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Preface

The past two decades have seen extraordinary advances in our understanding of the role of
the pulmonary epithelium in airway health and disease. The traditional view of the epithelium
as predominantly a physical barrier that also plays a role in ion and water transport has
been supplanted by one in which the epithelium is now also considered to be a central
regulator of airway inflammation, structure and function. In light of the dramatic changes
in our awareness of the complexity of epithelial cell functions, it seemed particularly timely
to produce a book to comprehensively address our current understanding of epithelial cell
biology. In particular, I wished to focus not only on the epithelium as a regulator of normal
airway function, but also to highlight the important roles of the epithelium in host defense,
and the contributions of aberrant epithelial biology to the pathogenesis of inflammatory
airway diseases.

The first two chapters of this volume are designed to provide an update on the basic
structure of the epithelium, including information on the cell types that comprise the epithe-
lium at different levels of the airway, and on the capacity of specific cell types to serve as
progenitor cells for new growth. In addition, the remarkable recent increases in our under-
standing of the molecular components of the structures that are critical for the cell-cell, and
cell-matrix, adhesion necessary to maintain epithelial structure are discussed, along with the
complex roles of epithelial adhesion molecules in regulating not only epithelial function but
also the interactions of the epithelium with other cell types and pathogens. The subsequent
two chapters focus on the role of the epithelium as a target for damage by a variety of
agents, and on the process of epithelial repair. Fragility of the epithelium is a hallmark of
asthma, and there is growing recognition that a chronic damage/repair cycle may play a
role in the pathogenesis of this disease. Although ion transport has long been recognized
as a major function of the epithelium, our understanding of the complexity and regulation
of epithelial ion transport, and of the consequences of dysregulation of these events, has
improved considerably in recent years, and our current knowledge is detailed in Chapter 5.

Perhaps no facet of our awareness of epithelial cell function has grown as rapidly as our
understanding of the role of the epithelium in host defense, the focus of the next block
of chapters. As may be expected from its location at the airway surface, the epithelium
plays a critical role in protection of the host from inspired pathogens and irritants. In the
larger airways, the tightly regulated process of mucociliary clearance provides the initial
defense to prevent pathogens from contacting the epithelial surface, and defects in ciliary
beat, or abnormal mucus composition, underlie several airway diseases that are characterized
by increased susceptibility to repeated infection. In the distal airways, where mucociliary
clearance is absent, surfactant plays a critical role in reducing surface tension at the airway
surface. Of equal importance, however, is the role of surfactant in host defense. Not only
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does it coat particulates and microbes, facilitating clearance via cough, but it is now clear
that several of the protein components of surfactant have broad ranging direct antimicrobial
actions. If microbes can evade these initial defenses and come into contact with the epithe-
lium, they are detected by a range of recognition molecules. These include specific receptors
as well as broad-ranging “pattern recognition molecules”. Depending upon the specific nature
of the ligand to be recognized, these molecules can be intracellular or expressed on the cell
surface. Once microbial pattern recognition or specific receptor engagement occurs, epithe-
lial cells respond by generating a wide range of defense molecules. These include direct
antimicrobials, as well as molecules that serve to recruit and activate inflammatory cells that
contribute to host defense. Finally, in this section, a major area of new investigation is the
ability of the epithelium to play a major role in immunoregulation, in particular to provide
an important link between innate and specific immunity.

The past decade or so also has seen marked improvements in our understanding both
of the interactions of specific inhaled stimuli with the epithelium, and of the consequences
of such interactions on airway function. The next set of chapters, therefore, deal with the
interaction of four major classes of inhaled stimuli that affect epithelial function. Respiratory
viruses not only cause upper airway diseases but also play a major role in triggering
exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Such effects
are initiated via interactions with the epithelium. Similarly, epithelial responses to bacteria
play a major pathogenic role in diseases from pneumonia, to cystic fibrosis to COPD. In
our modern environment, pollutants are major exacerbators of a range of airway diseases.
Finally, while the interactions of allergens with cells such as mast cells, basophils and
lymphocytes obviously play a major role in allergic diseases, a growing body of literature
demonstrates that interactions of allergens, particularly those with endogenous proteolytic
activity, with the epithelium not only contribute to direct inflammatory effects but also play
a critical role in permitting access of allergens to target cells in the underlying airway tissue.

There is now no doubt that the epithelial cell plays a major role in regulating the inflam-
matory and structural status of the airway. The epithelium has wide ranging synthetic and
metabolic capacities. It can maintain normal airway status via its ability to inhibit or degrade
a range of proinflammatory molecules but, upon repeated exposure to stimuli, can also
generate a wide range of mediators that can contribute to, and exacerbate, chronic airway
inflammation. Recurrent epithelial damage and repair can also cause repeated interactions
between the epithelium and other structural cells, such as fibroblasts/myofibroblasts, leading
to chronic reactivation of the so-called “epithelial mesenchymal trophic unit”. This can
lead to marked structural changes in the airway, such as the hallmark changes in asthma
collectively referred to as airway remodeling.

The final set of chapters deals with the interactions of inhaled medications with the
epithelium. Given the wide ranging properties discussed above, and the alterations of epithe-
lial function in airway diseases, several of the beneficial actions of inhaled medications,
including glucocorticoids, (3,-adrenergic agonists and muscarinic receptor antagonists, in
diseases such as asthma and COPD may well be mediated via alterations of epithelial cell
function. Last, but not least, there is growing interest in inhaled delivery of drugs, not only
as a means to exert local effects in the lung, but also as a means of systemic delivery
for drugs, particularly those that cannot survive oral delivery. Preserving the molecular
integrity of a formulation and delivering it to the appropriate target in the lung are critical for
effective therapy, and some of the recent advances in this regard are discussed in the final
chapter.
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1

Pulmonary Epithelium: Cell Types
and Functions

Mary Mann-Jong Chang, Laura Shih and Reen Wu
Center for Comparative Respiratory Biology and Medicine,
University of California at Davis,

California, USA

1.1 Introduction

The pulmonary airway tree branches in a dichotomous fashion, with repeated bifurcation
stemming from the trachea. The conducting airway include the regions that do not undergo
gas exchange, beginning with the trachea, which divides into two bronchi. These primary
airway then branch into a series of intra-pulmonary bronchial and bronchiolar airway. Both
the diameter and the length of each airway branch decrease progressively from the trachea to
the periphery, where the terminal bronchioles are the most distal conducting airway (Magno
and Fishman, 1982). In rodents, these bronchioles lead directly to alveolar ducts, whereas
in humans and monkeys, a region of transitional respiratory bronchioles with characteristics
of both bronchioles and alveoli exists between the bronchioles and the alveoli of the gas
exchange area (Tyler, 1983).

The entire pulmonary tree is lined by a continuous layer of epithelial cells. The relative
distribution and abundance of the epithelial cell types vary significantly, not only between
species, but also within the various airway regions of each species. The pulmonary epithelium
is important for maintaining the normal functions of the respiratory system, which include
acting as a barrier to various insults (Widdicombe, 1987b); facilitating mucociliary clearance
(Sleigh et al., 1988); secreting substances such as surfactant proteins, mucus, and antimicro-
bial peptides for airway surface protection (Widdicombe, 1987a); repairing and regenerating
epithelial cells to restore normal airway function (Evans et al., 1976); and modulating the
response of other airway components, such as airway smooth muscle cells and inflammatory
cells (Flavahan et al., 1985; Holtzman ef al., 1983, Breeze and Wheeldon, 1977). As many
as 49 cell types have been recognized (Breeze and Wheeldon, 1977). While many of these
are intermediate or differentiating cells, at least 10 to 12 morphologically and functionally
unique epithelial cell types can be identified throughout the pulmonary structure (Breeze and
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Wheeldon, 1977). They are: long and small ciliated, basal, non-ciliated secretory (goblet,
Clara, surface serous, submucosal serous, and submucosal mucous), pulmonary neuroen-
docrine (PNE), brush, and alveolar type I and type II cell types (Figure 1.1). It is important
to differentiate between these cell types, as well as to highlight the often significant species
differences that may limit the experimental comparisons between various animal models
and human subjects. In this chapter, we will attempt to address both of these issues while
focusing on a few main mammalian systems — human, monkey, rabbit, rat, and mouse.
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Figure 1.1 Three regions of pulmonary epithelia: cartilaginous proximal airway (trachea/bronchi
and submucosal glands), non-cartilaginous distal bronchioles, and gas exchange alveoli. MGC: mucous
gland cells; SGC: serous gland cells; SMGs: submucosal glands; GC: goblet cells; PNE: pulmonary
neuroendocrine; AI: alveolar type I cells; AII: alveolar type II cells

The mature mammalian airway can be divided by function and structure into three regions:
(1) the cartilaginous proximal airway, comprising the trachea, bronchi and submucosal glands;
(2) the non-cartilaginous distal bronchioles, comprising the bronchioles, terminal bronchi-
oles, transitional bronchioles, and respiratory bronchioles; and (3) the gas exchange region,
comprising the alveolar ducts and alveolar sacs. For each region, we will discuss its epithelial
makeup, the characteristic features and physiological functions of each cell type present, any
known variations between species, and the role of stem and progenitor cell populations.

1.2 Epithelial cell types and functions in the cartilaginous
proximal airway region

The epithelial cells of the proximal airway can be broadly separated into the surface epithelial
cells of the tracheal and bronchial regions and the cells of the submucosal glands. We will
first address the cell types of the tracheal and bronchial epithelium.
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The epithelial cells lining the luminal surface of the proximal airway can be further
grouped into ciliated cells, non-ciliated secretory cells, and basal cells. A characteristic
pseudostratified two-layered epithelium persists throughout the major bronchi, while a multi-
layered structure is seen in the more distal, narrow bronchi, which have fewer cartilage rings
and more submucosal glands. Ciliated cells and secretory cells attach to the basal lamina
via desmosome adhesions and to one another via tight junctions at the luminal surface. The
underlying basal cells lie in contact with most of the basal membrane (Breeze and Wheeldon,
1977, Jeftery, 1983). Pulmonary neuroendocrine cells (PNECs) are found as single cells or
in clusters throughout the proximal airway. In small animals, they are more prominent at
the laryngotracheal junction and the bifurcations of intrapulmonary bronchi (Tateishi, 1973),
while in humans, the PNECs are more frequently found in the smaller conducting airway
(Johnson ef al., 1982). Tracheas and bronchi from various animals reveal species-specific
epithelial cell linings (Jeffery, 1983; Plopper et al., 1983c), with the most striking variations
in the distribution of secretory cells (Plopper et al., 1983d).

Unique to the proximal cartilaginous airway is the existence of submucosal glands (SMGs).
These glands are contiguous with the surface epithelium and are characterized by a variable
proportion of ciliated cells, mucous cells and serous cells (De Poitiers et al., 1980). In
contrast to human and monkey airway, where submucosal glands are the major secretory
structure of the trachea and bronchi, SMGs in rats and mice are very scarce and limited to
the upper trachea (Plopper et al., 1986; Widdicombe e al., 2001).

1.2.1 Surface epithelial cell types and functions in tracheal
and bronchial regions

Ciliated cells

Ciliated cells are covered with cilia and are roughly columnar in shape, with little variation
in morphological appearance between species. Ciliated cells are attached to the basal lamina
via desmosomes and extend to the luminal surface, where they are interconnected via tight
junctions (Rhodin, 1966). The cytoplasm of these cells is relatively electron-lucent due
to their lack of secretory products or mucus granules. Many mitochondria are found in
the apical region of the cell, just below the row of basal bodies to which the cilia are
attached. Approximately 200-300 cilia are found on the luminal surface of each cell, with
approximately half as many microvilli and fine cytoplasmic processes interspersed among
them (Watson and Brinkman, 1964). In humans, the cilia are 0.25 micrometres in diameter
and range from 6 micrometres in length in the proximal airway to 3.6 micrometres in
seventh generation airway (Serafini and Michaelson, 1977). Their structure is comparable
to that of other ciliated epithelia in plants and animals. Each cilium is anchored to the
cell cytoplasm by a basal body through an axoneme. The axoneme is composed of nine
microtubule doublets that formed an outer ring around a central pair of microtubules, with
nexin links and radial spokes binding them together (see Chapter 6). Along each outer
microtubule there are extrusions referred to as outer dynein arms (odas) and inner dynein
arms (idas), both members of the dynein ATPase superfamily. Odas control the cilia beating
frequency through a cAMP-dependent phosphorylation mechanism (Satir, 1999), while idas
control the form of cilia beating (Brokaw and Kamiya, 1987; Friedmann and Bird, 1971).
Mucociliary clearance is the major function of ciliated cells. Cilia are bathed in the watery
sol phase of airway secretions and extend into the gel phase, where specialized barb-like
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structures on the tips of the cilia alternatively grab and release the mucus during the active
and relaxation strokes of cilia beating, thereby propelling the mucus with a rowing-like
action (Jeffery and Reid, 1975).

Proliferation potential Traditionally, ciliated epithelial cells were considered to be termi-
nally differentiated cells that did not divide, presumably originating from either basal or
secretory cells (Inayama et al., 1989; Johnson and Hubbs, 1990). Recent reports, however,
have suggested the involvement of ciliated cells in the restoration and regeneration of bron-
chiolar epithelium (Lawson et al., 2002; Park et al., 2006b). In the naphthalene injury model,
Park er al. (2006b) demonstrated that ciliated cells sequentially undergo morphological
transitions from squamous to cuboidal to columnar forms as the bronchiolar epithelium is
restored, showing remarkable plasticity and differentiation potential. Lawson ef al. (2002)
also concluded that ciliated cells play a critical role in the repair of distal airway injury.
Tyner et al. (2006) recently demonstrated the transdifferentiation of ciliated cells to mucous
(goblet) cell metaplasia in allergic mouse airway. This transdifferentiation depends on IL-13
expression and a persistent EGFR signalling. This result further supports the theory of plas-
ticity of ciliated airway epithelial cells. Further study is needed with isolated ciliated cells
to reaffirm such a potential.

Basal cells

The ovoid basal cells form a monolayer along the basement membrane and are responsible
for the pseudostratified appearance of the epithelium. Basal cells have large, indented nuclei
that fill most of the cell. The cytoplasm contains many ribosomes, a small Golgi zone, a
few mitochondria glycogen granules, a short profile of rough surface endoplasmic reticulum,
and occasionally lysozymes. Basal cells are connected to the basement membrane through
hemidesmosomes and provide the foundation for the attachment of ciliated and non-ciliated
columnar cells to the basal lamina (Frasca et al., 1968; Breeze and Wheeldon, 1977; Rhodin,
1966). Due to their centrally located position, basal cells not only play a role in the attachment
of columnar epithelium to the basement membrane, but also have the potential to function as
a regulator of inflammatory response, transepithelial water movement, and oxidant defence
(Evans et al., 2001).

Proliferation and stem cell potential One important feature of basal cells is their capacity
to repopulate all the major epithelial cell types found in the trachea, including basal, ciliated,
goblet and granular secretory cells (Hong et al., 2004b, 2004a; Inayama et al., 1988). Many
studies have demonstrated the potential of basal cells to act in a stem cell or transient
amplifying cell capacity in the upper airway. A study of 50 human bronchial biopsies with
immunohistochemical staining against the proliferation agent Ki-67 revealed a population of
cells that were positive for Clara cell secretory protein (CCSP) but showed no other Clara cell-
specific features. This population turned out to be Ki-67 antibody-negative, but the CCSP-
negative basal cells were candidate stem cells of the bronchial specimen (Barth ez al., 2000).
In another study of human trachea and bronchi using the same immunohistochemical staining,
basal cells and parabasal cells composed large percentages — 51 and 33 per cent, respectively —
of the proliferating compartment (Boers et al., 1998). Parabasal cells are located just above
the basal cells and considered to be intermediate cells. The high representation of basal and
parabasal cells within the proliferation compartment of normal human conducting-airway
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epithelium supports the theory that cells at or near the basement membrane are likely to be
the progenitor cells or transient amplifying cells of the airway surface (Hajj et al., 2007). In
the mouse trachea, a subset of cells with high keratin 5 (K5) promoter activity residing in the
submucosal gland were found to be bromodeoxyuridine label-retaining cells (LRC), which
are regarded as stem cells due to their long-lasting proliferation capacity (Borthwick et al.,
2001). Hong et al. (2004a) demonstrated that CCSP-expressing (CE) cells play a critical
role in the renewal of bronchiolar airway. They suggested, however, that in the absence
of Clara cells, basal cells may serve as secondary progenitor cells in the upper airway.
Using chemically-injured mice with Clara cell ablation, they found that the cytokeratin-14
expressing basal cells were capable of restoring normal bronchial epithelium and suggested
that basal cells may serve as an alternative multipotent progenitor cell in the bronchial airway
(Hong et al., 2004b). Debate about the role of basal cells as the primary progenitors in
the upper airway continues, especially since several animal injury models have shown that
secretory cells, rather than basal cells, exhibit hyperproliferation after mechanical or toxic
gas exposure (Johnson et al., 1990; Evans et al., 1989, Basbaum and Jany, 1990).

Non-ciliated secretory cells

The most striking interspecies difference in tracheobronchial epithelial cell types is in the
distribution of non-ciliated secretory cells. In humans, ciliated cells predominate and are
interspersed with mucus-secreting (goblet) cells, with approximately five ciliated cells for
every goblet cell (Rhodin, 1966; Frasca et al., 1968). The goblet cells become less frequent in
the bronchioles, as the airway becomes smaller and ciliated and Clara cells prevail (Lumsden
et al., 1984). The major secretory cell type in sheep, monkeys, and cats is either the mucous
goblet cell or the small mucous granule cell (Mariassy et al., 1988a; Plopper et al., 1989).
In rats, the predominant secretory cell is the serous cell, whereas in rabbits and mice, the
Clara cell is the only type of secretory cell in the entire conducting airway (Plopper et al.,
1983a). In addition to the secretory cells of the surface epithelia, many major secretory cell
types are found in the submucosal glands and will be discussed separately.

Goblet cells

Goblet cells have a relatively dense, electron-opaque cytoplasm due to the numerous mucous
granules located in the apical region of the cytoplasm. The nucleus is generally compressed
at the cell’s basal side. The mucous granules give the cell its typical goblet shape, with a
wide, enlarged apical portion and a narrow tapered basal cytoplasm. The granules in human
goblet cells are electron-lucent, approximately 800 nanometres in diameter, and usually
contain mucins that are acidic due to the presence of sulfate or sialic acid (Lamb and Reid,
1969; Spicer et al., 1971, Mariassy et al., 1988b).

Under healthy conditions, goblet cells, along with submucosal glands, secrete high molec-
ular weight mucous glycoproteins that allow the surface fluid to properly trap and remove
particles, thus protecting the epithelial surface. Proper regulation of mucin secretion at the
airway surface is crucial to normal functioning, as overproduction can clog the airway and
underproduction can impair mucociliary clearance.

Goblet (mucous) cell metaplasia in lung disease Goblet cell hyperplasia or metaplasia is
a common phenomenon associated with airway inflammatory diseases, including asthma,
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COPD (chronic obstructive pulmonary disease), and chronic bronchitis (Vestbo et al., 1996;
Aikawa et al., 1992; Fahy, 2002; Groneberg et al., 2002). Goblet (or mucous) cell hyper-
plasia usually refers to an increase in goblet cells in the airway regions where goblet cells
exist normally, such as the proximal airway of humans. Goblet (mucous) cell metaplasia,
on the other hand, refers to an increase in goblet (mucous) cells in airway regions that
normally contain few or no goblet cells, such as in mouse or rat airway. Both cases result
in increased mucin secretion at the airway surface, thus compromising airway functions.
Adler and colleagues revealed that myristoylated alanine-rich C kinase (MARCKS) is a
key molecule regulating mucin exocytosis, a process also involving cooperative interaction
between protein kinase C (PKC) and PKG (Park et al., 2006a; Singer et al., 2004). The use of
a therapeutic agent developed in conjunction with this study may be a means of controlling
mucus secretion. Using transgenic mice and an OV A-sensitized murine model, investigators
have linked Th2 cytokine-mediated inflammation to goblet cell metaplasia based on studies
involving IL-4, IL-9, and IL-13 (Temann et al., 1997; Kuperman et al., 2002; Vogel, 1998;
Wills-Karp et al., 1998). Among these Th2 cytokines, IL-13 was shown to be the most
potent. Studies of mice with intratracheal IL-13 instillation consistently showed increased
goblet cells in the mouse airway. Additionally, goblet cell metaplasia induced by CD4 T cells
and IL-9 was shown to be stimulated through a common IL-13 mediated pathway (Whittaker
et al., 2002). Despite these findings, evidence to support IL-13 as the direct mediator of the
expression of gel-forming mucin by goblet (mucous) cells is still lacking. In vivo studies
may be complicated by the presence of cytokine networks and the inflammatory response
upon the administration of cytokines, while in vitro studies may provide a more direct
measurement of the effects of cytokines on airway epithelial cell types. Chen et al. (2003)
have shown that IL-13 and various Th2 cytokines have no stimulatory effects on either
MUCSAC or MUCS5B expression in well-differentiated human airway epithelial cultures,
while IL-6 and IL-17 can directly stimulate mucin gene expression. This data suggests that
the transformation of airway epithelial cells into goblet cells may be a multi-step process
that is controlled by different sets of cytokines.

