle-associated change in permeability (more leaky during active state
of secretion) (Inoue et al., 1976). It is likely that the regional differences in tight junction
morphology are more directly linked to transepithelial transport capacities of water and ions
than to larger molecules such as proteins.

It has been hypothesized that proteins, and other large molecules, pass through the
epithelium by absorptive receptor mediated transcytosis, by paracellular transport between
bijunctions or trijunctions, or through large pores in the epithelium caused by cell injury.
Transcytosis facilitates passage of a macromolecule drug into the bloodstream with rela-
tively high bioavailability. Although the function of transcytosis in normal lung homeostasis
is uncertain, it is thought to be a natural mechanism for keeping the volume of alveolar
fluid appropriate, and for removing endogenous proteins that leak into alveoli across the
epithelium.

In the process of transcytosis, small invaginations of the epithelial membrane develop.
These microscopic ‘bubbles’ expand into the alveolar surface of the cell until they separate
from the cell membrane, carrying with them a small amount of alveolar fluid containing
the dissolved protein. This transcytotic vesicle moves from the alveolar surface of the
epithelial cell to the interstitial surface, where it releases its contents into the interstitium of
the lung.

Transcytosis involving caveolae and clathrin-coated pits is likely the main route of alveolar
epithelial protein transport. Caveolae are small plasma membrane invaginations with a
cytoplasmically oriented protein coat (Rathberg et al., 1992). Three genes for caveolin have
been cloned and are regulated and expressed in a tissue-specific manner (Ralston and Ploug,
1999). Multiple isoforms of caveolin are expressed in the same cell with distinct distributions
implying functionally distinct subgroups that may be involved in transcytosis or the vesicular
movement of macromolecules across endothelial cells (Schnitzer et al., 1995). Both Type
I and Type II cells have membrane apical and basolateral invaginations consistent with
vesicular or caveolar transport capabilities. Horseradish peroxidase, a pinocytosis marker,
exhibits low and symmetric permeability across the alveolar epithelium (Matsukawa et al.,
1996) suggesting that absorption of proteins/peptides via pinocytotic routes may be minimal.
Ultrastructural protein tracers (e.g. horseradish peroxidase and cytochrome c) generally do
not cross the epithelial junctions but are found in the interstitial spaces when perfused in the
vasculature. Exceptions to this are catalase and ferritin, which do not penetrate endothelial
junctions. From the interstitial space, macromolecules may again traverse the capillary
endothelial cell by transcytosis to get into the blood or, more likely, they are absorbed
into the circulation through the junctions between the endothelial cells of the capillaries or
venules.

Figure 20.3 is a schematic diagram illustrating protein transport processes in the alveolus
(Kim and Malik, 2002). Specific receptors for albumin (60 kDa albumin-binding glycoprotein
or gp60), immunoglobulin G (FcRn), and polymeric immunoglobulin A (pIgR) are shown.
Other protein receptors not shown include those for insulin and transferrin, both of which are
also expressed in basolateral membranes of alveolar epithelial cells. The albumin-binding
protein, gp60, was first identified in endothelial cells and later found to be expressed in the
alveolar epithelial cells. Albumin is transported across alveolar epithelium via gp60- and
caveolae- (shown as pink circles) -mediated transcytosis (illustrated by the open, red-outlined
arrow showing direction of net absorption). IgG appears to be similarly absorbed via FcRn-
mediated transcytosis across the alveolar epithelium, shown in blue and open, blue-outlined
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Figure 20.3 Diagram illustrating protein transport processes in the alveolar barrier. Specific recep-
tors for albumin (gp60), immunoglobulin G (FcRn), and polymeric immunoglobulin A (pIgR) are
indicated. Albumin is transported across the alveolar epithelium via gp60- and caveolae (shown as
pink circles)-mediated transcytosis (illustrated by the open, red-outlined arrow showing direction of
net absorption). IgG appears to be absorbed via FcRn-mediated transcytosis, shown in blue receptors
and open, blue-outlined arrow for direction of absorption. Secretory component (SC; the extracellular
portion of pIgR) is secreted into alveolar lining fluid (green receptors and direction of secretion).
Question marks next to the receptors or processes denote that in type II cells these pathways have
not been confirmed. From Kim, K.-J. et al., Am J Physiol Lung Cell Mol Physiol 2003; 284: L247–L259,
reproduced with permission

arrow for direction of absorption. Secretory component (SC; the extracellular portion of
pIgR) appears to be secreted into alveolar lining fluid (green receptors and direction of
secretion).