Clara cells

For large animals such as sheep, monkeys and humans, Clara cells are concentrated in the
distal conducting airway and bronchioles, while in hamsters, rabbits, and mice, the predom-
inant non-ciliated cells throughout the entire conducting airway have the same ultrastructure
features as Clara cells (Plopper et al., 1987; Matulionis, 1972, Jeffery and Reid, 1975).
A detailed discussion of Clara cells will be presented in section 1.3, ‘Epithelial cell types
and functions of the non-cartilaginous distal bronchioles’.

Surface serous cells

Serous cells on the surface airway epithelium morphologically resemble the serous cell type
of the submucosal gland. They are the predominant secretory cells in rat surface epithelium
(Jeffery and Reid, 1975) and have also been found sporadically in human small bronchi
and bronchioles (Jeffery, 1983). In contrast to goblet and mucous cells, they have discrete
electron-dense granules in the apical cytoplasm that are approximately 600 nanometres in
diameter and contain neutral mucin. A detailed description of serous cell function is presented
in section 1.2.2 ‘Epithelial cell types and functions in the submucosal glands’.
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Pulmonary neuroendocrine cells (PNECs)

PNECs are found throughout the conducting airway of most species. They exist either indi-
vidually or in clusters as neuroendocrine bodies (NEBs). In the rabbit, the NEB is a large
intraepithelial organoid that is composed almost exclusively of PNECs. In other species,
such as the rat, PNECs in the NEB are interspersed with Clara-like cells (Scheuermann,
1987; Sorokin et al., 1989; Sorokin and Hoyt, 1982). The number of PNECs and NEBs
increase from the main bronchi to the terminal bronchioles, with denser populations found
around bifurcating regions, such as the bronchoalveolar portals and various airway branching
points (Hoyt er al., 1982a, 1982b). Mature PNECs are spindle-shaped, with their basal
surface facing the basement membrane and a thin apical process extending toward the
epithelial surface (Hage, 1980). The most prominent feature of these cells is the pres-
ence of abundant argyrophilic vesicles with granular cores concentrated at the base of the
cells (Hage, 1980; Capella er al., 1978). As a result, PNEC secretion is polarized and
directed toward adjacent cells or structures underlying the basement membrane (Hoyt et al.,
1982a). The secretory products of the granules vary between different species and have
been immunocytochemically identified as bioactive amines and peptides, including sero-
tonin, calcitonin, gastrin-releasing peptide (GRP), calcitonin gene-related peptide (CGRP),
chromogranin A, and cholecystokinin (Becker et al., 1980; Wharton et al., 1978; Sunday
et al., 1988; Cadieux et al., 1986; Sirois and Cadieux, 1986). The two best-characterized
peptides are GRP and the mammalian form of bombesin, CGRP. These peptides, which
exert direct mitogenic effects on epithelial cells and exhibit many growth factor-like prop-
erties, are thought to be involved in normal fetal lung development, including branching
morphogenesis (Li ef al., 1994). Additionally, NEBs may play a role as hypoxia-sensitive
airway chemoreceptors (Lauweryns and Cokelaere, 1973; Lauweryns er al., 1983) and
are involved in regulating localized epithelial cell growth and regeneration (Reynolds
et al., 2000D).

Proliferation potential PNECs are generally believed to be terminally differentiated and
mitotically inert cells (Gosney, 1997). Sunday and his colleague (Sunday and Willett, 1992),
however, suggested that PNEC hyperplasia in the hamster model is a result of the differ-
entiation from proliferative stem cells or from immature PNECs. Others showed that repair
from airway injury is associated with PNEC hyperplasia and that proliferation contributes
to this hyperplastic response (Ito er al., 1994; Stevens et al., 1997). A study investigating
the role of PNEC-derived neuropeptides in lung development suggested that PNECs are
involved in the regulation of epithelial renewal (Pan et al., 2002). Further evidence for
this theory is found in the inverse relationship between the epithelial mitotic index at each
epithelial location and its distance from the closest NEB (Holt er al., 1990). Recently,
several studies have demonstrated that NEBs provide a microenvironment for progenitor
cells in the adult airway by showing that the NEB niche of normal and injured lungs
supports the maintenance of at least two epithelial cell variants — one with an interme-
diate phenotype between Clara and PNEC cells, and the other with a Clara cell variant
with little or no immuno-reactive CYP-2F2 protein (Reynolds et al., 2000b, 2000a). Further
studies using the same naphthalene injury model demonstrated that PNECs are not stem
or progenitor cells in the distal airway. Rather, they provide a niche that regulates the
expansion of the CCSP-expressing stem cell population in mouse distal airway (Hong
et al., 2001).
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Brush cells

Brush cells are named for the closely packed microvilli that protrude like a brush from
their luminal surface. Although they have been identified throughout the conducting airway
of many species, their presence is infrequent and has not been convincingly shown in
humans (Meyrick and Reid, 1968; Jeffery and Reid, 1975). While their function is not
well-defined, some speculated functions include roles in periciliary fluid absorption (Jeffery,
1987), chemoreception (Luciano et al., 1968) and ciliogenesis (Rhodin and Dalhamn, 1956).

1.2.2 Epithelial cell types and functions in the submucosal glands

Submucosal glands are found in the upper airway of higher mammals such as humans,
monkeys and sheep (Goco et al., 1963; Choi et al., 2000). They occur at a frequency of
approximately one gland per square millimetre in the trachea of healthy humans and are
abundant down to about the tenth generation bronchiole (Ballard er al., 1995). In small
animals such as hamsters, rats and mice, submucosal glands are infrequently expressed and
exist only in the uppermost portion of the trachea (Borthwick er al., 1999; Widdicombe
et al., 2001).

Each submucosal gland consists of multiple tubules that feed into a collecting duct, which
narrows into a ciliated duct that is continuous with the airway surface (Meyrick et al., 1969).
The tubules may be inter-connecting and are lined with mucous cells in their proximal regions
and serous cells in the distal acini (Meyrick et al., 1969). The secretory products of these
two cell types are essential for proper airway mucociliary clearance. In fact, malfunctioning
of serous and mucous cells may be the primary cause of many airway diseases, including
chronic bronchitis, asthma, and cystic fibrosis (Salinas et al., 2005; Rogers, 2004; Knowles
and Boucher, 2002).

Serous gland cells

Like surface serous cells, serous gland cells are pyramidal in shape, with electron-dense
secretory granules in the apical region and a basally-located nucleus. The mitochondria are
long and ovoid and are concentrated in the base of the cell, with a few found among the
secretory granules. While most of the rough endoplasmic reticulum is at the cell base, free
ribosomes are abundant throughout the cytoplasm. The Golgi apparatus is well-developed
and supranuclear, often with dilated lamellae and many associated vesicles. Multivesicular
bodies are also seen occasionally. Osmiophilic material is organized either into an irregularly
shaped body or an irregular dense region within an electron-dense secretory granule. A large
pale secretory granule containing focal condensations of osmiophilic material surrounded by
a membrane is found in the apical half of most serous cells (Meyrick and Reid, 1970). Serous
cells have been described as ‘immobilized neutrophils’ due to their role in the secretion
of water, electrolytes, and compounds with antimicrobial, anti-inflammatory, and antiox-
idant properties (Basbaum et al., 1990). Serous cells are the predominant sites of cystic
fibrosis transmembrane regulator (CFTR) expression in the human bronchus (Engelhardt
et al., 1992a). Located distal to mucous cells, they facilitate mucociliary transport by helping
remove the mucous glycoprotein produced by submucosal gland mucous cells and main-
taining the airway surface liquid (ASL) volume (Inglis et al., 1997). CFTR malfunction in
the serous cells can result in defective mucus clearance, which has been implicated as the
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primary cause of cystic fibrosis (CF) disease (Knowles and Boucher, 2002; Joo et al., 2002;
Yamaya et al., 1991).

Mucous gland cells

Like the surface goblet cells of the surface epithelium, mucous cells of the submucosal
gland are columnar in shape, with a basally-located nucleus. The rest of the cell is packed
with secretory granules of moderate electron density (Meyrick and Reid, 1970). The major
function of mucous cells is to secrete mucin in the form of the mucous glycoprotein MUCS5B,
which is different from the MUC5AC produced by surface goblet cells (see Chapter 7).
Together, these glycoproteins make up the gel phase on the apical surface of airway epithe-
lial cells. As previously discussed in conjunction with the goblet cell, overproduction of
MUCS5AC and MUCS5B is a common phenomenon in asthma, COPD and chronic bronchitis
(Rogers, 2004, 2000; Rose et al., 2001).

Stem cell niche at or near submucosal glands Aside from playing a significant role in
airway diseases, the submucosal gland may also provide the microenvironment for a subset of
stem cells in the upper airway. Randel et al. discovered a high keratin-expressing subpopula-
tion of cells residing in the submucosal gland ducts of murine trachea that were co-localized
with label-retaining cells (LRCs). In mice 95 days post-injury, LRCs were localized to the
gland ducts in the upper trachea and to systematically arrayed foci in the lower trachea,
especially at the cartilage—intercartilage junction (Borthwick et al., 2001). This suggests
that the submucosal gland may provide a protective niche for stem cells (Engelhardt, 2001;
Borthwick et al., 2001).

1.3 Epithelial cell types and functions of the
non-cartilaginous distal bronchioles

In most small laboratory animals such as rats, hamsters and mice, the distal bronchioles
consist of several generations of non-alveolized bronchioles and a single, short alveolized
bronchiole that connects to the alveolar duct. The lining epithelium is composed of simple
cuboidal cells, with approximately equal numbers of ciliated cells and non-ciliated Clara
cells (Widdicombe and Pack, 1982; Plopper et al., 1983b). In higher mammals such as
humans and monkeys, however, there are several generations of both non-alveolized and
alveolized (respiratory) bronchioles (Castleman ez al., 1975; Tyler, 1983). The non-alveolized
bronchioles are lined with ciliated cells and non-ciliated secretory cells, while the alveolized
bronchioles are scattered with alveolar type I and type II cells amongst simple cuboidal cells.

Clara cells

Although there are significant inter- and intra-species variations in their ultrastructural
characteristics, Clara cells are generally ovoid or columnar in shape, with a centrally-
located nucleus, prominent Golgi, and abundant organelles including agranular and granular
endoplasmic reticulum. Their most prominent features are the membrane-bound electron-
dense secretory granules. While the granules do not contain glycoprotein, Clara cells are
metabolically active. CC10 (or CCSP) is a secreted protein homologous to uteroglobin
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that may be important in regulating the inflammatory response and is used as a Clara cell
marker (Plopper et al., 1980c, 1980a, 1980b; Widdicombe and Pack, 1982; Singh et al.,
1990). The surfactant protein SP-B is another secretory product of Clara cells that may
be involved in host defence activity (Phelps and Floros, 1991). These cells also produce
proteins with inhibitory effects on proteases; one such example is the antileukoproteases
found one the surface of human airway (Simionescu and Simionescu, 1983; Yoneda and
Walzer, 1984). Furthermore, Clara cells have the capacity to metabolize xenobiotics through
their cytochrome p450 monooxygenase activity, a function that renders them susceptible to
injury by lipophilic compounds (Baron et al., 1988).

Stem cell niche at the bronchioalveolar region The most important property of Clara cells
is their ability to act as stem cells. Clara cells have long been considered to be progen-
itor cells for the terminal bronchioles (Evans er al., 1976, 1978). Repopulation studies of
specific epithelial cell types in vitro and in vivo suggested that basal cells and bronchiolar
Clara cells have stem and progenitor cell capabilities in the regeneration of the trachea,
bronchi, and bronchioles (Nettesheim et al., 1990). In the study of normal human lungs
obtained from autopsy, triple sequential histochemical staining was used to elucidate the
contribution of Clara cells to the proliferation compartment. Using MIB-1 as a proliferation
marker, anti-CC10 for the identification of Clara cells, and a PAS stain marker for goblet
cells, Clara cells were found to be absent in the proximal airway epithelium, while their
contribution to the proliferation compartment in the respiratory bronchioles was 44 per cent.
This demonstrated that Clara cells play an important role in the normal maintenance of
the human distal conducting airway epithelium (Boers er al., 1999). Recent studies using
naphthalene-injured mice have suggested that a subset of naphthalene-resistant Clara cells
in the bronchiolar epithelium acts as a stem cell population. In mice whose Clara cells were
ablated by naphthalene, a population of variant Clara cells that were cytochrome p450 2F2
negative and resided in discrete pools associated with neuroepithelial bodies (NEBs) were
found to exhibit multipotent differentiation and to regenerate the bronchiolar epithelium
(Reynolds et al., 2000a, 2000b). The associated neuroendocrine cells are thought to provide
a niche that regulates the expansion of Clara cell secretory protein (CCSP)-expressing cells
(Hong et al., 2001). In a study searching for cells contributing to the renewal of terminal
bronchioles after Clara cell depletion in mice, CCSP-expressing cells that were localized to
the bronchioalveolar duct junction (BADJ) were also identified as the predominant prolif-
erative population in initial terminal bronchiolar repair. These cells included a population
of label-retaining cells, characteristic of a stem cell population. Furthermore, immunohisto-
chemical co-localization studies involving CCSP and the NEB-specific marker, calcitonin
gene-related peptide, indicate that BADJ-associated CCSP-expressing stem cells function
independently of NEB microenvironments. These studies identify a BADJ-associated, NEB-
independent, CCSP-expressing stem cell population in terminal bronchioles and support the
theory that region-specific stem cell niches exist to maintain epithelial diversity after injury
(Giangreco et al., 2002). Identified at the bronchioalveolar duct junction, bronchioalveolar
stem cells (BASCs) retain characteristics of regional stem cells such as LRC accumulation,
self-renewal, and multipotency in clonal assays. BASCs are believed to maintain the Clara
cell and alveolar cell populations in the distal airway. Interestingly, Clara cells and alveolar
cells of the distal lung and their transformed counterparts give rise to adenocarcinoma. This
work also points to BASCs as the putative origin cells for this subtype of lung cancer (Kim
et al., 2005).
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1.4 Epithelial cell types and functions of the gas
exchange region

The main function of the pulmonary acini is to facilitate efficient gas exchange between blood
and air. The air-blood barrier is a three-layered structure consisting of capillary endothelium,
basement membrane, and a thin, membrane-like epithelium that allows diffusion of gases
while serving as a barrier against the leakage of solutions into the alveoli (Gehr ef al.,
1978). This thin layer of epithelium is composed of large, flat alveolar type I cells that
cover 90 per cent of the alveolar surface, and cuboidal alveolar type II cells that cover the
remaining 10 per cent (Haies ef al., 1981). Tight junctions form a gasket-like seal between
adjoining cells and help maintain their structural and functional polarity (Schneeberger and
Hamelin, 1984).

Alveolar type I cells

Alveolar type I cells are large, flat squamous cells with a relatively simple structure that
function mostly as a thin, gas-permeable membrane. Each cell has a small nucleus surrounded
by a few small mitochondria, an inconspicuous Golgi apparatus, and some cisternae of
endoplasmic reticulum with ribosomes (Low, 1952). There are also pinocytotic vesicles in
the peripheral region of the cytoplasm and at both the alveolar and interstitial surfaces of
the cells (Gil ef al., 1981). The vesicles are thought to be involved in protein transportation
between cells and alveoli (Bignon et al., 1976; Schneeberger and Hamelin, 1984).

Proliferation potential Alveolar type I cells are sensitive to injury by various agents,
such as NO, (Evans et al., 1975), ozone (Plopper et al., 1973), and bleomycin (Jones
and Reeve, 1978). If the damage is lethal, the cells detach, exposing denuded basement
membrane. Alveolar type I cells are considered to be terminally differentiated and cannot
divide; therefore, they must depend on the mitosis and differentiation of alveolar type II
cells for repopulation (Evans ez al., 1975).

Alveolar type II cells

Alveolar type II cells are small and cuboidal in shape, and constitute approximately
15 per cent of the cells of the alveolar epithelium. They contain unique lamellar bodies and
various organelles, including mitochondria, endoplasmic reticulum, filaments, microtubules,
and pinocytic vesicles (Macklin, 1954; Crapo et al., 1982). The cells are structurally and
functionally polarized due to the existence of tight junctions at the lateral cell surface that
divide the cell into apical and basolateral domains. The apical membrane contains molecules
not found in the basolateral membrane, such as glycoprotein 330 (Chatelet e al., 1986),
alkaline phosphatase (Edelson et al., 1988), and special glycosylated molecules recognized
by lectin. The apical cell membrane also has numerous short microvilli, which are used to
identify type II cells (Wright ef al., 1986). Secretion and endocytosis take place mostly in
the apical domain.

The most important function of alveolar type II cells is the synthesis and secretion of
surface-active materials, referred to as surfactants (see Chapter 8). Pulmonary surfactants
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are a complex mixture of proteins and phospholipids that lower surface tension at the
air-liquid interface and prevent the alveolar surface from collapsing (Wright and Dobbs,
1991; Dobbs, 1994). They consist predominantly of phospholipids that are rich in dipalmi-
toylphosphatidylcholine and phosphatidylglycerol synthesized by type II cells, along with
several unique proteins such as surfactant proteins SP-A, SP-B, SP-C and SP-D (Rooney
et al., 1994; Batenburg and Haagsman, 1998). The appropriate composition of pulmonary
surfactants is crucial to normal functioning. For example, a deficiency of dipalmitoylphos-
phatidylcholine at the alveolar surface has been associated with infant respiratory distress
syndrome (RDS). Prior to secretion, the surfactants are stored in lamellar bodies as densely
packed lamellae and are secreted into the alveolar lumen by regulated exocytosis. In this
process, lamellar bodies are propelled to the apex, where they fuse with the membrane
and release their contents into the alveolus (Ryan er al., 1975). After the surfactant lipids
are released, the spheroid lamellar bodies reorganize into an expanded membrane lattice
called ‘tubular myelin’ (Williams and Mason, 1977). Alveolar type II cells can also endo-
cytose surfactant from the alveolar space via small pinocytic membrane-bound vesicles
that form multivesicular bodies involved in endocytic transportation. The materials taken
up by this pathway are largely recycled to lamellar bodies (Williams, 1984; Hallman
and Teramo, 1981; Chander et al., 1987), with remaining materials degraded (Chander
et al., 1987).

Proliferation potential and stem cell niche in alveoli Alveolar type II cells are believed to
be the only stem cell of the alveolar epithelium, able to proliferate as well as differentiate
into alveolar type I cells (Mason et al., 1997; Griffiths et al., 2005; Reynolds et al., 2004;
Gomperts and Strieter, 2007; Uhal, 1997; Weiss et al., 2006). Numerous in vivo animal
studies have demonstrated the ability of type II cells to repopulate the alveolar epithelium.
Briefly, various pollutants and reagents were used to injure the airway epithelium (Liu et al.,
2006). Following the injury event, type II cells were observed to proliferate and differentiate
into type I cells to restore the alveolar epithelium, with cells showing characteristics of both
alveolar types in the intermediate stages (Evans er al., 1973, 1975, 1972; Kapanci et al.,
1969; Adamson and Bowden, 1974, 1975; Aso et al., 1976). The ability of alveolar type
IT cells to differentiate into type I cells has also been demonstrated in vitro. Type II cells
isolated from rats begin to exhibit type I cell characteristics after a period of in vitro culture
(Brody and Williams, 1992; Danto et al., 1992, Dobbs et al., 1988; Kikkawa and Yoneda,
1974; Paine et al., 1988; Paine and Simon, 1996). Altering the culture substrate has an
effect on whether type II cells retain their characteristics or differentiate into type I cells,
highlighting the importance of the extracellular matrix microenvironment in determining cell
fate (Shannon et al., 1992).

Type II cells themselves are a heterogeneous group. Studies have shown that some type
II cells are more susceptible to injury than others, and the true stem cell population within
the group has been characterized as E-cadherin negative, proliferative, and having high
telomerase expression (Adamson and Bowden, 1975; Reddy et al., 2004). Though much
less prevalent in the literature, there is also evidence that alveolar type I cells differentiated
from type II cells can dedifferentiate back into type II cells under certain conditions (Danto
et al., 1995). This may lead to the classification of type I cells as a limited progenitor cell
as well, although there is a general consensus that type II cells are the stem cells of the
alveolar epithelium.
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1.5 Circulating stem cells and applications in lung
regenerative medicine

Many reports have suggested that adult bone marrow acts as a source of circulating stem
cells that localize to various tissues and differentiate into tissue-specific cells (Anjos-Afonso
et al., 2004; Herzog et al., 2003; Jiang et al., 2002; Korbling and Estrov, 2003; Neuringer
and Randell, 2004; Pereira et al., 1995; Prockop, 2003; Wagers et al., 2002). Multiple
subpopulations of bone marrow may be involved, including haematopoietic stem cells,
mesenchymal stem cells, endothelial progenitor cells, fibrocytes, and circulating epithelial
progenitor cells (Direkze et al., 2003; Schmidt et al., 2003; Bucala et al., 1994; Epperly et al.,
2003; Hashimoto et al., 2004; Kotton et al., 2001; Krause et al., 2001). Most of the evidence
comes from animal and clinical transplant cases, which arguably revealed chimerism and
engraftment of donor cells. In multiple studies involving bone marrow transplants in animals,
donor bone marrow-derived cells were identified in the lung with lung cell phenotypes (Abe
et al., 2004, 2003; Anjos-Afonso et al., 2004; Beckett et al., 2005; Epperly et al., 2003;
Grove et al., 2002; Hashimoto et al., 2004; Jiang et al., 2002; Kotton et al., 2001; Krause
et al., 2001; Loi et al., 2006; Macpherson et al., 2005; Ortiz et al., 2003; Pereira et al.,
1995; Rojas et al., 2005; Schoeberlein et al., 2005; Theise et al., 2002; Yamada et al.,
2004). In human bone marrow transplants, chimerism of epithelial and endothelial cells as
well as engraftment of bone marrow-derived cells were found in lung tissue (Mattsson et al.,
2004; Suratt et al., 2003; Albera et al., 2005). Furthermore, chimerism and engraftment
have also appeared in the lung epithelium following human lung transplants, suggesting that
circulating stem cells in the recipient can localize to the donor lung (Kleeberger et al., 2003;
Spencer et al., 2005; Albera et al., 2005).

There is also evidence that bone marrow-derived cells localize to sites of lung injury and
help mitigate the damage (Abe et al., 2004; Epperly et al., 2003, Gomperts et al., 2006;
Hashimoto et al., 2004; Ishizawa et al., 2004; Kotton et al., 2001; Ortiz et al., 2003; Rojas
et al., 2005; Theise et al., 2002; Yamada et al., 2004, 2005; Ishii et al., 2005; Moore et al.,
2005; Burnham et al., 2005). Other studies, however, have suggested that in some cases, bone
marrow-derived cells may actually contribute to fibrosis (Epperly er al., 2003; Hashimoto
et al., 2004; Phillips et al., 2004). Indeed, controversy remains about the actual ameliorative
effect of circulating stem cells, whether or not they can engraft in other organs, and whether
engrafted cells undergo fusion or transdifferentiation (Aliotta er al., 2005; Vassilopoulos
et al., 2003; Wang et al., 2003; Chang et al., 2005; Davies et al., 2002; Kotton et al., 2005;
Zander et al., 2005; Loi et al., 2006). Clearly, researchers have not yet reached a consensus
about the role that circulating stem cells play in lung processes.

1.6 Stem cell therapy: embryonic or adult?

Stem cell therapy has been vaunted as a possible source of cures. We hope that stem or
progenitor cells can be used to repair injury and fix diseases, or that an endogenous stem
cell population can be targeted for gene therapy. While stem cell therapies using embryonic
stem cells or endogenous stem cells of the pulmonary system have thus far been limited
to speculation, some studies have shown that bone marrow-derived stem cells may have
an ameliorative effect on lung diseases and injuries (Abe et al., 2004; Ishizawa et al.,
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2004; Ortiz et al., 2003; Rojas et al., 2005; Yamada et al., 2004, 2005; Burnham et al.,
2005; Gomperts et al., 2006). As previously discussed, much debate continues over the
therapeutic effects of these circulating stem cells. The cell subpopulation most appropriate
for therapeutic application remains to be identified, and their in vivo proliferation and
differentiation activity defined. As seen in cases where applied bone marrow-derived stem
cells can actually contribute to a disease state (Epperly et al., 2003; Hashimoto et al., 2004;
Phillips et al., 2004), great care must be taken when introducing stem cells into the system.
Though embryonic stem cells have not yet been used in cell therapy for the pulmonary
system, researchers have had moderate success in obtaining airway epithelial cells from
mouse and human embryonic stem cells (Ali et al., 2002; Coraux et al., 2005; Nishimura
et al., 2004, 2006; Rippon et al., 2004, 2006; Samadikuchaksaraei et al., 2006; Wang et al.,
2007). Although functional pulmonary epithelial cells differentiated from embryonic stem
cells might one day be useful in treating disease, immunological difficulties could prove
to be the biggest obstacle to overcome. Until these problems are solved, the embryonic
stem cell system may contribute mostly to the areas of understanding developmental and
disease processes. The endogenous stem cells of the lung present another potential pool of
cells for transplantation or gene therapy, but the definitive characterization of these stem
cell populations must first be completed. Additionally, the ability to isolate pure populations
of these cells could enhance current xenograft models of airway epithelium regeneration,
which have demonstrated the ability of airway epithelial cells to repopulate a denuded
trachea (Puchelle and Peault, 2000; Shimizu et al., 1994; Engelhardt et al., 1992b, 1995;
Zepeda et al., 1995; Dupuit et al., 2000; Castillon et al., 2004; Escotte et al., 2004). Using
this technique in a more limited, well-controlled manner alongside gene therapy techniques
could offer new treatments using a patient’s own pulmonary stem cells — perhaps altered or
enhanced in vitro — to treat airway epithelial diseases and injuries (Castillon et al., 2004;
Engelhardt ef al., 1992b).

Another area that requires further study for all stem cell populations is the stem cell niche,
or microenvironment. We must fully understand the effects that the microenvironment has
on stem cell proliferation and differentiation before we can be confident of the safety and
efficacy of any stem cell therapy. While some soluble factors have been studied — especially
in areas of embryogenesis and development — researchers have only begun to understand
their effects and those of the three-dimensional extracellular matrix (Warburton et al., 2005;
Dunsmore and Rannels, 1996). With further study, pulmonary diseases may one day be
treated with the help of stem cells.

1.7 Conclusion

In addition to facilitating the exchange of respiratory gases, the pulmonary epithelium is a
physical barrier that is constantly exposed to infectious organisms, oxidative stress, and toxins
from the external environment. Roughly 10 to 12 epithelial cell types can be identified in the
pulmonary epithelium. The distribution of these epithelial cell types is species-dependent and
airway region-specific (Figure 1.1). Roughly, the distribution is correlated to the functions of
each airway segment. In the trachea and bronchi, these functions are the trapping and removal
of particles and infectious microorganisms. To perform these functions, ciliated, basal and
non-ciliated secretory cells capable of mucus secretion are predominately present. In the
distal bronchioles, only minimal mucociliary function is undertaken in the narrowing airway
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space. The major function in this distal region is to sense and condition the incoming air,
requiring mainly Clara and PNE cells. Among Clara cells, there are differences in cytochrome
p450-mediated drug metabolism as well as local distribution. In the gas exchange region,
alveolar type I cells contribute a large cell surface area, while cuboidal type II cells are
responsible for surfactant production to prevent lung collapse. To maintain airway integrity
and efficiently respond to injury, the pulmonary epithelia should contain active stem cell
niches throughout the airway that can immediately produce transient amplifying cells when
needed. There have been extensive studies to identify these niches and the specific cell
type(s) serving as adult stem cells. These studies may one day lead to the development of
cell therapies for various airway and lung diseases.
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2.1 Introduction

The respiratory tract is lined by a continuous layer of epithelial cells. Pseudostratified
columnar epithelium made up of ciliated, goblet, and basal cells line the large proximal
airway. In the distal airway, ciliated cells transition to a more cuboidal morphology and
decrease in number, while basal cells and Clara cells become more prominent. Alveoli are
lined by a thin monolayer of type I alveolar cells interspersed with type II alveolar cells.
Together, these cells constitute a remarkable epithelial tissue that regulates host defence,
inflammation, gas exchange, and barrier function. Barrier function and interactions with the
surrounding microenvironment are determined by specialized structures residing at cell—cell
and cell-substratum junctions. This chapter examines these structures, their relevance in
the pulmonary epithelium, reviews their protein constituents and associations, and discusses
newer insights into their functions and potential roles in disease.

2.2 Cell-cell adhesive structures

In 1870, the Italian scientist and microscopist Giulio Bizzozero designated the ‘terminal
bar’, an apical 1-2pm area of condensation observed at epithelial cell-cell junctions
(Bizzozero, 1870). In 1963, Farquhar and Palade re-examined this structure using elec-
tron microscopy (EM) and discovered the tripartite ‘junctional complex’ (Farquhar and
Palade, 1963). The three components, based on distinct morphologies and relative locations
(Figure 2.1), were named the zonula occludens or ‘closing belt’, now referred to as the tight
junction (TJ), the zonula adherens or ‘adhering belt’, now known as the adherens junction
(AJ) or intermediate junction, and the macula adherens or ‘adhering spot’, now known as
the desmosome. Analogous ultrastructure has been described in both non-mammalian and
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Figure 2.1 Epithelial cell-cell and cell-substratum adhesion structures: tight junctions, adherens
junctions, desmosomes, hemidesmosomes, and focal adhesions. The TJ is the most apical member of
the junctional complex. TJ strands and fibrils form a circumferential, gasket-like band. Below the TJ
is the E-cadherin-rich AJ which is linked to intracellular actin through linker proteins to form another
continuous band around the perimeter of the cell. Desmosomes form discrete disc-like adhesion sites
which characteristically associate with intermediate filaments (IFs), rather than with actin. IFs loop
from the desmosomal plaque to the cytoplasm, then back. Hemidesmosomes are specialized structures
that mediate adhesion of the epithelial cell to the underlying basement membrane. Hemidesmosomes,
like desmosomes, associate with IFs through its cytoplasmic plaque. Focal adhesions are regions of
close apposition to the underlying extracellular matrix organized around links between integrins and
the ends of actin filaments. Gap junctions permit intercellular metabolic coupling, but are not formally
described as cell-cell, or cell-substratum adhesion structures

mammalian pulmonary epithelia. Gap junctions, or nexi, which permit metabolic coupling
and direct transmission of small cytosolic signalling molecules between adjacent cells, are
not considered part of the junctional complex and will not be specifically reviewed here.
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2.2.1 Tight junctions

The TJ is the most apical member of the junctional complex (Figure 2.1). At low magni-
fication, it forms a continuous intercellular belt-like zone, 0.1 to 0.7 wm in depth, where
adjacent plasma membranes are juxtaposed. Higher magnification of this zone reveals punc-
tate contacts where the outer lipid leaflets of conjoined plasma membranes merge, eliminating
interposed extracellular space. These contacts correspond to the dramatic strands and fibrils
seen in EM freeze-fracture replicas. Rat airway have TJ morphologies that vary between
epithelial cell type (Schneeberger, 1980). In the trachea, TJs in ciliated cells have sparsely
interconnected parallel luminal fibrils and large ablumenal fibril loops. In distal intrapul-
monary airway, the luminal fibrils are highly interconnected. This TJ morphology is also
seen with serous cells, epithelial ‘brush cells’, and Clara cells. In normal human bronchi,
however, EM of these strand arrangements shows highly variable patterns from one junction
to the next, irrespective of either airway distribution or cell type (Godfrey et al., 1992).
In human alveolar epithelial cells, freeze-fracture replicas reveal a belt-like network of 3-7
superimposed fibrils that partition to the protoplasmic (P) face, with complementary grooves
that partition to the exoplasmic (E) face (Bartels, 1979). It is generally assumed that these
strands and fibrils represent polymers of interacting transmembrane proteins, although a
contribution from lipids and specialized lipid structures cannot be ruled out (Tsukita et al.,
2001). These transmembrane proteins terminate at a cytoplasmic plaque, originally described
as a 0.2 to 0.5 um ‘diffuse band of dense cytoplasmic material’ (Farquhar and Palade, 1963).

The first major advance in defining the molecular composition of TJs occurred in 1993,
when the Tsukita group used an isolated junction-enriched fraction from chick liver as an
antigen to generate monoclonal antibodies. Prior to this, attempts to raise antibodies recog-
nizing the highly-conserved TJ structure in mammals were not successful. Both occludin
(Furuse et al., 1993) and the first set of claudins (Furuse et al., 1998a) were discovered.
Soon thereafter, a novel member of the immunoglobulin superfamily, termed the junctional
adhesion molecule (JAM), became the third type of transmembrane protein known to exist
in TJs (Martin-Padura et al., 1998).

A rapidly growing number of TJ constituents have since been identified, supporting the
concept that the TJ is an elaborate multifunctional protein complex. TJs contain upwards
of 40 different proteins, including products of multigene families, which are arranged with
characteristic adhesion complex architecture, consisting of a set of transmembrane proteins,
a large number of cytoplasmic adaptor proteins, and a group of miscellaneous proteins that
interact either directly or indirectly with the cytoplasmic plaque.

Occludin

Occludin is a 60-kDa tetraspan protein that orients two extracellular domain loops, charac-
teristically rich in glycine and tyrosine residues, between cytosolic amino (N)- and carboxy
(C)-terminal domains (Figure 2.2). Human occludin is the product of a single gene located
on chromosome band 5q13.1 (Saitou et al., 1997). Occludin mRNA has been shown to
be highly expressed in the testis, kidney, liver, lung, and brain — all tissues that bear
well-developed TJs (Saitou et al., 1997). Splice variants of occludin have been identified in
human colonic epithelial cells (Mankertz et al., 2002), Madin—-Darby canine kidney (MDCK)
cells (Muresan et al., 2000), and in many mammalian tissues including the human bronchial
epithelium (transmembrane domain 4-deficient isoform (TM4-)) (Ghassemifar et al., 2002).
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Figure 2.2 Epithelial transmembrane cell-cell and cell-substratum adhesion proteins. Tight junction:
occludin, claudin-1, and junction adhesion molecule (JAM)-A. Occludin contains a first extracellular
loop that is characteristically rich in tyrosine and glycine residues and a C-terminal PDZ domain. In
contrast, the amino acid composition of the two extracellular loops of claudin varies significantly
among different claudins. Claudins (except for claudin-12) contain a C-terminal PDZ motif (conserved
YV sequence). JAM-A spans the plasma membrane once and has two extracellular Ig type domains (V),
of which the first loop is required for homotypic binding between cells. Adherens junction: epithelial
(E)-cadherin is a classical type I cadherin containing five cadherin repeats (Cd) of approximately
110 amino acids separated by four calcium binding sites. The N-terminus contains the conserved
HAV motif required for homophilic binding. Desmosomal cadherens: desmocollin-1 and desmoglein-1.
Desmocollin-1 is a classical type I cadherin that participates in homodimeric and homotypic binding.
Its short conserved C-terminus interacts with intermediate filaments. Demoglein-1 differs from
desmocollin-1 in that it contains a short propeptide and only four Cd repeats. Furthermore, its
intracellular domain contains five, 28-30 amino acid-long repeat sequences (desmoglein repeats) (D)
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Splice variants have been suggested to differentially affect TJ adhesion. In epithelial cells,
occludin undergoes various post-translational modifications, including targeted phosphory-
lation (Stuart and Nigam, 1995), which is thought to affect occludin assembly at the TJ.
Occludin is a target substrate for multiple kinases, including non-receptor tyrosine kinases
Src and Yes (Chen et al., 2002; Kale et al., 2003), and serine/threonine kinases, such as
casein kinase (CK)2 (Smales et al., 2003) and protein kinase C (PKC) (Andreeva et al.,
2001).

Approximately half of the 522 amino acid residues of occludin are contained within its
long cytoplasmic C-terminal tail (Ando-Akatsuka et al., 1996). The last 150 amino acids
of this tail interact directly with F-actin (Wittchen er al., 1999). This property is unique to
occludin, and not shared by other TJ integral proteins, which require protein adaptors. The
cytoplasmic tail also interacts with a large number of proteins at the TJ plaque (Nusrat et al.,
2000). These include scaffolding proteins such as cingulin (Citi et al., 1988) and zonula
occludens (ZO)-1 (Fanning et al., 1998), ZO-2 (Itoh et al., 1999a), and ZO-3 (Wittchen
et al., 2000), and the membrane trafficking protein VAMP (vesicle-associated membrane
protein, or synaptobrevin)-associated protein of 33kDa (VAP33) (Lapierre et al., 1999).
Z0 belongs to a family of multidomain scaffolding proteins known as membrane-associated
guanylate kinase (MAGUK) homologues, all of which contain several binding domains
(e.g. src homology (SH)3 and post-synaptic density protein-Drosophila disc large tumour
suppressor-ZO-1 (PDZ) (Ranganathan and Ross, 1997; Lockless and Ranganathan, 1999))
and an enzymatically inactive guanylate kinase (GK) domain. The recently solved crystal
structure of the occludin-ZO-1 binding site (Li ef al., 2005) may provide additional insights
into this highly-conserved interaction.

Initial experimental data suggested that occludin might be the principal protein required to
maintain TJ structure and adhesive function (Furuse et al., 1996). However, examination of
epithelia in mice deficient in occludin did not reveal obvious differences in epithelial barrier
function (Saitou et al., 2000). Epithelial claudins, rather, are now considered the essential
determinants of TJ structure and function. In retrospect, since occludin is a single gene
product that lacks an extracellular charge, it seems unlikely that it could produce the kind
of functional variety seen in TJs, including tissue-specific resistances and unique paracel-
lular charge-specificities. On the other hand, occludin-deficient mice do display a complex
phenotype that includes chronic inflammation and hyperplasia of the gastric epithelium,
calcification in the brain, testicular atrophy, loss of cytoplasmic granules in striated duct
cells of the salivary gland, and thinning of compact bone. Furthermore, occludin-deficient
male mice are infertile (Saitou ez al., 2000). This diverse phenotype may ultimately reflect
complex occludin-mediated cell signalling, with each finding dependent on a specific cadre
of plaque proteins. As of yet, occludin deficiency has not been associated with a phenotype
specific to the lungs or to the pulmonary epithelium.

Figure 2.2 (Continued) The C-terminus expresses the adhesion motif, R/YAL. Integrins a3B1 and
abPB4: a3B1 contains an a3 chain proteolytically cleaved into a heavy and a light chain, which
are disulphide-bonded (S-S). a3B1 has complex binding specificities to fibronectin, collagen, and
laminin-5. a6B4 is the primary integrin constituent of hemidesmosomes. Unique among integrin
[ chains, B4 contains a large 118 kDa cytoplasmic domain with four fibronectin type III repeats (FnIII).
This cytoplasmic tail interacts with intermediate filaments, rather than with actin, as seen with other
integrins. N-Glycosylation sites (grey circles), amine terminus (N), carboxyl terminus (COOH)
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Claudins

In 1998, the first claudins, claudin-1 and -2, were co-purified with occludin (Furuse
et al., 1998a). Database searching, and both ¢cDNA and genomic cloning, have since
expanded the claudin multigene family to include at least 24 members in humans and
mice. Claudins are believed to be the essential determinants of both TJ structure and func-
tion. Claudin incorporates into TJ fibrils when expressed in MDCK cells, and forms TJ
strands de novo when expressed in L fibroblasts lacking endogenous claudins (Furuse ef al.,
1998b). Furthermore, L-fibroblast claudin transfectants exhibit increased adhesion activity
and form ultrastructural TJ ‘kissing points’ between adjacent cells (Kubota ef al., 1999).
L-fibroblasts expressing singlets or pairs of claudin-1, -2, and -3 produce TJ strands through
homomeric and heteromeric claudin binding within individual strands, and homotypic and
heterotypic binding between opposing strands (except between claudin-1 and -2) (Furuse
et al., 1999).