Type I cells and endothelial cells are known to contain numerous vesicles and membrane
invaginations (including caveolae and clathrin-coated pits) that are thought to play impor-
tant roles in internalization of proteins and transcellular movement of cargo proteins. In
the endothelium, caveolae structures outnumber clathrin-coated pit structures by 19 to 1.
The relative contribution of transcytosis mediated by caveolae versus clathrin-coated pits to
overall serum protein transport across alveolar epithelium is unknown. It is unclear whether
type II cells have the ability to transport proteins via caveolae-mediated process involving
gp60 and other albumin-binding proteins. It is important to note that restricted passive diffu-
sion of large serum proteins (e.g., albumin, IgG, and pIgA) via the paracellular route plays an
insignificant role in the net absorption or secretion of these proteins across normal alveolar
epithelium. Under pathological conditions, inflammation and injury leads to paracellular
leakage of those large proteins (Kim and Malik, 2002).
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20.4.2 Protease and peptidase degradation

Lung protein clearance may also involve catabolic pathways. Degradation by peptidases
localized at the apical surface of respiratory epithelial cells may be a mechanism for clearing
peptides and some smaller proteins from lung air spaces. Alveolar protein clearance appears
to be size-dependent; larger proteins clear at a slower rate. Proteins such as albumin are
cleared relatively intact, while smaller proteins and peptides may undergo significant degra-
dation (Kim and Malik, 2002). Peptides that have been chemically altered to resist protease
activity exhibit higher pulmonary bioavailability suggesting involvement of proteases in
peptide processing in the lung (Forges et al., 1999). Proteins with molecular weights between
6 and 50 kDa are more resistant to most peptidases and have good bioavailability after
inhalation (Niven et al., 1994).

Persons with CF have increased activity of serine proteases on the respiratory epithelial
surface. Neutrophils, when activated or degenerating, release proteases such as elastase that
can directly damage epithelial cells and impair airway clearance. It has been shown that
neutrophil proteases cause a secretory response from submucosal glands with an increase
in mucus production (Kishioka et al., 2001). Intravenous administration, or inhalation, of
�1AT suppresses the activity of neutrophil elastase and restores the bacterial killing capacity
of neutrophils. Recombinant secretory leukocyte protease inhibitor (rSLPI) when given
to a small number of CF patients at a dose of 100 mg b.i.d. for two weeks decreased
neutrophil elastase and IL-8 in airway fluid but was ineffective at a dose of 50 mg twice
daily (McElvaney et al., 1992). Although this is promising, a number of issues need to be
resolved before these or similar agents can be used to prevent damage due to unchecked
protease activity in patients with CF.

20.4.3 Fusion protein transport

Active transport mechanisms can facilitate absorption of large molecules across epithelial
surfaces. For example, erythropoietin (Epo) is the haematopoetic stimulator of red cell
production and differentiation produced in the kidney. Recombinant human Epo is used for
the treatment of anaemia associated with chronic renal failure, cancer, and HIV infection. It
is administrated chronically by intravenous or subcutaneous injection.

Epo-Fc (molecular weight 112 kDa) is a prototype molecule comprised of human Epo
fused to the Fc portion of IgG1. Erythropoietin-Fc fusion protein targets a naturally occurring
receptor-mediated transport pathway to deliver Epo systemically via the lung. The usual
function of the neonatal Fc receptor or FcRn, is to transport immunoglobulin across cells and
protect circulating Ig from degradation. FcRn was first identified in the intestinal epithelium
of neonatal rodents, and was shown to bind IgG from mother’s milk and transport it across
the intestinal epithelium into the circulation, providing temporary immunity in the first
weeks of life. These receptors are relatively abundant in adult lung tissues, with greater
concentations in the upper and central airway than in the lung periphery. The Fc region of
the antibody transports the fusion protein with Epo by receptor-mediated transcytosis via
the FcRn receptor in the bronchial and alveolar epithelium. Bronchial airway have more
abundant FcRn receptors with less potential for clearance by macrophages (Dellamary et al.,
2004). Transport of the fusion protein, targeted to the central airway, has been documented
in both nonhuman primates and humans. (Dumont et al., 2005). This strategy is being used
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in the clinical development not only of erythropoietin, but also follicle-stimulating hormone,
interferon � and other proteins (Dumont et al., 2005).