Claudin genes encode 20-27kDa proteins, none of which show sequence homology
to occludin (Furuse er al., 1998a) (Figure 2.2). Like occludin, however, claudins are
predicted to be tetraspan proteins with cytoplasmic N- and C-terminal domains (Furuse
et al., 1998a). Claudins are recognized by a highly-conserved amino acid motif, GLWxxC-C,
contained within the first extracellular loop (Van Itallie and Anderson, 2004). This
first extracellular loop influences paracellular charge selectivity and resistance (Colegio
et al., 2003). Diversity in this loop, outside of the conserved motif, may explain
how claudins, or why a particular claudin repertoire, might determine paracellular ion
specificity.

Despite having strikingly divergent C-terminal cytoplasmic domains, claudins all end
(with the exception of claudin-12) in a PDZ-binding motif (most contain the conserved
YV sequence). Claudins interact with the PDZ domains of a variety of proteins, including
7Z0-1, -2, and -3 (Itoh et al., 1999), the multi-PDZ domain protein (MUPP)-1 (Hamazaki
et al., 2002), and the Protein Associated with Lin Seven (PALS)-1-associated TJ protein
(PATJ) (Roh et al., 2002). ZO-1 and ZO-2 can independently determine whether and where
claudins are polymerized (Umeda et al., 2006). PALS-1 and PATJ are thought to regulate
apical-basal polarity in mammalian epithelial cells (Straight et al., 2004; Shin et al., 2005).
Polarity is a fundamentally important feature of epithelial cells and epithelial cell function.
Despite insights provided by predicted structure and known C-terminal binding partners,
the functions associated with this domain remain unclear. L-fibroblasts expressing claudin
mutants lacking almost all of the C-terminal cytoplasmic domain still form TJ strands
(Furuse et al., 1999). Claudins lacking their last three amino acids, or those in which the
PDZ-binding sites are blocked by epitope tagging, still localize to cell-cell contacts and
form freeze-fracture strands (Furuse et al., 1998b). The strands formed by PDZ-blocked
claudins, however, are poorly organized and not restricted to the apical border (McCarthy
et al., 2000).

In the pulmonary epithelium, claudin expression varies with specific cell type and differ-
entiation state, with changes in transepithelial permeability, and in response to transcription
factors linked to lung branching morphogenesis. Transdifferentiation of rat alveolar epithelial
type II cells to cells with a type I-like phenotype after prolonged culture or exposure to
epidermal growth factor (EGF) is associated with increases in claudin-4 and -7 and decreases
in claudin-3 and -5 expression (Chen et al., 2005). In adult rat lung sections, claudin-
3, -4, and -5 are expressed in alveolar type II epithelial cells and claudin-5 is expressed
throughout the alveolus (Wang et al., 2003). Induced increases in rat type II cell permeability
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increases both claudin-3 and -5 expression (Wang et al., 2003). Claudin-1, -3, and -5 are
expressed in normal airway of human lungs (Coyne et al., 2003). Heterologous expression of
claudin-1 and -3 in IB3-1 human airway epithelial cells decreases solute permeability, while
claudin-5 expression increases permeability (Coyne et al., 2003). Sphingosine 1-phosphate
(S1P), a lipid mediator that induces pulmonary edema formation when administered through
the airway, acts additively with tumour necrosis factor (TNF) to induce a rapid loss of
claudin-18. These changes correlate with increased edema formation in a mouse model
of acute lung injury (Gon et al., 2005). Claudin-18 is also uniquely down-regulated in
T/ebp/Nkx2.1-deficient mouse embryo lungs (Niimi ef al., 2001). The T/ebp/Nkx2.1 tran-
scription factor is expressed in all pulmonary epithelial cells during early development and
is considered an important regulator of pulmonary branching morphogenesis (Yuan et al.,
2000).

Wide-ranging in vivo functions of claudins may be deduced from both human heredi-
tary disorders caused by mutations of claudin genes and knockout mouse phenotypes. For
example, mutation of a gene encoding claudin-14, which is expressed in the outer hair cells
of the cochlea, is associated with profound autosomal recessive deafness (Wilcox et al.,
2001). Claudin-16 (also known as paracellin-1) mutations cause familial hypomagnesemia
with hypercalciuria and nephrocalcinosis (Simon er al., 1999). Consistent with this, the
first extracellular loop of claudin-16 carries a characteristically negative charge which could
determine divalent cation selectivity in the loop of Henle. Claudin-19-deficient mice walk
awkwardly on smooth surfaces, a phenotype that has been attributed to a lack of TJs in
myelin sheaths and subsequent defects in saltatory conduction in the peripheral nervous
system (Miyamoto et al., 2005). Specific pulmonary diseases directly associated with claudin
deficiency or specific claudin mutations have not yet been demonstrated. However, consid-
ering the diversity of the claudin family and heterogeneity of its attributed functions, one
would expect that diseases involving, for example, pulmonary epithelial TJ regulation of
paracellular permeability, sodium vectorial transport (Shlyonsky er al., 2005), and ion selec-
tivity (e.g. acute lung injury, bronchitis, asthma, cystic fibrosis), epithelial cell differentiation
(e.g. bronchogenic carcinoma), or aberrant lung development might reflect alterations in
normal claudin function.

Junctional adhesion molecule

JAM-1 was the first protein belonging to the Ig superfamily identified at TJs (Martin-Padura
et al., 1998). JAM-1 is now called JAM-A according to revised nomenclature (Muller,
2003)." JAM-A is a 43kDa glycosylated protein characterized by two extracellular
V-type Ig domains, a single transmembrane domain, and a short intracellular C-terminal
domain containing a PDZ binding motif (Figure 2.2). JAM-A localizes to epithelial TJ
strand-containing regions (Itoh ef al., 2001) and forms homophilic contacts between V-type
Ig domains of opposing JAMs. Although the subcellular localization of JAM-B and JAM-C
has not been addressed by ultrastructural analysis, JAM-C has been shown to co-distribute

! The new nomenclature for JAMs applies identical names for mouse and human analogues. JAM-A corresponds
to JAM, JAM-1, Fl1-receptor or the 106 antigen. JAM-B corresponds to mouse JAM-3 and human JAM-2 and
vascular endothelial (VE)-JAM. JAM-C corresponds to mouse JAM-2 and to human JAM-3. Two JAM-like
molecules JAM-4 and JAM-like (JAML) are more closely related to the coxsackie and adenovirus receptor (CAR)
and the endothelial cell-selective adhesion molecule (ESAM).
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with ZO-1 when expressed in polarized epithelial cells, suggesting that it, like JAM-A, is
associated with epithelial TJs (Aurrand-Lions er al., 2001). In addition, human JAM-A is
expressed in platelets and on circulating leukocytes including monocytes, neutrophils, and
B- and T-lymphocytes (Williams ef al., 1999); JAM-A facilitates migration of monocytes
through the paracellular pathway (Martin-Padura er al., 1998; Del Maschio et al., 1999).
JAM-B (also known as VE-JAM, mouse JAM-3, or human JAM-2) and JAM-C (also known
as mouse JAM-2 or human JAM-3) are expressed in the endothelium of several different
organs (Aurrand-Lions et al., 2001). Like JAM-A, JAM-C is expressed in platelets and
by various human leukocyte subsets (Liang et al., 2002; Santoso et al., 2002). In human
airway epithelium, JAM is expressed (Liu et al., 2000), but its specific function has yet to
be determined.

Four additional Ig-superfamily members have been identified at TJs: JAM-4 (Hirabayashi
et al., 2003), the coxsackie and adenovirus receptor (CAR) (Cohen et al., 2001), and CAR-
like membrane protein (CLMP) (Raschperger er al., 2004) in epithelial cells, and endothe-
lial cell-selective adhesion molecule (ESAM) (Nasdala er al., 2002) in endothelial cells.
JAM-4 recruits ZO-1 and occludin to cell-cell contacts and mediates calcium-independent
homophilic adhesion (Hirabayashi et al., 2003). CAR recruits ZO-1 to the cell membrane
and, when overexpressed in epithelial cells, increases transepithelial resistance (Cohen et al.,
2001). CLMP co-localizes with ZO-1 and occludin at TJs and also appears to regulate
transepithelial resistance (Raschperger et al., 2004). While JAM-4, CAR, and CLMP are
similar in structure to JAM-A, -B, and -C (contain two Ig-like domains, a single trans-
membrane domain, and C-terminal PDZ binding domain), they do contain distinguishing
elements: the cytoplasmic tails are longer (105-118 residues in JAM-4, CAR, and CLMP
vs. 40-50 residues in JAM-A, -B, and -C) and contain different subclasses of PDZ domain
(PDZI1 in JAM-4 and CAR vs. PDZ 2 in JAM-A, -B, and —-C). JAM-4 mRNA is weakly
expressed in rat lung (Hirabayashi et al., 2003). CAR is identified by immunocytochemistry
on the basolateral sides of non-permeabilized human airway epithelial cells (Walters et al.,
1999). CLMP mRNA is expressed in human lung (Raschperger et al., 2004).

Though JAM-A has been the most thoroughly evaluated of the TJ-associated Ig proteins,
its function at TJs remains unclear. As opposed to claudins (Furuse er al., 1998b), JAM-A
does not induce TJ strands when expressed in fibroblasts (Itoh ez al., 2001). JAM-A appears,
nevertheless, to be linked to claudin-1 by ZO-1 (Ebnet et al. 2000) and MUPP-1 (Hamazaki
et al., 2002) through PDZ domain interactions. Partitioning-defective protein (PAR)-3, a
regulator of cell polarity, binds to JAM-A through its PDZ domain (Ebnet et al., 2003).
Thus, it appears that JAM-A is tethered to claudins by protein adaptors and recruits PAR-3
to the TJ (Mizuno et al., 2003). PAR-3 is associated with atypical PKC and PAR-6 to form a
complex (PAR-3/aPKC/PAR-6) that has been shown to facilitate TJ formation and establish
cell polarity in mammalian epithelial cells (Ohno, 2001). Other cytoplasmic proteins bound
to JAM-A include calcium/calmodulin-dependent serine protein kinase (CASK) (Martinez-
Estrada et al., 2001) and cingulin (Bazzoni et al., 2000), which respectively, are suggested
to serve signalling and tethering functions.

2.2.2 Adherens junctions

Farquhar and Palade described the AJ in epithelial cells as an electron-dense narrowing
of the intercellular space to 25-35nm located just below the TJ (Farquhar and Palade,
1963) (Figure 2.1). AJs hold epithelial cells together by tight calcium-dependent links. Three
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principal proteins have been identified in AJs: cadherins, 3-catenin, and a-catenin. Cadherins
constitute a major class of adhesion molecules that supports homophilic cell-cell adhesion
that is critical to the development and maintenance of all solid tissues (Takeichi, 1991). The
first cadherin to be identified was epithelial (E)-cadherin (cadherin-1), a prototypical classical
type I cadherin (Takeichi, 1995)*3 (Figure 2.2). Classical cadherin extracellular domains
contain five tandem repeats of approximately 110 amino acids (cadherin domains) separated
by four calcium-binding pockets. The N-terminus contains a conserved HAV motif required
for homotypic binding between cadherins on neighbouring cells. The role of the remaining
four tandem cadherin repeats in adhesive binding is not known. The cytoplasmic domains
are 150-160 amino acids in length and mediate interactions with the actin cytoskeleton
through linker proteins known as catenins (Takeichi, 1995). E-cadherin associates with the
armadillo protein family member B-catenin, which then binds to a-catenin to form a roughly
stoichiometric complex (Ozawa and Kemler, 1992).

Als have long been believed to link actin cytoskeleton networks across cell—cell junctions
through direct interactions between E-cadherin, 3-catenin, a-catenin, and actin. However,
existence of a quaternary complex containing these four species has never been demonstrated.
Recent data suggest that a-catenin does not simultaneously bind to both actin and the
E-cadherin—3-catenin complex. Furthermore, some evidence suggest that a-catenin may act
as a molecular switch to actively regulate actin assembly at sites of E-cadherin-mediated
cell—cell adhesion (Drees et al., 2005), thereby introducing more complexity to its known
AlJ protein linker function.

Pulmonary epithelial cells express E- and P-cadherin. In mouse embryonic lungs,
E- and P-cadherin are expressed in all pulmonary epithelial cells during early development.
P-cadherin gradually disappears, first from epithelium lining larger airway, then eventually
from the remainder of lung (Hirai er al., 1989). Normal rat lung shows staining of E-cadherin
predominantly in alveolar type II cells (Kasper ef al., 1995). The human bronchial epithelial
cell line, I6HBE140(-), expresses E- and P-cadherin, but not N-cadherin. Increasing conflu-
ence of these cells in culture is associated with increased E-cadherin and decreased P-cadherin
expression (West et al., 2002). In normal human bronchial epithelium, columnar cells express
moderate levels of E-cadherin, while basal cells express high levels of P-cadherin (Smythe
et al., 1999).

E-cadherin-B-catenin interactions have been suggested to be important in a variety of
functions that may be relevant to pulmonary disease, including regulatory roles in protease-
activated receptor (PAR)-2-mediated increase in airway epithelial permeability (Winter et al.,
20006), epithelial proliferation and lung extracellular matrix (ECM) remodelling and repair in
response to lung injury (Douglas er al., 2006), and as markers of and possibly mediators of
lung cancer progression, state of differentiation, and metastatic potential (Awaya et al., 2005).
[3-catenin is also a component of the Wnt signalling pathway and serves as a transcriptional
co-activator with T-cell factor/lymphocyte enhancer factor (Tcf/Lef) (Nelson and Nusse,
2004). Tcf/Lef has been implicated in the development of cancers, including lung cancer
(Ohira et al., 2003).

2 E-cadhein is also known as uvomorulin, Arc-1, liver cell adhesion molecule (L-CAM), and cell-CAM 120/80.

3 Other classical type I cadherins include the desmosomal cadherins (desmoglein and desmocollin), neural
(N)-cadherin (cadherin-2), placental (P)-cadherin (cadherin-3), and retinal (R)-cadherin (cadherin-4). Each assigned
letter indicates the tissues in which the cadherin was originally identified.
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2.2.3 Desmosomes

The desmosome, sometimes referred to as a ‘spot-weld’ between cells, is the third member
of the tripartite junctional complex described by Farquhar and Palade (Farquhar and Palade,
1963) (Figure 2.1). Ultrastructurally, desmosomes measure between 0.1 and 1.5pum in
diameter and are delineated by an electron-dense plaque and electron-dense filaments that
span the intercellular space (Cowin, 1985). In contrast to AJs, which are linked to actin
filaments, desmosomes are linked to intermediate filaments (IFs). IFs are composed of
tissue-specific complements of desmin, vimentin, and/or cytokeratins (Yamada er al., 1996).
Cytokeratin expression is often used as a marker of epithelial cell morphology. In early states
of human lung development, ‘simple’ cytokeratins (cytokeratin-7, -8, -18, -19) are detected
in bronchial epithelial cells. At later stages, other cytokeratin isoforms (-13 and -14) can
be detected, with differential expression in columnar vs. basal cells (Broers et al., 1989).
Cytokeratin-19 expression (suggested to influence type II alveolar phenotype) in primary rat
alveolar type II cells varies with factors influencing cell shape and intercellular contacts,
e.g. lower cell seeding density and low calcium levels (decreases desmosome formation)
(Paine et al., 1995). Vimentin is expressed in fetal bronchial epithelium, but decreases to a
few scattered bronchial cells at birth and into adulthood. Desmin filaments are present in
smooth muscle cells of the lung (Broers er al., 1989). IFs emanate from the desmosome
plaques into the adjacent cytoplasm, looping repeatedly from the cytoplasm to the plaque
and then back into the cytoplasm (Franke ef al., 1983). In pseudostratified airway epithelium,
desmosomes are present along lateral aspects of columnar cells, particularly towards cell
apices, and at columnar-basal cell junctions.

The major constituents of desmosomes are membrane glycoproteins known as desmo-
somal cadherins. Desmosomal cadherins are single-pass, transmembrane-spanning proteins
containing conserved regions of homology on the extracellular domain required for calcium
binding and adhesion, and on the cytoplasmic domain required for binding to cytoplasmic
adapter proteins. Two subclasses of desmosomal cadherins are known: the desmogleins (Dsg)
and desmocollins (Dsc) (Figure 2.2). These proteins are encoded by individual genes that are
clustered on human chromosome 18q12.1 (Hunt ez al., 1999). Three Dsgs (Dsg-1, -2, and -3)
and three Dscs (Dsc-1, -2, and -3) have been identified. These heterogeneous isoforms are
expressed in tissue-, cell stratification-, and differentiation-specific patterns (Koch et al.,
1992). The extracellular N-terminus of Dsg-1 has a short 29 amino acid propeptide and only
four tandem repeat domains, compared to the longer propeptide and five cadherin repeats
seen in other classical cadherins. Also, the adhesion motif, R/YAL, required for homophilic
adhesion, differs from the classical cadherin HAV sequence (Kowalczyk et al., 1994).

Desmosomal cadherins are the pathophysiologic targets of autoimmune or toxin-mediated
disruption in the human blistering skin diseases, pemphigus and bullous impetigo (including
its generalized form, staphylococcal scalded skin syndrome) (Payne et al., 2004). Mutations
in the human Dsg-1 gene have been linked to the rare autosomal dominant disorder striate
palmoplantar keratoderma (SPPK), a disease characterized by marked hyperkeratotic bands
on the palms and soles (Hunt et al., 2001). In the lung, immunohistochemical analysis
shows variable expression of Dsg-3 in normal pulmonary epithelium, and in lung cancers
(Boelens et al., 2007). Dsg-3 stains weakly at apical borders of basal bronchial epithelial
cells and robustly at squamous cell carcinoma cell—cell junctions. Dsg-3 is not detected
in lung adenocarcinomas. Negative Dsg-3 staining in lung cancer has been shown to be
associated with decreased 5-year survival in non-small cell lung cancer, and to indicate poor
prognosis in atypical pulmonary carcinoid tumours (Fukuoka et al., 2007).
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The cytoplasmic plaque of desmosomes is complex and exhibits tissue-specific differences
in both structure and composition. Members of two protein families populate the desmosomal
plaque: armadillo proteins plakoglobin (PG) and the plakophilins (PPs), and plakin proteins
desmoplakin (DP), envoplakin, periplakin, and plectin. All desmosomal plaque proteins are
defined by structural motifs that participate in the coupling of desmosomal plaques to IFs
(Troyanovsky and Leube, 1998). PG (also called y-catenin) binds tightly to the cytoplasmic
domains of Dsg and Dsc through highly-conserved sequence repeats known as Arm repeats
(Troyanovsky et al., 1994a; Roh and Stanley 1995). Desmosomal cadherins lacking the
PG binding site are unable to anchor IFs (Troyanovsky et al., 1994b). PG is not restricted
to desmosomes — it also associates with AJ cadherins (Peifer et al., 1992), reflecting its
close homology to (3-catenin. In the lung, PG is highly expressed in normal bronchioles at
apical and lateral borders of basal epithelial cells and in glandular epithelial cells (Boelens
et al., 2007). Interestingly, PG has been shown, as has (3-catenin, to be a component in Wnt
signalling, and thus, has been suggested to have a role in cancer development. In non-small
cell lung cancer cell lines, PG is weakly expressed, or absent. However, when PG expression
is increased by treatment with a histone deacetylase inhibitor, Tcf/Lef transcription factor
activity is reduced, which correlates with inhibition of cell growth and decreased malignant
potential (Winn et al., 2002).

The PPs are desmosomal plaque proteins that localize to both the desmosome and to
the nucleus. PP-1, originally named ‘band 6 protein’, was isolated as an accessory protein
bound to keratin in stratified and complex epithelia (Heid ef al., 1994). Two additional splice
variants have been cloned, PP-2, and PP-3 (Bonne et al., 1999; Mertens et al., 1999). PPs
are composed of an N-terminal head domain and a C-terminal domain containing 9 Arm
repeats (Choi and Weis, 2005). The head domains mediate interactions with desmosomal
proteins, including DP, PG, Dsg, and Dsc, and are sufficient to direct PPs to cell junctions
(Kowalczyk et al., 1999).

The plakins are a family of large cytolinker proteins (200-700 kDa) that are important for
coupling different adhesive junctions (desmosomes, hemidesmosomes, and focal adhesion
contacts) to the cytoskeleton. Seven plakin family members have been identified based on
domain structure. Four of these, DP, plectin, envoplakin, and periplakin, have been localized
to desmosomes (Jefferson er al., 2004).

DP is the most abundant of desmosomal plaque proteins. It is expressed in two splice
variant isoforms (DP-1 and -2) and is required both for assembly of desmosomes and for
their association with IFs. The N-terminal plakin domain peptide (DP-NTP) targets DP to
desmosomal plaques (Bornslaeger et al., 1996). The C-terminal domain of DP contains three
plakin repeat domain (PRDs). DP PRD crystal structure shows that each repeat contains 4.5
copies of a 38 amino acid motif that forms a globular structure containing a conserved basic
groove that may represent an IF binding site (Choi et al., 2002). Combined PRDs support a
strong bond with vimentin (individual PRDs weakly bind to vimentin). Plectin, envoplakin,
and periplakin do not appear to play major roles in desmosome function.

In normal lung, DP stains weakly at the basolateral borders of suprabasal cells and at the
apical ends of ciliated cells. DP is highly expressed in bronchial glands (Young et al., 2002).
DP expression has been associated with pulmonary epithelial transdifferentiation and has
been shown to vary with lung cancer cell type (Boelens et al., 2007). DP expression at cell—
cell junctions is high in adenocarcinomas, and particularly high in squamous cell carcinomas.
Furthermore, microarray analyses also reveal significant differential gene expression of DPs
(as well as cytokeratin-18) between different lung cancer types (Young et al., 2002).
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2.3 Cell-substratum adhesion

2.3.1 Integrins

The principal adhesion molecules involved in epithelial cell binding to the basement
membrane are members of the integrin family. In humans, there are 18a and 8 integrin
subunits that noncovalently associate to form 24 heterodimeric pairs. The crystal structure
for the extracellular domains of an intact integrin (Xiong er al., 2002) demonstrates the
presence of a cation-binding site in the exposed [3 subunit face that coordinates all but one
of the free sites on bound cation, leaving a free coordination site to interact with negatively
charged residues. Recognition sequences on integrin ligands contain a corresponding nega-
tively charged amino acid, e.g. aspartic acid in the arginine-glycine-aspartic acid (RGD)
sequence. RGD is recognized by a substantial subset of integrins. The closely-apposed o
subunit helps determine ligand binding specificity; for example, a subset of a subunits
contains an inserted (I) domain that extends from the o subunit face to form cooperative
o/ ligand binding sites (Lee et al., 1995).

At least seven different integrins (a2p1, a3B1, a6B4, a9B1, avB5, avpo6, and avpl)
are expressed in airway epithelial cells of healthy adults (Damjanovich ef al., 1992). These
integrins, and some of their known ligands, are listed in Table 2.1. Of these, a331 and o634

Table 2.1 Integrins expressed on airway epithelial cells. VCAM, vascular cell adhesion
molecule; L1-CAM, L1 cell adhesion molecule; vWF, von Willebrand factor; ADAMs, a dis-
integrin and metalloprotease protein; LAP, latency-associated peptide; TGF, transforming
growth factor

Integrin Known ligand(s) Distribution
a2B1 Collagen I (IV), Tenascin C, Diffusely expressed, principally on
Echovirus basal cells

a3p1 Laminin-5, -10, -11 Diffusely expressed with highest level
expression on basal surface of basal
cells

a6B4 Laminin-5, -10, -11 Restricted to basal surface of basal
cells

a9B1 Tenascin C, Osteopontin, VCAM-1,  Diffusely expressed, principally on

L1-CAM, vWF, Factor XIII, Tissue  basal cells
Transglutaminase, Fibronectin EIITA

Domain, Angiostatin, ADAMs

1,2,3,9,15 (at least)

a5p1 Fibronectin Diffusely expressed, but only after
injury
avs Vitronectin, Adenovirus, Ostepontin  Diffusely expressed, principally on
basal cells
av6 LAP of TGF-1 and TGF-$3, Diffusely expressed, principally on
Fibronectin, Tenascin C, basal cells

Osteopontin, Vitronectin, Foot and
Mouth Disease Virus

avp8 LAP of TGF-$1 and TGF-33, Diffusely expressed on basal cells
Vitronectin
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are the only receptors for matrix proteins known to be present in normal epithelial basement
membranes (laminin-5, -10, and -11) (Carter et al., 1991; Eble et al., 1998) (Figure 2.2).
a3B1 is concentrated at epithelial cell bases and also (with lower expression levels) at lateral
and apical surfaces (unpublished observations). Mice lacking the a3 subunit have defects
in branching morphogenesis in the lung and kidney (Kreidberg et al., 1996). Furthermore,
these animals have dramatic defects in the structural organization of epithelial basement
membranes (DiPersio e al., 1997). These observations led to identification of a role for
a3B1 in organizing basement membranes into ordered structures. Studies with isolated
cells from a3-deficient mice demonstrated an important role for a3p1 in epithelial cell
migration (Hodivala-Dilke et al., 1998). a6p34 is restricted to the cell-substratum surface
of basal cells, where it serves as a major component of hemidesmosomes (Stepp et al.,
1990) (discussed below). 21 is thought to interact with collagen IV (a common basement
membrane constituent), but its preferred ligands are other collagen isoforms, e.g. collagen
I (Kern and Marcantonio, 1998). Furthermore, diffuse surface expression of a2 1 suggests
other functions, and possibly other biologically important ligands. While o231 and o331
have been suggested to play roles in homotypic cell-cell interactions in epithelia (Carter
et al., 1990), this has not been demonstrated in experimental models (Weitzman et al.,
1995). Furthermore, mice lacking either a3 or a2 have not been described to have defects
in epithelial cell—cell interactions (Kreidberg ef al., 1996; Holtkotter ef al., 2002).

The other integrins that are expressed on basal airway epithelial cells, a531 (the original
‘fibronectin receptor’), a9B1, avlS, avB6, and avB8, recognize a wide array of ligands
that are not components of healthy epithelial basement membranes. Many of the ligands
recognized by these integrins (e.g., fibronectin, tenascin C, and osteopontin) are among the
most highly-induced proteins at sites of epithelial injury (Young ef al., 1994; Weinacker
et al., 1995). Vitronectin, the best characterized ligand for av5, is principally a plasma
protein and therefore, is also likely to be enriched in the airway after injury or other increases
in vascular permeability. In addition, a5(31, which is generally not present in healthy adult
airway epithelium in vivo, is rapidly induced by epithelial injury (Pilewski et al., 1997)
(Figure 2.3). Thus, these integrins appear to be good candidates to serve as sensors that
allow epithelial cells to rapidly detect and respond to ECM changes that accompany lung
and airway inflammation and injury.

Integrins as regulators of cell proliferation

Integrins play critical roles in regulating cell proliferation (Guadagno et al., 1993). Most
adherent cells are incapable of proliferating without signals from the ECM that are trans-
mitted through integrins. Integrins are frequently enriched within membrane microdomains
containing other cell surface receptors (e.g., growth factor receptors) that contribute to
cell proliferation. These microdomains include structures called focal adhesions (FAs)
(Figure 2.1), regions of close apposition to the underlying matrix organized around links
between integrins and the ends of actin filaments. FAs contain large numbers of adaptor
proteins, signalling kinases, and other signalling pathway components. Although signals
initiated by integrins have been shown to enhance cell proliferation in vitro without addition
of exogenous, soluble growth factors, it is likely that these results are explained, in part,
by autologous production of growth factors by the cultured cells. Ligation of integrins can
activate several kinases known to be activated by growth factor receptors, including Src, Ras
(Schlaepfer ef al., 1994), and mitogen-activated protein (MAP) kinases (Chen e al., 1994).
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Figure 2.3 Changes in the level and distribution of airway epithelial integrin expression in response
to injury. Depicted are normal, uninjured epithelium (Normal Epithelium), and a theoretical site of
denudation (Epithelial Wound). Differential integrin expression is seen between (1) normal columnar
and (2) basal cells, and (3) epithelial cells at the wound site associated with a provisional extracellular
matrix. a6B4 is restricted to the cell-substratum surface of basal cells, where it serves as a major
component of hemidesmosomes. a3B1 is concentrated at the basal surface, but is also expressed
at lower levels around the lateral and apical surfaces of cells throughout the epithelium. a5p1 is
expressed only at the injury site. Expression of 281, a3B1, a6B4, avp5, and avP6 are dramatically
upregulated along the injured surface

A specific subset of integrins (including a1B1, «5B1, and avB3) can induce, or enhance,
cell proliferation through interaction of the a subunit cytoplasmic domain with caveolin-1, a
membrane protein that plays a role in organizing membrane microdomains. In this pathway,
caveolin-1 recruits the Src family kinases, Yes or Fyn, which recruit the adaptor protein
Shc, that in turn leads to recruitment and activation of the well-characterized Ras pathway
(Wary et al., 1998).
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Transgenic mice expressing 1, alone or in combination with subunits a2 or a5, in
suprabasal keratinocytes exhibit epidermal hyper-proliferation, a prominent feature of the
human skin disease psoriasis (Carroll er al., 1995). However, several studies have also
suggested that overexpression of a5B1 can inhibit cell proliferation (Giancotti and Ruoslahti,
1990; Varner et al., 1995). One mechanism by which such inhibition occurs has been
demonstrated in studies utilizing the colon carcinoma cell line HT-29, a cell line that
normally does not express a5B1. Heterologous expression of a5@31 in these cells dimin-
ished their proliferative capacity, an effect that appeared to involve cellular quiescence
induced by the growth arrest specific gene gas-1 (Varner et al., 1995). Interestingly, this
effect was a consequence of expression of unligated integrin, since plating of transfected
cells on dishes coated with the a5@1 ligand fibronectin reversed gas-I induction and
growth inhibition. If a similar pathway is operative in normal epithelial cells, the combined
effects of the growth-promoting role of ligated integrin and the growth inhibitory role of
unligated integrin would provide an elegant mechanism by which cells in normal adult
epithelia (which would not be in contact with fibronectin) are kept out of the cell cycle,
while cells at sites of injury (where fibronectin in greatly enriched) can be stimulated to
proliferate.

Integrins as regulators of epithelial cell survival

Nontransformed epithelial cells cannot survive in the absence of anchorage to the ECM
and die by apoptosis soon after detachment, a process that has been termed anoikis (Frisch
and Francis, 1994). This process, like the withdrawal of growth and survival factors from
other primary cells, is mediated, at least in part, by activation of a cascade of caspase
proteases that lead to rapid and efficient cell death. Epithelial cells are thus primed to
activate a classical caspase-mediated execution program; ligated integrins appear to deacti-
vate this program. Anoikis likely plays the important role of preventing detached epithelial
cells in hollow organs such as the lung or gastrointestinal tract from reattaching at inap-
propriate sites. However, anoikis does not appear to be a universal feature of all epithelia.
For example, rather than die in this absence of input from integrins, keratinocytes termi-
nally differentiate and begin the process of keratinization (Watt, 2002). In the mammary
gland, where involution is a normal phenomenon that follows termination of breast-feeding,
apoptosis in the involuting gland is associated with degradation of the stromal matrix by
metalloproteinases, a process that presumably results in unligated integrins. Indeed, in this
system, apoptosis can be induced either by antibodies to B1 integrins or by overexpression
of the matrix-degrading protease stromelysin-1 in the absence of obvious cell detachment
(Boudreau ef al., 1995).

Role of integrins in epithelial cell polarity

In vivo, surface epithelial cells, including those lining the conducting airway and alveoli
of the lung, are polarized and establish specialized structures along their basal, lateral, and
apical surfaces. Establishment of appropriate epithelial polarity requires input from integrins
(Ojakian and Schwimmer, 1994). In most epithelia, normal polarity is principally dependent
on interactions between integrins and the basement membrane constituent laminin (Sorokin
et al., 1990). Furthermore, many of the normal differentiated functions of epithelial cells
cannot be induced in nonpolarized cultures (Streuli et al., 1991). Considerable insight into
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the mechanisms underlying establishment of polarity has come from studies of mammary
gland epithelial cells. In tissue culture, these cells can be induced to form polarized glandlike
structures with a central lumen by overlaying cultures with epithelial-derived basement
membrane proteins, or with purified laminin (Muschler et al., 1999). Only under these
circumstances will mammary epithelial cells fully differentiate in response to lactogenic
hormones. These responses to laminin are mediated by input from both o331 and w634, as
well as other nonintegrin receptors (Muschler et al., 1999).

Renal epithelial cells (MDCKSs) can also be induced to form polarized structures containing
an apical epithelium facing a lumen if they are plated in a three-dimensional culture environ-
ment. In this case, MDCK cells produce their own laminin and organize it into a basement
membrane along the basal surface utilizing a3 1. Studies utilizing inducible forms of the
small GTPase Racl have demonstrated a critical role for Racl-induced reorganization of the
actin cytoskeleton in establishing epithelial polarity (O’Brien et al., 2001). A similar role for
polarity in secretory cell differentiation has been demonstrated in serous cells derived from
airway submucosal glands, which require input from a (31-integrin and laminin to express
their differentiated secretory cell phenotype (Tournier et al., 1992).

Integrin-mediated activation of transforming growth factor (TGF)-f

As noted above, integrins can interact with a wide variety of extracellular ligands. Although
integrin ligation is usually thought of as a mechanism that induces signals in the integrin-
expressing cell, it has recently been recognized that integrins can also modify the conforma-
tion of extracellular ligands. One of the most dramatic examples of this is integrin-mediated
activation of TGF-B. TGF-f3 is secreted as a latent complex composed of the mature cytokine
and an N-terminal fragment of the same gene product assembled as a noncovalently-
associated double homodimer. In this form, TGF-f is unable to bind to its receptors and is
therefore considered latent. Most tissues, including the lung, contain large amounts of this
latent complex that is stored and chemically cross-linked to components of the ECM. Thus,
much of the regulation of the biological effects of TGF-3 involves extracellular activation
of these latent complexes. At least two integrins that are expressed on lung epithelial cells,
avpB6 (Munger et al., 1999) and avpB8 (Mu et al., 2002), bind to the latency associated
peptide of TGF-B1 and TGF-3 and can induce activation of latent complexes. In the case
of avp6, this pathway has been shown to be critically important in in vivo models of
pulmonary fibrosis (Munger et al., 1999) and acute lung injury (Pittet et al., 2001). Mice
deficient in the av36 integrin develop low-grade pulmonary inflammation and macrophage
activation, suggesting that this integrin plays a critical role in maintaining normal lung
homeostasis. Rescue experiments showed that limited transgenic expression of avf36 in a
subset of alveolar epithelial cells was sufficient to prevent pulmonary inflammation and
macrophage activation (Huang ez al., 1998). Lifelong absence of avf36 results in persistent
over-expression of matrix metalloproteinase (MMP)-12 in alveolar macrophages, and even-
tual development of age-related emphysema (Morris et al., 2003). This suggests that acquired
or inherited abnormalities in avf36, TGF-3, and other components of this signalling pathway
could contribute to the development of emphysema. av36 also appears to play a critical
role in maintaining the normally blunted inflammatory response in alveolar epithelial cells;
this process can be transiently overcome by ligation of toll-like receptors on macrophages
(e.g. in response to alveolar infection), a process that involves rapid down-regulation of
avp6 expression (Takabayshi et al., 2006). All of the effects described above appear to be
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regulated by av36 expressed on alveolar epithelial cells. The in vivo significance of avp36
and avp8 that is expressed on epithelial cells in the conducting airway is less clear. av[38
has been shown to play an important role in inhibiting the proliferation of cultured airway
epithelial cells, an effect that appears to be due to its ability to activate TGF-@ (Fjellbirkeland
et al., 2003).

Integrins in repair of wounded epithelia

Surface epithelia all have the capacity to repair areas of denudation (Chapter 4). This process
involves at least three functional changes in epithelial cells involved in repair: spreading,
migration, and proliferation. Each of these processes requires integrins. The effects of
wounding on local expression of integrins and their ligands have been most extensively
studied in squamous epithelia, such as the skin. Cutaneous wounds contain a provisional
matrix that is rich in the integrin ligands fibronectin, osteopontin, and tenascin. In response
to epithelial injury, there are dramatic changes in both the spatial distribution and level of
expression of epithelial integrins. Expression of a2B1, a3B1, a5p1, a6B4, avlS, and avp6
are dramatically upregulated along the injured surface (Larjava et al., 1993) (Figure 2.3).
Tightly-regulated spatial and temporal patterns of expression for each of these integrins
suggest that each might play a unique role in orchestrating normal healing. However, there
must also be substantial redundancy in this process, since inactivation of single integrins
(e.g., avB5 (Huang et al., 2000) or av36) or even two integrins simultaneously (e.g., avB5
and avp6; unpublished observations) does not lead to significant impairment in the rate or
quality of cutaneous wound healing.

The most careful study of the effects of airway epithelial wounding on integrin expression
was performed utilizing human bronchial grafts placed under the skin of severe combined
immune deficiency (SCID) mice (Pilewski et al., 1997). In this system, the pattern of
integrin expression seen in the absence of injury was quite similar to the pattern seen
in normal human airway. After injury, the most prominent changes were upregulation of
aS5B1, avBS, and avp6 expression along the wound edge. As in cutaneous wounds, o231
and a6-containing integrins were diffusely expressed on cells above the basal layer. The
relevance of these findings to in vivo injury in humans was confirmed by the observation
that integrin expression in airway from patients with cystic fibrosis was similar to that seen
in the injured xenografts (Pilewski et al., 1997).

In vitro studies have also identified a role of integrin-mediated TGF-3 activation in
sheet migration and closure of wounded airway epithelium. Both av36 and av38 can be
‘activated’ by mechanical scratch wounds of cultured airway epithelial cells and contribute
to activation of locally produced TGF-B1 (Neurohr et al., 2006). Under these condi-
tions, TGF-f inhibits the rate of sheet migration and wound closure independent of any
effects on cell proliferation. Interestingly, blockade of av38 enhances the rate of wound
closure under these conditions, whereas blockade of av6 has no effect. This appears to
be due to a TGF-B-independent role of av36 in accelerating the rate of epithelial sheet
migration.

Roles of integrins in epithelial neoplasia

Initial efforts to understand the roles that integrins might play in the development of epithe-
lial tumours involved descriptive immunohistochemistry. Descriptions of integrin staining
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in lung cancers, for example, have shown qualitatively similar integrin repertoires between
squamous, adeno-, and large cell carcinomas and normal bronchial epithelium, while bron-
chioloalveolar carcinoma (BAC) integrin expression paralleled that of the alveolar epithelium
(e.g. by its strong expression of alf1l and a3B1) (Koukoulis er al., 1997). However, it
soon became apparent that the changes in integrin protein expression in epithelial tumours
are complex and heterogeneous. As noted above, many primary epithelial cells undergo
apoptosis in response to loss of integrin ligation. However, in most epithelial cancers, loss
of integrin ligation does not induce apoptosis, suggesting that carcinomas do not require
input from integrins to survive. Similarly, carcinomas do not appear to require anchorage
(i.e., integrin dependence) for growth. By anchoring epithelial cells to the normal base-
ment membrane, integrins could impede tumour cell migration and subsequent invasion and
metastasis. It is not surprising, therefore, that a general decrease in integrin expression is
seen in many invasive carcinomas. However, since integrins can also enhance growth factor-
mediated proliferation, provide traction for cell migration through the ECM, and localize
matrix-degrading proteases to the leading edge of migrating cells (Brooks et al., 1996), it
is also not surprising that many epithelial tumours utilize integrins to enhance their growth
and/or invasion. In at least one case, the same integrin (w6B4) that restricts movement of
normal epithelial cells through hemidesmosome anchorage is utilized by malignant epithelial
cells to support migration and invasion (Chao ef al., 1996; Gambaletta et al., 2000). In this
case, a key step is the redistribution of a6p34 from hemidesmosomes to the leading edge, an
otherwise normal homeostatic mechanism that supports migration of epithelial cells at the
wound edges.

The integrin av36 also appears to modify malignant transformation and enhance the
growth and invasion of epithelial tumors (Xue et al., 2001). In this case, av36 affects both
functions through different mechanisms. In the early stages of malignant transformation the
cytoplasmic domain of the (36 subunit specifically supports tumour cell proliferation, both
in vivo and in vitro, and also induces expression of the metalloprotease MMP-9 (Thomas
et al., 2001), which enhances tumor cell invasion.