20.4.4 Gene therapy

Gene therapy involves the vector-mediated transfection of cells lacking a functional target
gene with normal complementary DNA (cDNA) for the gene in question, with subsequent
activation of the transfected gene and protein production (Thompson and Wiener-Kronsish,
1997). Gene therapy offers possible treatment of both heritable and acquired pulmonary
diseases. Efforts to date have largely centred on cDNA transfer of the normal CF transmem-
brane ion regulator (CFTR) gene to CF patients (Flotte et al., 2001). Gene transfer was first
attempted by inserting the normal CFTR gene into a replication-defective adenovirus vector
with bolus bronchoscopic delivery of the vector. A life-theratening host immune response
to the vector led to re-evaluation of this strategy (Knowles et al., 1995).

For gene transfer to be effective, the vector and its package must be non-immunogenic,
stable to shear forces during aerosolization, and safe to transfected cells. The vector should
either stably integrate into the progenitor (basal or stem) cell genome or be safe and effective
with repeated administration and should be able to reach the cellular target of relevance.
Part of the difficulty with CF is that this cellular target has not been clearly identified as
epithelial cell, goblet cell, submucous gland, or all of these. The amount of gene and vector,
and its persistence in the airway, must also be determined for each vector and delivery
system (Rochat and Morris, 2002).

Virus vectors that have been studied include adenoviruses, adeno-associated virus, and
lentivirus. Adenoviruses naturally target the airway epithelium. Adeno-associated viruses
are very small organisms that require a ‘helper’ virus to replicate. These viruses are capable
of site-directed insertion into DNA, reducing the risk of insertional mutagenesis (initiating
cancer by activation of an oncogene or inactivation of an oncogene suppressor). Gene therapy
with the AAV appears to be especially promising (Moss et al., 2004), but packing capacity
is much smaller with this extremely small virus, making insertion of cDNA cassettes for
large genes extremely challenging.

Lentiviruses are retroviruses such as human immunodeficiency virus (HIV). They are able
to transfect cells that are not terminally differentiated, such as the basal or airway progenitor
cell, but insertional mutagenesis is a substantial risk (Copreni et al., 2004).

The primary non-virus vectors studied to date have been cationic liposomes. These lipid
capsules are able to form complexes with DNA and then enter cells. With the first generation
of liposome vectors, the efficiency of gene transfer was poor; however, this has improved
with newer systems (Eastman and Scheule, 1999; Montier et al., 2004).

The immune response is a major barrier to gene therapy. The human airway has developed
a number of protective strategies against viral vectors. For example, the lack of expression
of the native Coxsackie adenovirus (CAR) receptor on the apical surface of airway epithelial
cells limits the infectious potential of adenovirus (Montier et al., 2004). Transient reduction
in cell-to-cell junctions with calcium phosphate co-precepitation allows access of the vector
to the basolateral membrane where the CAR receptor is located (Lee et al., 1999).

Mucus and sputum are a significant barrier to gene delivery in the diseased airway.
A variety of components of mucus can bind to adenovirus and prevent its association with
receptors (West and Rodman, 2001). Gene transfer efficiency through CF sputum is increased
when the sputum is pretreated with dornase alfa (Stern et al., 1998).
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20.4.5 Surfactant phospholipids

Surfactant is produced in the conducting airway as well as in the alveolus and is essential
for airway function and cough clearance. A thin surfactant layer between the periciliary fluid
and the mucous gel prevents airway dehydration, permits mucus spreading upon extrusion
from glands, and allows efficient ciliary coupling with mucus and, more importantly, ciliary
release from mucus once kinetic energy is transmitted. There is severe loss of surfactant
in the inflamed airway of patients with chronic bronchitis or CF (Griese et al., 2005), and
surfactant aerosol improves pulmonary function and sputum transportability in patients with
chronic bronchitis or CF (Anzueto et al., 1997). As a wetting and spreading agent, surfactant
also has the ability to increase the lower airway deposition of other aerosol medications,
such as dornase alfa or gene therapy vectors, and may increase small particle translocation
through the mucus layer (Schürch et al., 1990).

20.5 Specific proteins

20.5.1 Insulin

Insulin was one of the first medications to be administered by aerosol (Gaensslen, 1925;
Mallet et al., 1997). Because of the nebulizer and insulin formulation available at that time,
absorption and efficacy were highly unpredictable. This has changed dramatically with the
development of ultrafine particles, and of aerosol devices that can efficiently and reliably
target the alveolar space. With a rapid and smooth onset of action, and elimination of the
necessity for injections with their attendant risks and discomfort, inhaled insulin has great
potential for clinical use. Pulmonary insulin administration to healthy subjects can induce
hypoglycaemia and a clinically relevant increase in serum insulin concentrations (Jedle and
Karlberg, 1996).