2.3.2 Hemidesmosomes

Hemidesmosomes are specialized junction structures that mediate epithelial cell-substratum
adhesion in stratified squamous, transitional, and pseudostratified epithelia. Hemidesmo-
somal ultrastructure reveals small electron-dense domains in the plasma membrane composed
of an inner and an outer plaque, and a sub-basal dense plate (Figure 2.1). The inner plaque
serves as an anchorage site for intracellular IFs. Hemidesmosomes are best described in
the skin, where they provide stable adhesion of the epidermis to the underlying dermis,
conferring resistance to mechanical stress (Borradori and Sonnenberg, 1999).

Although hemidesmosomes, like desmosomes, are linked to the IF system, they do not
contain desmosomal proteins such as PG, desmosomal cadherins Dsg and Dsc, plakophilins
(PPs), or the plakins DP, envoplakin, or periplakin. They do, however, contain integrin
a6B4, the type XVII collagen bullous pemphigoid antigen (BP)180, the tetraspanin, CD151,
and two plakin family members plectin and BP230.

Integrin o634 links hemidesmosomes to a major component of the basement membrane,
laminin-5 (also referred to as laminin-322), whereas plectin and BP230 link hemidesmosomes
to IFs. Mice homozygous for null mutations of either the a6 or the 34 subunit die soon after
birth with severe blistering of the skin (Georges-Labouesse ef al., 1996; van der Neut et al.,
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1996). A severe blistering disease has also been identified in a human infant homozygous
for a mutation of the a6 subunit (Ruzzi er al., 1997). Two mutations identified in the 34
gene of patients with a nonlethal form of junctional epidermolysis bullosa (JEB) disrupt its
binding to plectin (Rezniczek ef al., 1998). When 34 cannot bind to plectin, neither BP180
nor BP230 are efficiently recruited into hemidesmosomes (Schaapveld et al., 1998). Plectin
gene mutations have also been associated with human skin fragility, though not to the degree
observed in plectin-deficient mice (Andra et al., 1997; Koss-Harnes et al., 2002).

Another laminin-binding integrin on human keratinocytes, o331, is strongly associated
with CD151, with which it forms ‘pre-hemidesmosomal’ clusters at the basal cell surface
(Sterk et al., 2000). CD151 then binds to a6 to become a component of mature hemidesmo-
somes, while a3B1 is recruited into FAs or redistributed to cell-cell contacts. Although
a3B1 does not appear to directly participate in hemidesmosome assembly, it might, together
with other (1-containing integrins, contribute to their formation by affecting localiza-
tion of a6PB4. In Bl-deficient mice, hemidesmosome numbers are reduced, which seems
to correlate with their observed phenotype of skin thickening and blistering (Brakebusch
et al., 2000).

Regulated hemidesmosome disassembly is thought to be important in cellular processes
including cell migration and differentiation. Proposed regulatory mechanisms for disas-
sembly of kertinocyte hemidesmosomes include epidermal growth factor-(EGF)-induced
phosphorylation of 34 by Fyn (a pathway that was shown to regulate experimental metas-
tases formation) (Mariotti ez al., 2001) and 34 phosphorylation by PKCa (and possibly other
kinases), resulting in loss of interaction with plectin (Rabinovitz et al., 2004).

Previously, it was thought that pulmonary epithelial hemidesmosomes occurred exclu-
sively between basal cells and the underlying basement membrane; the few columnar
cells reaching down to the basement membrane were thought to be anchored in place,
rather, through desmosomal attachments to the basal cells (Michelson et al., 2000). More
recently, normal human bronchial epithelial (NHBE) cells have been shown to express
a6B4, hemidesmosome-associated structural proteins bullous pemphigoid antigen (BPAG)-1
and -2, and to produce laminin-5. Bronchial biopsy specimens have also been shown to
contain laminin-5 in their basement membranes, and BP230, BP180, and o634 at epithelial
cell-ECM junctions. Furthermore, ultrastructural imaging has revealed structures resembling
intact hemidesmosomes (Michelson et al., 2000).

2.4 Conclusion

The pulmonary epithelium is no longer known simply as a passive protective barrier. It
is now recognized as a highly organized, multifunctional tissue that plays critical roles in
normal and pathologic function throughout the entire respiratory system. Epithelial struc-
tures first visualized over a century ago and dramatically revisited by EM in the 1960s
spawned an important and expanding area of research — defining epithelial cell-cell and
cell-substratum interactions. Significant advances in knowledge have been made in the iden-
tification and characterization of critical adhesion structures including TJs, AJs, desmosomes,
and hemidesmosomes and specific adhesion molecules like integrins. These structures and
their functional components have since been shown to have critical roles in myriad functions
including maintenance of epithelial cell differentiation, proliferation, repair, polarity, para-
cellular barrier function and ion selectivity, regulating organ morphogenesis and repair, and



46 CHO2 EPITHELIAL ADHESIVE STRUCTURES AND ADHESION MOLECULE EXPRESSION

determining tumour malignant and metastatic potential. Many of these structures have now
been identified in the pulmonary epithelium. Elucidating details of these adhesion structures
and molecules and their functions promises to provide wide-ranging insights into pulmonary
health and disease.
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The Epithelium as a Target

Louise E. Donnelly
National Heart and Lung Institute, Imperial College London, UK

3.1 Introduction

The epithelial cells that line the airway consist of several different types including ciliated
columnar cells, basal cells and secretory/goblet cells. The distribution pattern of the different
types of epithelial cells changes from the bronchi down to the alveoli. In the bronchi, the
airway epithelium consists of ciliated epithelial cells, goblet cells and a few Clara cells,
whereas in the small airway the cells are less columnar and more cuboidal with increased
numbers of Clara cells. This array of cell types forms the airway epithelium and is the first
line of defence against airborne agents including allergens and irritants. Furthermore, these
cells not only form a physical barrier between the airway lumen and the interstitium but
they also have the capacity to exhibit many pro- and anti-inflammatory features and may
actively participate in the inflammatory processes in the lung. Therefore, any disruption
of the normal functioning of the airway epithelium could contribute to and/or exacerbate
disease processes in the lung. Exactly how the airway epithelium is modified or damaged
in inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease is
currently under investigation. This chapter will describe the mechanisms of damage to the
airway epithelium and how these contribute to disease pathophysiology.

3.2 Asthma

Shedding of the airway epithelium is a common histological feature observed in biopsies
obtained from asthmatic patients (Jeffery, 2004). Although this desquamation is variable
in mild asthmatics and may be due to sampling techniques (Ordonez et al., 2000), the
presence of epithelial cells in induced sputum from asthmatic patients (Creola bodies) and the
correlation of epithelial shedding with airway hyperresponsiveness in more severe disease
(Jeffery et al., 1989; Tateishi et al., 1996) would suggest that damage to the epithelium
contributes to the underlying pathophysiology of asthma.
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The mechanism of this heightened responsiveness associated with epithelial shedding is
unclear, but compromised integrity of the airway barrier may increase the sensitivity of the
airway to various stimuli including neuropeptides such as substance P (Joos et al., 1994).
Similarly, alteration of the epithelium could increase permeability of the airway mucosa and
exacerbate exudation of plasma into the airway (Goldie and Pedersen, 1995). In addition,
the presence of Th2 lymphocytes in the airway of these patients (Robinson et al., 1992,
1993) would suggest a predominance of Th2 cytokines, including interleukin (IL)-4 and
IL-13 (Wong et al., 2001), which have profound effects on the airway epithelium causing
these cells to release chemotactic agents including eotaxin (CXCL11) (Li et al., 1999), and
to stimulate mucin production (Wu et al., 1990).

3.2.1 Allergen exposure

Asthma exacerbations are triggered by a number of stimuli including viral infections, cold
air, pollution and exercise, but allergen exposure is one of the most prevalent factors associ-
ated with the development of asthma, and with the frequency of subsequent exacerbations.
The airway epithelium is the first target for inhaled allergens. These cells cannot process
allergen but are capable of trafficking these particles such that the allergen translocates
from the airway lumen to the submucosa where it can come into contact with underlying
antigen presenting cells, including dendritic cells (Mattoli, 2001). In asthma, where the
epithelial layers have become denuded, these particles may interact directly and stimulate
the mucosa and possibly the airway smooth muscle. Some of the most common allergens are
derived from house dust mite, Dermatophagoides pteronyssinus, and include the proteases
designated (Der p) proteins. A number of studies have examined the effects of these Der
p proteins on airway epithelium and demonstrated disruption of the tight junctions between
the epithelial cells via their innate protease activity (Kauffman ez al., 2006; Page et al.,
2006). Thus, allergen exposure to the epithelium can contribute to epithelial shedding
(Herbert et al., 1995) and hence facilitate trafficking of the allergens (Wan ef al., 1999).
Indeed, avoidance of the allergen can reduce epithelial cell numbers in induced sputum from
asthmatic children (Piacentini er al., 1998) further supporting the hypothesis that damage
to the epithelium in asthma is driven by allergen challenge. It is, therefore, conceivable that
allergen could stimulate directly the airway smooth muscle. Indeed, it has been demonstrated
that exposure of airway smooth muscle to Der pl will enhance smooth muscle constrictor
responses and lead to activation of mitogen-activated protein (MAP) kinase pathways which
in turn could regulate inflammatory mediator production (Grunstein et al., 2005).
Allergen-driven epithelial responses include the production of IL-8 (CXCL8) and IL-6
following stimulation with Der pl and Der p5 proteins (Adam et al., 2006; Asokananthan
et al., 2002; Kauffman et al., 2006). These allergen-derived proteases exert their effects on
the airway epithelium via activation of the protease-activated receptors (PAR), in particular
PAR-2 (Asokananthan er al., 2002). Similar responses have been observed when airway
epithelial cells were exposed to other allergens derived from German cockroach extracts
that again mediate the release of IL-8 (Hong et al., 2004; Page et al., 2003). Activation
of the epithelial cell layer with these antigens is also dependent upon activation of PAR-2
(Hong et al., 2004; Page et al., 2003); however, PAR-independent pathways leading to
cytokine production also exist, but the relative importance of each pathway is yet to be
evaluated (Adam et al., 2006; Kauffman ef al., 2006). Stimulation of the airway epithelium
with allergen could contribute to the increased inflammatory cell influx associated with the
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underlying chronic inflammation observed in asthma. For example, Der p induces the release
of CCL17 (thymus and activation regulated chemokine — TARC) from epithelial cells, the
levels of which can be further enhanced when co-stimulated with IL-4 and transforming
growth factor (TGF)B (Heijink et al., 2006). CCL17 is a ligand for the chemokine receptor
CCR4 which is expressed by T-lymphocytes, therefore allergen stimulation of the epithelium
could drive the inflammatory process in asthma directly. Similarly, antigen stimulation of
the epithelium leads to the production of the potent neutrophil chemoattractant, IL-8 (Adam
et al., 2006; Page et al., 2003), thereby regulating neutrophil trafficking into the airway.

3.2.2 Inflammatory cells

The inflammatory influx observed in the lungs of asthmatic subjects is characterized by
increased numbers of eosinophils, mast cells, and T-lymphocytes following allergen chal-
lenge (Bousquet ef al., 2000). Indeed, the numbers of eosinophils in bronchoalveolar lavage
(BAL) correlates with the numbers of epithelial cells present, suggesting an association
between eosinophilic inflammation and epithelial damage (Oddera et al., 1996).

Following allergen challenge, eosinophils will migrate towards the airway lumen and
are located at the sites of epithelial damage (Erjefalt er al., 1997). Although such studies
cannot exclude the possibility that the eosinophil may be participating in the repair process,
the observation that co-culture of eosinophils with bronchial epithelial cells leads to CD18-
dependent degranulation of the eosinophil and the release of cytotoxic mediators including
eosinophil cationic protein (ECP), major basic protein (MBP) and eosinophil-derived neuro-
toxin (Takafuji er al., 1996) would suggest that eosinophils are involved in damage of the
airway epithelium in asthma. Furthermore, the presence of increased levels of IL-5 in the
airway of asthmatic subjects promotes the adhesion of eosinophils to the airway epithelium
via upregulation of CD18 and a4 integrins (Sanmugalingham er al., 2000). Interestingly,
activation of co-cultures of eosinophils and epithelial cells with Der pl antigens increases
epithelial expression of ICAM-1 and a concomitant induction of CD18 and ICAM-1 by
eosinophils, thus mediating the adhesion of these cells leading to production of IL-1f3,
IL-6, IL-10, tumour necrosis factor (TNF)-a and granulocyte macrophage-colony stimulating
factor (GM-CSF) via NF-kB, AP-1 and p38 MAP kinase dependent mechanisms (Wong
et al., 2006).

Such activation of eosinophils can drive both apoptosis and necrosis of human primary
airway epithelial cells in vitro but despite the fact that other cytotoxic molecules are
released following degranulation of the eosinophil, apoptosis of the airway epithelium is
thought to be mediated mainly via the production of TNF-a from these cells (Trautmann
et al., 2002). This then leads to the possibility that other inflammatory cells in the asth-
matic airway such as macrophages and mast cells could contribute to epithelial cell death
via the production of TNF-a. Furthermore, this effect is potentiated by the presence of
interferon (IFN)-y and has led to the observation that T-cells and eosinophils co-operate
to induce epithelial damage (Trautmann et al., 2002). Despite such compelling evidence,
whether eosinophils are responsible for epithelial damage remains controversial since murine
models of eosinophilic inflammation do not show any alteration in epithelial fragility (Blyth
et al., 1996).

Other inflammatory cells that will contribute to the damaged epithelium include
neutrophils. In children undergoing acute exacerbations, epithelial damage is associated with
an increase in IL-8 but not with an enhanced eosinophilic signal (Yoshihara er al., 20006).
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Moreover, in severe asthma there is a marked increase in the presence of neutrophils in
the airway (Wenzel, 2003) suggesting an altered pathophysiology compared to less severe
asthma. Neutrophils contain azurophilic granules that release proteases including neutrophil
elastase, cathepsin G and proteinase-3 that can damage the airway epithelium. Moreover,
the persistence of neutrophils may be enhanced since the airway epithelium is not capable of
phagocytosis of apoptotic neutrophils, which contrasts with its ability to remove apoptotic
eosinophils (Sexton et al., 2004). The effects of neutrophils on the airway epithelium may
be potentiated during viral induced exacerbations. Infection of the airway epithelium with
respiratory syncytial virus (RSV) enhances neutrophil adhesion and increased damage and
epithelial shedding (Wang et al., 1998). The mechanisms for these interactions include the
RSV-induced upregulation of neutrophil chemoattractants in the epithelium, together with
increased expression of adhesion molecules, including ICAM-1 on the airway epithelium
and CD18 on the neutrophil, leading to activation of neutrophils and release of cytotoxic
mediators including proteases (Wang and Forsyth, 2000).

3.2.3 Glucocorticosteroids

Glucocorticosteroids are the mainstay of anti-inflammatory therapy in asthma. These drugs
can reduce the inflammation in the airway by promoting apoptosis of eosinophils and
T-lymphocytes thus reducing the inflammatory load (Meagher et al., 1996; Melis et al.,
2002; O’Sullivan et al., 2004). However, while controversial, it has been reported that
glucocorticosteroids also induce apoptosis in airway epithelial cells (Dorscheid et al., 2001;
White and Dorscheid, 2002), raising the prospect that this treatment could be responsible
for the persistence of epithelial damage observed in patients with chronic asthma. Recently,
combination therapies of 3,-adrenoceptor agonists and glucocorticosteroids have been shown
to be more effective at reducing the inflammatory load in moderate asthma when compared
with inhaled steroids alone (Ankerst, 2005; Currie et al., 2005). This may be of benefit to
the airway epithelium as the apoptotic effect of glucocorticosteroids can be reduced by co-
administration of [3,-adrenoceptor agonists (Tse et al., 2003), thus the combination therapies
currently available may prevent epithelial damage in these patients.

3.3 Alteration in epithelial cell type distribution

A clear feature of asthma is increased expression of mucin reflecting changes in goblet
cells or submucosal gland function (Rogers, 2002). Goblet cell hyperplasia is observed in
the large airway in asthmatic subjects (Shimura et al., 1996), with up to threefold more
cells in bronchial biopsies of subjects with mild asthma compared with control subjects
(Ordonez et al., 2001). Whether this increase in goblet cell number reflects basal epithelial
cell differentiation or goblet cell division remains to be elucidated. However, in most cases
the source of goblet cells is via differentiation of non-granulated epithelial cells (Rogers,
2002) but whether this occurs during disease pathology is not known. Currently, there is little
evidence in asthma that this increase in goblet cell number reflects a loss in the numbers
of progenitor cells such as the basal cells, surface epithelial serous cells or Clara cells.
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An alteration in Clara cell number could alter the host response of the airway as these cells
are responsible for the production of a number of anti-inflammatory molecules including
lactoferrin and secretory leukocyte protease inhibitor (Rogers, 2002).

3.4 Overview of epithelial damage in asthma

There are clearly a number of factors that contribute to epithelial dysfunction in asthma.
Whether allergens, pollutants or infectious agents are the initiating factor for epithelial
damage in asthmatic subjects is unknown, but they certainly can work alone or in concert
to promote epithelial fragility (Figure 3.1). This can, in turn, promote leukocyte influx and
mediate the chronic inflammation observed in the asthmatic lung (Figure 3.1), which can also
contribute to epithelial damage. This cycle of epithelial damage and inflammation should be
ameliorated by anti-inflammatory agents; however, since glucocorticoids may also promote
epithelial cell apoptosis, it appears that alternative anti-inflammatory strategies are warranted
to maintain epithelial integrity in the asthmatic airway.
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Figure 3.1 Putative mechanisms of epithelial damage in asthma. Allergens, pollutants or infec-
tious agents such as viral particles can adhere to the airway epithelium and mediate permeability of
tight junctions and stimulate the release of inflammatory mediators leading to epithelial shedding
and inflammatory cell recruitment. Various inflammatory subtypes are recruited into the intraepithe-
lial spaces and stimulate the epithelium, enhancing inflammatory mediator production. Subsequent
activation of the inflammatory cells leads to the release to cytotoxic substances that mediate the
apoptosis or necrosis of the airway epithelium, thus contributing to the cycle of epithelial damage
and inflammation observed in asthma
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3.5 Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that
is largely irreversible (GOLD, 2001) and is associated with an underlying inflammation
consisting predominantly of macrophages, T-lymphocytes and neutrophils (Donnelly and
Barnes, 2006). The major cause of COPD is cigarette smoking but only approximately
15-20% of smokers will develop this disease (Lindberg et al., 2006). Unlike asthma, the
airway epithelium is not denuded in COPD; however, there is marked goblet cell hyper-
plasia and squamous metaplasia (Jeffery, 2004). In addition, the amount of mucin stored
within these cells is also increased and shows a correlation with airflow obstruction (Innes
et al., 2006).

Airway epithelial cells from COPD patients have been shown to exhibit differential
patterns of gene expression when compared with cells from smokers without COPD and cells
from nonsmokers (Pierrou et al., 2006). These differences were mainly reflected in genes
regulating oxidant stress responses, and these responses were reproduced when cells were
cultured in vitro and exposed to cigarette smoke extract (CSE) (Pierrou et al., 2006). Studies
examining airway epithelial cells derived from bronchial brushings from these patients have
also shown differences in inflammatory mediator expression when compared with cells
obtained from asymptomatic smokers and from nonsmokers. For example, transforming
growth factor (TGF)B expression is increased in small airway epithelial cells and correlates
with obstruction and smoking history (Takizawa et al., 2001). Culture of airway epithelial
cells from these patients also shows an enhanced response to inflammatory stimuli. For
example, stimulation of these cells with TNFa leads to increased release of IL-8 and IL-6
by cells from COPD patients compared with smokers with normal lung function (Patel et al.,
2003). Similarly, exposure of cells to a combination of TNFa and IFN+y also demonstrated
increased expression of IL-8 and a second neutrophil chemoattractant CXCL1 (growth-
related oncogene-a — GROa) (Schulz ef al., 2004). Such observations have led to studies
examining the effects of the major stimulus in COPD, namely cigarette smoke, usually
in the form of CSE, on inflammatory gene expression and mediator release by airway
epithelial cells.