Once plasma glucose levels are normalized, postprandial glucose levels can be maintained
below diabetic levels by delivering insulin into the lungs 5 minutes before ingestion of
a meal (Heinemann et al., 1997). Studies have confirmed that inhaled insulin is safe and
effective for the therapy of type 2 diabetes, even when this is not controlled by diet (Laube
et al., 1998; DeFronzo et al., 2005), and that the addition of inhaled insulin or oral therapy
with hypoglycaemic agents improves glycaemic control (Rosenstock et al., 2005).

With the success of inhaled insulin as safe and effective systemic administration of a
complex protein via the pulmonary bed, it is highly probable that we see the development
of other aerosol therapies that could revolutionize fields as diverse as endocrinology, critical
care, immunology, and genetics (Edwards and Dunbar, 2002).

20.5.2 Inhaled immunizations

Since the 1980s, live measles vaccine has been administered by aerosol to 4 million children
in Mexico. Studies have shown this to be safe and immunogenic when administered as a
first dose at 9–12 months of age (Laube, 2005; Sabin et al., 1983). The aerosol is also able
to induce mucosal and cellular imunity in older children (>6 years) when administered
as a booster dose (Bennett et al., 2002). Indeed, aerosolized vaccination with measles,
measles–rubella and mumps–measles–rubella vaccine induces better measles antibody
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booster responses than injected vaccines (Fernandez de Castro et al., 2005). Pulmonary
inhalation appears to be superior to nasal administration of live measles vaccine.

Mucosal vaccination may also be superior for non-replicative vaccines which are currently
administered parenterally. Immune response and protection afforded by pulmonary adminis-
tration of inactivated influenza vaccine was demonstrated clinically by Small and colleagues
as long ago as 1969 (Waldman et al., 1969). Pulmonary administration of the aerosol
Fluzone® (Aventis Pasteur, Swiftwater, PA) vaccine was more effective than parenteral
or nasal administration in triggering specific immunity, with a more robust humoral and
cellular-based immunity local and systemic response (Smith et al., 2003). Pulmonary admin-
istration of DNA vaccines may also induce a more robust immune response than parenteral
administration (Lombry, 2004).

Inhaled vaccines have been used against biowarfare agents (such as anthrax, plague,
tularaemia, smallpox) (Alibek, 1999). Similar vaccines are being developed for other agents,
with early evidence that aerosol administration may be more effective than parenteral routes
(Hassani et al., 2004).

The World Health Organization, in collaboration with the Gates Foundation, is currently
conducting trials to approve an inhaled live virus measles vaccine for use in third world
campaigns. Their goal is to replace injections by inhalation in the vaccination of 300 million
children each year (Henoa-Restrepo and Aguado, 2006).

20.5.3 Antibodies

Antibodies administered by intravenous injection must reach high enough concentration at
the target organ to achieve therapeutic effect. Pulmonary administration of antibodies can
achieve concentrations 10–100-fold higher than injection (Dellamary et al., 2004). Thera-
peutic antibodies are being developed for pulmonary diseases such as cancer, respiratory
infections and allergic and inflammatory diseases.

Retentive particles with slow IgG release improve interstitial IgG targeting by avoiding
saturation of putative IgG transporters. However, nonretentive particles that release the
immunoglobulin rapidly may circumvent particle clearance on the mucociliary escalator and
phagocytosis by alveolar macrophages. Concentrations as high as 60 per cent of inhaled
IgG dose can be deposited in the interstitial tissue. Although retentive particles were rapidly
cleared by alveolar macrophages in an Fc receptor mediated scavenging process, molecules
in the interstitium were absorbed over a period of days, acting as a depot of immunoglobulin
(Dumont et al., 2005). The potential for antibodies to achieve a depot in the pulmonary
interstitium may enable sustained delivery of peptides and proteins.

Particulate formulations can enhance immune response to determinants expressed by
incorporated proteins. The development of these neutralizing antibodies may trigger unre-
sponsiveness to subsequent administrations. Administration of an intravenous priming dose
can reduce this effect (Wolff, 1998).

20.6 Conclusions

An increasing number of novel therapies for pulmonary delivery intended for local or
systemic target are in development. Improved understanding of formulations, particle engi-
neering, aerosol delivery, and the pulmonary epithelial barriers combine to improve effective
dosing to both local and systemic targets.
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