3.6 Effect of cigarette smoke

Exposure of bronchial epithelial cells to CSE increases release of IL-8 (Glader et al., 2006;
Mio et al., 1997). By contrast, IL-8 release is inhibited following exposure of type II
alveolar epithelial cells to CSE (Witherden et al., 2004), suggesting differential responses of
pulmonary epithelial cells could regulate the inflammatory influx observed in COPD. IL-8
is a neutrophil chemoattractant and a marked neutrophilia is observed in the large airway
of these patients and is reflected by increased neutrophil numbers in the induced sputum of
these patients when compared with smokers and nonsmokers (Keatings et al., 1996; Traves
et al., 2002). This neutrophilia is not observed in bronchoalveolar lavage samples which are
thought to reflect the alveolar airspaces (Traves et al., 2002). Therefore, release of IL.-8 from
the bronchial epithelium following stimulation with cigarette smoke could be responsible
for the neutrophil influx in the large airway but not in the alveoli.

CSE also affects other aspects of epithelial cell function including stimulation of prolif-
eration at low concentrations via the activation of ERK MAP kinases (Luppi et al., 2005);
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however, increasing concentrations of CSE led to inhibition of this response and activation
of the p38 MAP kinase pathway (Luppi et al., 2005) with inhibition of the release of TGF-3
and fibronectin, thereby inhibiting the epithelial repair process (Wang et al., 2001). However,
the relevance of the concentrations of CSE to exposure of the airway epithelium to cigarette
smoke in smokers is not known. In an attempt to address this problem, other workers have
developed methodologies to expose airway epithelial cells to cigarette smoke directly.

Exposure of epithelial cells to cigarette smoke leads to activation of p38 MAP kinase
and the transcription factor NF-kB (Beisswenger et al., 2004) suggesting that smoke can
directly stimulate cells to produce inflammatory mediators. Additionally, exposure of cells
to cigarette smoke increased the permeability of the epithelial cell layer but this effect
was increased in cells from COPD patients compared with cells with normal lung function
(Rusznak et al., 2000). Moreover, expression of IL-13 and sICAM-1 by these cells was
also increased and associated with a concomitant decrease in intracellular glutathione levels,
suggesting that an oxidant stress mediates this response (Rusznak ez al., 2000).

Cigarette smoke contains more than 4700 components therefore it is difficult to deter-
mine exactly which component is responsible for the observed effects of cigarette smoke.
Nevertheless, many studies have demonstrated that exposure of the epithelium to CSE
induces an oxidative stress (Bowler et al., 2004; Marwick et al., 2002; Moodie et al., 2004;
Rahman and MacNee 1999). Oxidants stimulate the airway epithelium via activation of
NF-kB leading to the expression of many inflammatory genes including IL-8 and matrix
metalloproteinase (MMP)-9 (Hozumi et al., 2001; Tomita et al., 2003); furthermore oxidant
exposure of cells leads to inactivation and down regulation of histone deacetylase (HDAC)-2
leading to glucocorticosteroid insensitivity (Ito ez al., 2001, 2006; Tomita et al., 2003).
This may be a particularly important mechanism in COPD as the underlying inflamma-
tory response is steroid-resistant (Barnes, 2000b; Barnes et al., 2003; Culpitt et al., 1999;
Ito et al., 2001) and could be related to cigarette smoke exposure. Not only can cigarette
smoke mediate inflammatory responses in the airway epithelium, it can also potentiate the
effect of other damaging agents. For example, cigarette smoke potentiates the effect of
the house dust mite allergen, Der pl, to increase the permeability of the epithelial layer
and the release of inflammatory mediators including IL-8, IL-1 and SICAM-1 (Rusznak
et al., 2001, 1999).

3.7 Other causative factors

Cigarette smoke is not the only causative agent in the development of COPD. Burning
of biomass fuels and air pollutants have also been implicated in the aetiology of airflow
obstruction and chronic bronchitis (Ekici ef al., 2005; Perez-Padilla ez al., 1996), although the
exact mechanisms leading to the pathophysiology of the obstruction remain to be elucidated.
Ambient air pollution particles are also respirable and will target the epithelium.

3.7.1 Pollution

Experimental models of in vitro cell culture or explanted trachea have shown that the airway
epithelium is capable of taking up diesel exhaust particles by endocytic mechanisms (Boland
et al., 1999). Indeed, such particles can translocate through the epithelial layer into the
underlying submucosa and induce fibrosis in the airway wall (Churg and Wright, 2002).
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These particles are not inert and generate an oxidative stress (Tao er al., 2003) together
with activation of NF-kB causing inflammatory gene transcription and potentiating the
inflammatory response leading to release of IL-18 and IL-8 (Boland er al., 1999; Churg
and Wright, 2002). Other atmospheric pollutants will also impact upon the responses of
the airway epithelium. For example, ozone and nitrogen dioxide will induce the release
of a variety of inflammatory cytokines from the airway epithelium and increase epithelial
permeability (Bayram et al., 2002; Bosson et al., 2003). Indeed, it has been proposed that
the release of Clara cell protein, CC16, can be used as a marker of ozone-induced lung
injury and can be measured in serum in the absence of other markers of epithelial damage
such as albumin in the bronchoalveolar lavage fluid (Blomberg et al., 2003).

3.7.2 Infection

The incidence and prevalence of bacterial infections are associated with an accelerated
decline in lung function in COPD (Donaldson et al., 2002). The major bacterial pathogens in
COPD are Haemophilus influenzae, Streptoccocus pneumoniae and Moxarella catarrhalis,
though exactly why COPD patients are more prone to these infections is unknown. In COPD
patients colonized with H. influenzae there is a neutrophil infiltration; however, defensins
released by neutrophils from these patients were incapable of killing this bacteria (Gorter
et al., 1998). Indeed, adhesion of H. influenzae to the epithelial cell surface was enhanced
by the presence of neutrophil defensins (Gorter et al., 1998). Moreover, exposure of the
epithelium to H. influenzae-derived proteins and the bacteria itself can stimulate the cells to
produce IL-8 via activation of the MAP kinase pathways (Wang et al., 2003) an effect that
can be potentiated in the presence of TNF-a via activation of NF-kB (Watanabe et al., 2004).
Similarly, H. influenzae and rhinovirus infection can enhance the expression of the neutrophil
chemoattractants IL-8, CXCL1 and CXCL5 and upregulate the expression of ICAM-1 and
toll-like receptor (TLR)-3 (Sajjan ez al., 2006) which could increase the susceptibility of the
epithelium to enhanced adhesion and further activation.

3.8 Alveolar epithelial cell apoptosis — emphysema

A key feature of COPD is the development of emphysema (Barnes, 2000a). Emphysema
is the destruction of the alveolar airspaces, a key component of which is the apoptosis or
necrosis of alveolar epithelial cells. The turnover of the alveolar epithelium in patients with
emphysema is not well understood; however, biopsy studies have revealed there are enhanced
proliferative and apoptotic processes occurring in the alveolar epithelium from emphysema-
tous patients compared with tissue from asymptomatic smokers and nonsmokers (Y okohori
et al., 2004). Interestingly, increased levels of markers of epithelial cell apoptosis persist
following smoking cessation in patients with COPD suggesting that this effect may not be
related directly to smoking (Hodge et al., 2005). Exactly why the epithelium from emphy-
sematous patients shows increased turnover is not clear; however, mediators of epithelial
apoptosis are under investigation. Blockade of vascular endothelial growth factor (VEGF)
receptors leads to alveolar cell apoptosis and the development of emphysema in rat models
(Kasahara er al., 2000). Subsequently, it was proposed that oxidative stress could reduce the
levels of VEGF promoting apoptosis of the epithelium (Tuder et al., 2003). Cigarette smoke
could therefore contribute to alveolar apoptosis via increased oxidative stress; however, it
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is also possible that cigarette smoke induces necrosis of alveolar epithelial cells directly via
inhibition of caspases and thus contributes to the development of emphysema (Wickenden
et al., 2003).

Other mechanisms of epithelial cell apoptosis leading the development of emphysema
have also been proposed. There is an increase in the numbers of CD8" T-lymphocytes
in the lungs of patients with COPD (Saetta et al., 1999). These cytotoxic T-cells cells
contain granzyme and perforins, which together with TNF-a can induce epithelial cell death
(Shinbori et al., 2004). The CD8" T-cells in COPD lung express high levels of CXCR3
(Saetta et al., 2002). The three ligands for this receptor, CXCL9, CXCL10 and CXCLI11
are all released by airway epithelial cells following stimulation with IFN-vy (Cole et al.,
1998; Mohan et al., 2002; Sauty et al., 1999) and can be potentiated by TNF-a (Mohan
et al., 2002; Sauty et al., 1999). The concentrations of these cytokines are increased in
COPD due to the presence of inflammatory cells including macrophages and T-lymphocytes,
thereby perpetuating an inflammatory cycle leading to the destruction of the lung tissue
(Figure 3.2).
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Figure 3.2 Airway epithelial cell-T-cell interactions in the development of emphysema. Airway
epithelial cells will produce CXCR3 chemokines, CXCL9, CXCL10 and CXCL11 upon stimulation with T-cell-
derived IFNvy. This effect can be potentiated by TNFa released by activated macrophages. Recruitment
of CD8" cytotoxic T-cells will lead to the release of cytotoxic molecules such as granzyme B and
perforin which promote apoptosis of the alveolar epithelium and ultimately emphysema

3.9 Overview of epithelial damage in COPD

There are a number of factors that contribute to epithelial dysfunction in COPD. By far
the most important risk factor for the development of COPD is cigarette smoking. The
oxidant stress associated with cigarette smoke will stimulate the epithelium to produce
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inflammatory mediators and upregulate adhesion molecules which facilitate the binding of
bacterial pathogens to the cell surfaces (Figure 3.3). These factors mediate the inflammatory
response by recruitment and activation of macrophages, neutrophils and T-cells which, in
turn, release pro-inflammatory mediators and proteases that alter epithelial permeability and
contribute to the characteristic desquamation of the airway epithelium (Figure 3.3).
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Figure 3.3 Putative mechanisms of epithelial damage in COPD. Cigarette smoke, pollutants and
bacteria can interact with the airway epithelium and mediate permeability of tight junctions and
stimulate the release of inflammatory mediators leading to desquamation of the surface with loss
of ciliated epithelium. There is an upregulation of adhesion molecules leading to enhanced bacte-
rial adhesion and further activation of the epithelium. This enhances inflammatory cell recruitment
including neutrophils and macrophages which produce damaging proteases including neutrophil elas-
tase and MMPs. In addition, macrophages will also contribute to the release of TNFa which can mediate
apoptosis of the epithelial cells. Cytotoxic substances will also be released by invading T-cells and
together mediate damage to the epithelium

3.10 Damage to the epithelium in other diseases

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis trans-
membrane regulator (CFTR), an epithelial chloride channel that regulates periciliary lining
fluid ion concentrations. Failure of this channel is associated with mucous plugging, impaired
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mucillary clearance and persistent infection of the airway most notably with Pseudomonas
aeruginosa (Chmiel and Davis, 2003). However, the lack of functioning CFTR is not the only
difference in the airway epithelial cells lining the lungs of these patients that may contribute
to the disease pathology. Airway epithelial cells from CF patients express increased levels of
IL-8 compared with cells derived from healthy controls (Sajjan et al., 2004). As neutrophil
accumulation in the lungs of these patients is a common histopathological feature of CF,
it would appear that activation of the airway epithelium could mediate this neutrophilia.
Adherence of neutrophils is also enhanced in airway epithelial cells from CF patients leading
to a heightened inflammatory response with further increases in the release of IL-6 and IL-8
(Tabary et al., 2006). Furthermore, the adherence of neutrophils to the epithelial surface
appears to mediate damage via the release of proteases (Venaille ez al., 1998). Adhesion of
P. aeruginosa also stimulates the airway epithelium leading to the the release of IL-8 from
these cells (Delgado et al., 2006). However, adhesion only occurs during repair processes
and requires expression of asialo ganglioside M1 (de Bentzmann et al., 1996a, 1996b).

Obliterative bronchiolitis can occur during rejection of lung transplant patients and is
characterized by epithelial damage. This is an irreversible process that is not understood, but
the epithelial layer is lost and replaced by fibroblastic scar tissue (Ward et al., 2005). One
of the first features of this disease is apoptosis of the airway epithelial cells (Alho et al.,
2003) and may be mediated by chronically activated CD8" T-cells in the epithelial layer
(Ward et al., 2005).

Damage to the airway epithelium is not restricted to disease states. For example, CC16
secreted by Clara cells is increased in the children attending swimming pools suggesting
exposure to ozone or chlorine may alter epithelial integrity (Lagerkvist et al., 2004). Elite
athletes and competitive rowers also demonstrate increased numbers of airway epithelial
cells in induced sputum (Bonsignore et al., 2003; Morici et al., 2004) but these cells do not
exhibit high expression of adhesion molecules or expression of inflammatory transcription
factors. This would suggest that increased rates of airflow across the epithelium could drive
mechanical damage but this does not appear to elicit an inflammatory response.

3.11 Conclusions

The airway epithelium is the protective barrier that prevents the underlying mucosa becoming
a target for damage caused by tobacco smoke, pollutants and infectious agents. In the disease
state, the airway epithelium is altered to become an inflammatory cell capable of producing
cytokines and chemokines as well as other mediators that can perpetuate the inflammatory
response. These responses appear to be disease-specific. For example, epithelial fragility
and shedding seems to be associated with asthma but is not seen in COPD or CF. Whether
this is due to an inherent defect in the asthmatic epithelial cell or is due to the specific type
of stimulus, for example, allergen challenge and associated protease damage, is not clear.
Similarly, in COPD, the airway epithelium appears to produce an exaggerated response
upon exposure to cigarette smoke, the main causative factor in the disease. At present,
pharmaceutical interventions to address the chronic inflammatory responses observed in
both asthma and COPD have targeted the inflammatory leukocyte influxes; however, the
differential hyperresponsiveness of the airway epithelium seen in these diseases may offer a
potential target(s) for the treatment of these inflammatory diseases.
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4.1 Brief introduction to epithelial shedding-repair and
associated functions in health and disease

To some extent, shedding of epithelial cells from the airway clearly can occur without
resulting in grave mucosal derangement and onset of major repair processes. Thus, single
epithelial cells can be shed by mechanisms apparently involving unimpeded integrity of
the epithelial lining. Even clusters of columnar epithelium can be shed without leaving
any evident open gaps in the epithelial lining. In the latter circumstance, the remaining
basal cells promptly develop a structural barrier above which restitution of lost columnar
cells takes place. A metaplastic epithelium with multiple cell layers, as can be seen in
inflammatory airway diseases, could also be expected to lose superficial epithelial cells
without appreciable loss of its composite barrier. Thus, epithelial shedding is not incompatible
with well maintained mucosal functions. This aspect is further underscored by the tendency of
epithelial cell loss to be exceedingly patchy. By inference, therefore, epithelial cell sacrifice
could, in part, be viewed as a component of first line airway defence to infectious and toxic
insults.

Studies involving ‘shedding-like’ loss in vivo of all epithelial cells in a small area indicate
that the denuded, but uninjured, epithelial basement membrane is not left naked for long. In an
area where all epithelial cells are lost. bulk plasma immediately covers the exposed basement
membrane. In the area of damage unfiltered plasma is promptly extravasated through newly
formed endothelial gaps in venular walls of a profuse subepithelial microcirculation. The
extravasated plasma moves across a pervious basement membrane forming a gel over the
entire denuded area. The gel constitutes a provisional, not very tight, but still important cover.
Together with locally accumulated granulocytes and other leukocytes, the plasma-derived
gel provides protection as well as a suitable milieu for speedy progress of epithelial repair.
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It is of note that a microcirculation-derived in vivo milieu is not always considered in cell
culture studies, where individual molecular factors of potential importance for epithelial
repair processes are usually being explored. Following denudation, epithelial cells of all
phenotypes (including ciliated cells) neighbouring the denuded area promptly dedifferentiate
and migrate rapidly to close the wound.

As soon as a new primitive epithelial cell barrier has been established, the plasma-derived
and granulocyte-rich gel cover is resolved or shed by mixing with airway secretions/exudates.
The presence of granulocytes and plasma proteins in the airway lumen also characterize
asthma and chronic obstructive pulmonary disease (COPD), especially during exacerba-
tions. Importantly, both granulocytes and bulk plasma proteins also move across a normal
epithelial lining. The plasticity of the intact, pseudostratified epithelial lining cells allows
unidirectional, paracellular flux of unfiltered plasma, as well as passage of granulocytes into
the airway lumen. The capacity to swiftly and non-injuriously permit passage of these major
components of host defence represents a significant contribution of intact airway epithelium
to innate immune function in health and disease. Furthermore, recent data suggest that non-
injurious egress of cells across an intact epithelial lining has a major role in eliminating
granulocytes from inflamed airway tissues. New concepts regarding non-injurious elimina-
tion of inflammatory cells from airway tissues across an intact epithelial lining including its
relation to occurrence and roles of apoptosis of these cells are reviewed elsewhere (Uller
et al., 20006).

It has been demonstrated that epithelial shedding-restitution processes alone can evoke
several of the pathophysiological and remodelling features of inflammatory airway diseases.
These in vivo findings underpin the possibility of a central role of epithelial injury and
repair in the pathogenesis of asthma (Persson et al., 1996), and suggest that events
associated with simple epithelial repair, in part, can be compared to activation of the
epithelial mesenchymal trophic unit that is operates during lung development (Demayo
et al., 2002).

Interestingly, a commonly expected result of epithelial shedding, ‘increased permeability’,
may not be prominent in vivo. Patchiness of the injury, together with quick repair, may
explain why an epithelial shedding disease such as asthma is not functionally charac-
terized by increased permeability to inhaled molecules (Persson et al., 1995). The fact
that plasma proteins appear on the mucosal surface is, however, a different matter and
cannot be interpreted as reflecting increased permeability of the epithelial lining. Epithe-
lial mechanisms involved in swift, unidirectional luminal entry of extravasated, unfiltered
plasma proteins across the intact airway mucosa are also reviewed elsewhere (Persson
et al., 2002).

The above introductory comments are largely based on observations in vivo. By contrast,
work on epithelial mechanisms is now dominated by in vitro approaches providing new
information on the molecular biology and pharmacology of repair of injured cell cultures.
In the early days of culture studies, readers were frequently reminded of shortcomings (as
well as advantages) of the in vitro possibilities. It must be reiterated that several central
features, including cell phenotypes, molecular milieus, and dynamics of local and external
influences cannot be fully mimicked in cell cultures. Despite this, however, these approaches
offer important opportunities for exploring reductive mechanisms. Without ignoring the
problematic issue of whether in vitro observations translate to the in vivo situation (Persson
et al., 2001), selected in vitro data will be considered in this chapter on repair and function
of the pseudostratified airway epithelium in vivo.
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4.2 Repair following shedding of single columnar epithelial
cells and following shedding of clusters of columnar cells

The occurrence of epithelial cells in asthmatic sputa was described as long ago as the latter
half of the 1800s. Strikingly, ciliated epithelial cells occurred both alone and as clusters of
epithelial cells, neither of which were associated with basal cells (Persson, 1997). Using
electron microscopy to examine bronchoalveolar lavage fluid, Montefort ez al. (1992) calcu-
lated that the number of free epithelial cells was more numerous than clusters of epithelial
cells in samples obtained either from healthy or asthmatic individuals. Additionally, they
demonstrated that it was extremely rare to find basal cells attached to the shed columnar cells.
In allergen-challenged airway of allergic guinea-pigs, patchy areas of epithelial injury-repair
characteristically exhibited loss of columnar cells, but the bottom of each such epithelial
crater retained a complete layer of ‘basal’ cells (Erjefilt e al., 1997a). Hence, it appears that
the junctional desmosomal attachment between columnar and basal cells is what is regularly
lost at shedding.

4.2.1 Loss of single epithelial cells

The loss of single columnar epithelial cells (Figure 4.1(a)) is likely a frequent event in
health and disease, so the consequences of single cell loss is of interest. However, this
phenomenon is poorly documented. This probably reflects both the quickness with which the
loss may be completed in each instance and the speed by which the space that was occupied
by the lost cell is fully closed. Occasional observations by scanning electron microscopy
of single columnar cells leaving the airway surface suggest the possibility that the gap
already begins to close during the shedding process. Such a mechanism would explain why
small gaps, reflecting loss of single cells, have not been widely reported. For example, such
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Figure 4.1 (a) Loss of single epithelial cells: ‘Tight as they go’. (b) Patchy loss of clusters of columnar
epithelial cells: after losing their cover of columnar cells, basal cells promptly create a new barrier.
(c) Patchy areas of complete shedding/denudation: ‘hot spots of speedy epithelial repair along with
defence, inflammatory, and remodelling reactions’
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Figure 4.1 (Continued)

single-cell gaps were not detected in carefully scanned whole-mounts of an airway surface
where allergen challenge had evoked significant shedding-repair processes in vivo (Erjefilt
et al., 1997a). The single-cell loss perhaps may be likened to epithelial passage of individual
leukocytes in vivo. Thousands of eosinophils have been demonstrated to traverse the intact,
pseudostratified epithelial lining in vivo per min and per square centimetre of airway surface
without leaving any detectable apical traces of their paracellular routes into the airway lumen
(Erjefilt et al., 2004). The epithelium in vivo also regains integrity immediately after letting
through an acute efflux of unfiltered plasma, including its largest proteins (Luts et al., 1990).
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Repair of single-cell epithelial defects has been examined in epithelial monolayers (Florian
et al., 2002). A potential limitation of such studies is that artificial destruction of a single cell
in epithelial cultures, and the ensuing closure of the lesion-induced gap, may not necessarily
mimic the processes involved in the ‘spontaneous’ shedding of an endogenously detached
single epithelial cell in vivo. In addition, in vitro findings may generally underestimate
the speed of epithelial restitution. For example, after scraping or stab-induced injury to
cell cultures the onset of repair is delayed and the speed of cell migration to cover the
wounds is initially slow (Zahm et al., 1991). By contrast, provided the basement membrane
is unharmed, in vivo repair after denudation starts immediately and the speed of repair
(rate of spreading and migration of neighbouring cells) is highest (3 wm/min) during the
initial and most critical minutes after epithelial cell loss (Erjefilt et al., 1995a). Hence, it is
possible that restitution of single-cell defects in epithelial layers also differ in speed in vitro
compared to in vivo. Yet in vitro observations demonstrate a reasonably quick formation of
tight junctions, as demonstrated both functionally and through appearance and turnover of
junction proteins (ZO-1 and occludin) in such epithelial lesions (Florian et al., 2002). The
in vitro work further suggests a role for actin (the polymerization of which is antagonized
by cytochalasin D) in migration of ‘repair cells’ and in a ‘purse string’ mode of closure of
single epithelial cell lesions (Florian et al., 2002, Zahm et al., 1991). Further study is needed
to determine to what extent single epithelial cells are lost in vivo in response to various
insults, and whether there is a requirement for repair in these events beyond a maintained
seal around the individual columnar cell that is being shed into the airway lumen.

4.2.2 Apoptosis in vitro

A purse string mechanism may also be initiated when single epithelial cells in culture become
apoptotic (Florian et al., 2002). Apoptosis and its sequelae, again, appear to be a field where
in vitro observations frequently fail to translate into in vivo systems (Uller et al., 2006).
So far, there is little evidence for involvement of columnar or basal epithelial cell apoptosis
(as properly defined by morphology) prior to shedding events in vivo. By contrast, apoptosis
of alveolar lining cells has been demonstrated and has been considered to be implicated in
development of emphysema (Imai et al., 2005). It is of note that observations derived using
lung parenchyma can not a priori be extended to the all-important small airway changes
in COPD and asthma. Similarly, nothing can be deduced about occurrence of apoptosis in
the airway mucosa from observations that cells in the airway lumen, whether they are shed
epithelial cells or egressed granulocytes, readily undergo apoptosis to varying extents before
being finally eliminated via mucociliary clearance (Uller e al., 2006). The resistance of the
airway epithelial lining in vivo to pro-apoptotic stimuli, such as ligands of FAS receptors
(Uller et al., 2005), underscores our need to gain knowledge regarding the actual occurrence
of epithelial apoptosis in health and disease. Such information is pivotal for appraisal of
medical hypotheses on the roles of epithelial death and repair in asthma, which currently are
largely based on molecular biology data.

4.2.3 Loss of clusters of columnar cells

The second most common type of shedding appears to be loss of sheets of joined columnar
epithelial cells (Figure 4.1(b)). As repeatedly recorded in asthmatic sputa since the 1800s,
columnar cells can stick together even after being shed and mixed with airway secretions and
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exudates (Persson, 1997). It also has been repeatedly observed that asthmatic airway, in part,
are covered by squamous epithelial cells without any attached columnar cells. Accordingly,
these remaining cells have been called basal cells. However, they could equally well be
flattened ‘repair’ epithelial cells moving in to cover denuded areas. Cells covering the bottom
of epithelial craters, where columnar cells are lacking due to allergen challenge (Erjeflt
et al., 1997a), could thus be transformed basal cells or they could be rapidly dedifferentiated
columnar epithelial cells that have quickly migrated from areas adjacent to the site of damage.
At the time of these studies, there was little specific information as to what changes occurred
to basal cells upon loss of their cover of columnar epithelium. A method was, therefore,
developed to explore, in some detail, effects of removal of columnar cells on remaining basal
cells. Tracheobronchial and nasal airway tissues with an intact mucosa and sub-mucosa were
used immediately after being surgically removed from animals and humans. The mucosal
surface was allowed to dry for one minute — just enough to make a drop of tissue adhesive
glue stick to epithelial apices. Another half-minute was allowed for hardening of the glue
which then was very gently removed, together with attached cells, by a rolling movement.
Thus, it was possible to selectively remove sheets of columnar epithelium. The remaining
tissue was incubated under conditions selected to approximate the in vivo milieu. This
technique was successful in that it did not lead to loss of basal cells, and the immediate
appearance of the remaining basal cells was similar to their drop- or cobblestone-appearance
seen in an intact epithelium. Interestingly, within 20 min the basal cells underwent a dramatic
transformation. They had spread and become exceedingly flat. The effect was that they
fully covered the space that initially existed between the original cobble-like basal cells.
Interdigitating cytoplasmatic protrusions also occurred and characterized the newly created
basal cell borders. After losing their cover of columnar epithelium the basal cells thus
promptly produced a novel barrier structure. This ability of basal cells did not differ between
human and guinea-pig airway, nor did it differ between human nasal and bronchial airway
(Erjefilt et al., 1997b). Admittedly, the experiment was carried out ex vivo and the removal
of columnar cells, however gentle, may well have stretched and stressed the basal cells in
a manner unlike the natural shedding of a sheet of columnar cells under in vivo conditions.
The speed of the change ex vivo was, nevertheless, remarkable. In analogy with other data
(see above), it may be speculated that even higher speeds of basal cell barrier formation
than observed in the ex vivo study may take place in vivo. It is currently not known to what
extent shedding of only columnar cells can cause airway pathophysiological and remodelling
effects similar to those evoked by epithelial denudation—restitution events.

4.3 Epithelial denudation

A century ago, the issue of whether epithelial denudation was a unifying characteristic
of asthma was already a topic of debate. Due to the possibility of artefacts induced post
mortem, or at tissue handling, the balance of evidence then probably rested with pathologists
who demonstrated intact epithelial linings in patients with the most severe forms of asthma
(Persson, 1997). However, the debate has continued and intensified in recent years. There is
now increased understanding of the problem of sampling artefacts when describing epithelial
loss in biopsies obtained from asthmatic individuals (Jeffery, 1996). It also has been demon-
strated that cryo-sectioning clearly produces denuded areas in allergen-challenged allergic
airway where denudation evidently was not present prior to the sectioning. Interestingly, the
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ease by which sectioning procedures produce denudation is greatly increased in samples with
ongoing inflammation (Erjefilt et al., 1997a), suggesting that epithelial fragility is an impor-
tant characteristic. The frequent demonstration of denudation in asthma could, therefore, be
interpreted as reflecting a fragile epithelial lining. Increased epithelial fragility would also
be expected to increase the likelihood of the occurrence of patches of truly denuded areas
in vivo. This is important because even small areas of epithelial denudation—repair can cause
significant pathophysiological effects, as well as remodelling of the airway (Figure 4.1(c)).

Data emerging from in vivo studies in guinea-pigs, involving ‘shedding-like’ (no damage
to the basement membrane and no surgery or bleeding) removal of a tiny stretch of pseudo-
stratified epithelium of the trachea have produced information on the repair milieu, on the
onset and speed of repair, on which cells participate in repair, and on pathophysiological
and remodelling sequelae to epithelial denudation—restitution in vivo (Persson and Erjefilt,
1997). We are now exploring the possibility of producing well controlled, and non-bleeding,
epithelial removal including denudation in vivo in human polyp tissues, which have epithelial
features similar to those observed in asthma and, possibly, COPD as well (unpublished
observations by M. Andersson, C. Persson, and L. Uller). Until the advent of validated data
from studies in human airway, this discussion will focus on the animal data.

4.3.1 Plasma exudation and granulocytes

In airway with an intact mucosa, extravasated bulk plasma can enter the lumen with only
a few minutes’ delay. This likely reflects the need to build up a small increase in epithe-
lial basolateral hydrostatic pressure (about 2cm H,O suffices) to open one-way, valve-like,
paracellular epithelial pathways into the airway lumen (Gustafsson and Persson, 1991).
However, in denuded spots, extravasated plasma promptly appears on the surface of the intact
basement membrane. Holes in the basement membrane (Erjefilt er al., 1994; Howat et al.,
2001) may be the structural correlates to this unhindered passage of plasma proteins. The
microvascular permeability response to denudation is both prompt and sustained. A substan-
tial plasma-derived gel structure is first produced to completely cover the denuded area
and then the exudation continuously supplies this gel with fresh proteins. During repair of
denuded areas, increased amount of a significant number of proteins, including fibronectin,
fibrinogen, different growth factors etc., derive from the microcirculation (Erjefilt er al.,
1994), obviating the need for epithelial cells themselves to produce many of these proteins.
The plasma proteins and their active degradation products also have chemoattractant proper-
ties explaining, in part, the ensuing accumulation of leukocytes, including many neutrophils,
in the gel cover. Neutrophils in the repair gel contribute to host defence in the vulnerable
areas with defective epithelium. Neutrophils may also promote repair by clearing the mucosa
of necrotic epithelial cells (such as occur acutely upon exposure to ozone) which otherwise
will impede the repair process (Hyde et al., 1999).

4.3.2 Ciliated and secretory cells dedifferentiate and become speedily
migrating repair cells

Whilst plasma exudation is in continued progress, a new cell lining is quickly established.
The loss of neighbouring epithelial cells, obviously provides a strong signal for repair. Thus,
at the border between the denuded surface and the maintained pseudostratified epithelium,
the activity is dramatic. Here the ciliated cells internalize their cilia, and the secretory cells
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discharge their granules. At the same time both cell types change from a columnar to
a flattened shape and start to migrate over the basement membrane. The dedifferentiated
migrating cells remain dynamically attached to each other by patchy cell-cell connections.
During the first 15 minutes after denudation, migration occurs at speeds of about 3 um/min,
and, in this time frame, the newly formed migratory cell sheet covers up to 60 um wide zones
of the previously denuded basement membrane. The ultrastructural evidence demonstrating
that the ciliated cell is not terminally differentiated, as was previously believed, but is ready
to dedifferentiate to participate in repair is corroborated by a maintained ratio between
secretory and ciliated cells along the borders of the repair zone (Erjefilt er al., 1995a).
Incidentally, this role of the ciliated cell has recently been noted again by Park ef al. (2006).
As demonstrated in the mid-1990s, the efficiency of the initial, and most critical, phase of
epithelial repair is clearly dependent on the ability of both ciliated and secretory epithelial
cells to dedifferentiate into primitive, migrating ‘repair’ cells.

Epithelial damage occurring in response to inflammatory insults, such as allergen chal-
lenge, cause exceedingly patchy, almost circular, epithelial damage sites. This is the case
even if the challenge is applied very uniformly over a large surface area (Erjefilt et al.,
1997a). The effects of cells dedifferentiating and migrating from all around such a site
very rapidly produce a new lining of cells, making the presence of actual denudation very
short-lived events in vivo. Whether extrapulmonary progenitor epithelial cells contribute to
repair after patchy shedding of cells from the pseudostratified airway epithelium remains
speculative.

4.3.3 Features of the initial cover of repair cells and its development
into a normal fully differentiated airway epithelium

When the denuded area has received its initial primitive cell cover, the plasma-derived
gel together with its additional components including granulocytes is resolved and shed.
Then there is a more slow development of a normal pseudostratified epithelium. The new
epithelium eventually consists of a few layers of squamous, poorly differentiated cells, as
is also observed in inflammatory airway diseases. On the surface aspect, these cells display
ridge-like seals. Tight junctions and desmosomes also develop. Within a few days, ciliated
and secretory columnar epithelial cells appear and then, after a few more days, the phenotypic
appearance of the previously denuded area is no longer distinguishable from areas that have
not been denuded. The time periods involved would be dependent upon the size of the
denudation. Here, the approximate times given represent the repair following denudation of
an 800 wm wide epithelial path (Erjefilt er al., 1995a). After a single denudation cycle of
this artificial size, abnormally increased numbers of secretory cells was never observed.

4.3.4 Epithelial proliferation and repair

The migrating epithelial cells involved in repair do not display increased mitotic activity
above that of a normal intact epithelium. However, once the initial cover is complete, these
cells increase their mitotic activity 10-20-fold. Simultaneously, a more modest, fourfold
increase in mitotic activity occurs in the ‘old’ epithelium surrounding the damaged area
(Erjefilt er al., 1995a). Cell proliferation is clearly an important component of epithelial
repair, but it is not involved in the early critical phase of restitution of an epithelial cell cover.
The rather sustained increase in epithelial mitotic activity makes this a potentially useful
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index of repair activity to be detected in airway biopsies. Increased epithelial cell proliferation
has also been reported in asthmatic and rhinitic airway. Interestingly, Kicic et al. (20006),
working with samples of epithelial cells obtained by brushing, have demonstrated that the
proliferative capacity of these cells is greater in children with mild asthma than in healthy
controls. Holgate er al. (2003), also working with cultures of human airway epithelial
cells, observed no difference between adult asthmatics and normal individuals regarding
proliferation rates. Yet, based on intriguing molecular biology data and on epithelial repair
data in vitro they have advanced the idea that the duration of epithelial repair is prolonged in
asthma due to an imbalance between proliferation and cell survival signals. The possibility
of altered features of the asthmatic epithelium impairing its own repair makes it all the more
important to study actual epithelial restitution events in diseased airway in vivo. Exposure to
tobacco smoke has been reported to slow down epithelial repair in animals exposed to toxic
levels of naphthalene (Van Winkle et al., 2004), suggesting that epithelial repair defects may
be involved also in the pathogenesis of COPD.

4.4 Pharmacology of epithelial repair

4.4.1 Repair-promoting factors

In recent years numerous reports have identified individual molecules of putative significance
in epithelial repair. The shape changes in cells that dedifferentiate and migrate in the
immediate response to epithelial removal necessarily involve activity of cytoskeleton proteins
(Zahm et al., 1991). Thus, cell migration may be facilitated by several matrix metallo-
proteinases (MMPs), including MMPs 3,7, and 9, potentially via effects on cell-cell contacts
and on the extracellular matrix (Buisson et al., 1996; Parks et al., 2001). Clearly, growth
factors with a particular focus on the ability of EGF to stimulate proliferation, have attracted
interest (Holgate ef al., 2003). There have also been attempts to identify individual serum
factors of importance for epithelial repair (Patchell and Dorscheid, 2006). Lackie and Adam
(2006) have summarized in vitro findings focusing on the potential for cellular carbohydrates
to enhance epithelial repair. Other agents reported to stimulate closure of epithelial wounds
in vitro include adenosine agonists (Allen-Gipson et al., 2006), bombesin (Tan et al.,
2006), and neutrophil defensins (Aarbiou et al., 2004). Hence, a rapidly growing number of
autacoids remain to have their potential roles defined in in vivo studies of epithelial repair
in health and disease.

4.4.2 Repair-retarding factors

Rhinovirus infections target the airway epithelium causing generation and release of major
regulatory proteins (Proud and Chow, 2006). However, little has been documented regarding
the reputed viral infection-induced epithelial damage. Bossios et al. (2005) now claim to have
an in vitro epithelial system where they find cytotoxic actions of rhinovirus infection as well
as delayed wound healing. TGF-beta may exemplify endogenous agents reported to attenuate
(Neurohr et al., 2006), as well as increase (Lechapt-Zalcman et al., 2006), repair of wounds
in epithelial cell cultures. Details regarding possible links between inflammatory mediators,
developmental pathways and epithelial repair are reviewed by Demayo et al. (2002) in their
discussion on pathogenesis of bronchopulmonary dysplasia. Of apparent concern, are the
reports on negative repair effects of drugs employed chronically as local airway treatments



84 CHO4 EPITHELIAL REPAIR AND FUNCTION

of obstructive airway diseases. Thus, both beta agonists and corticosteroids can impede the
repair of scraping-induced ‘denudation’ paths in cultured layers of epithelial cells (Dorscheid
et al., 2006; Schnackenberg et al., 2006). These in vitro test systems may exhibit different
pharmacological features depending on the number of ‘denudation’ scrapings employed, and
it has already been suggested that neither type of anti-asthma drug affects repair negatively
in more ‘chronic’ cell culture experiments (Wadsworth et al., 2006). An urgent need emerges
for in vivo evaluation of effects of airway drugs before speculation on treatment interference
with epithelial repair grow out of proportion. Indeed, a potent airway steroid, given prior to
denudation as well as during the repair phase, was without effect on the prompt and high-
speed repair mechanisms evoked in vivo at shedding-like denudation experiments (Erjefilt
et al., 1995b).

4.5 Epithelial shedding-restitution as a causative process
in airway inflammation and remodelling

4.5.1 Pathophysiology

Almost by definition, epithelial shedding beyond the loss of single columnar cells should
cause some increase in mucosal permeability. However, as discussed above, the ability of the
epithelium to create new barriers is so highly developed that significant shedding can occur
without causing any troublesome permeability to inhaled noxious stimuli. The somewhat
confusing medical history involving reports on increased, unchanged, or decreased airway
permeability in airway diseases such as asthma and allergic rhinitis has been reviewed
elsewhere (Persson et al., 1995). Suffice it to state here that ongoing inflammatory airway
disease may well exhibit a decreased (sic!) inward permeability to molecules deposited on
the airway surface. A decreased functional permeability may, in part, reflect entrapment of
inhaled material in secretions/exudates. It is also possible to explain reduced permeability by
the presence of areas of repairing epithelium because these are characterized by a reduced
length of intercellular stretches (available for paracellular absorption) compared to the same
area of normal epithelium.

The epithelium, its sensory innervation, and a profuse subepithelial microcirculation are
common features arranged for cross-talk both in guinea-pig trachea and human airway. As
may be expected, denudation immediately affected the physiology of these three juxtaposi-
tioned mucosal end organs. Thus, in the vicinity of the tracheal denudation zone (Erjefilt
et al., 1995a), and spreading further all around the large airway, the untouched epithelium
displayed a dramatic acute reduction in its stored secretions. The expelled secretions act to
protect the still unharmed epithelium and could also contribute to the plasma-derived gel.
The secretory capacity gradually returned to normal levels in a few days. It is possible that
this secretory response, in part, was mediated via the innervation. It was also noted that
as early as during the proliferation phase, which followed after covering of the denuded
area with migrating repairing epithelium, peptidergic nerve fibres reappeared, indicating that
restitution of a normal, fully differentiated epithelium is preceded by a scattered sensory
innervation. The mechanisms involved in these events, which also occur while subepithelial
fibroblasts and smooth muscle are proliferating (Erjefilt er al., 1995a), may be of a similar
nature to epithelial-mesenchymal interactions that occur in developing embryonic lungs
(Demayo et al., 2002).
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As discussed above, plasma exudation emerged as an important physiological response to
denudation, and was a response that was maintained throughout the phase during which a
new primitive epithelial lining was established. Re-epithelialization thus occurred in a milieu
enriched with plasma-derived adhesive proteins, such as fibrinogen and fibronectin, and with
growth factors, including epidermal growth factor (EGF), known to be present in plasma
(Persson and Erjefilt, 1997). Interestingly, the expression of EGF receptors is increased in
asthmatic epithelium, which has been interpreted as a sign of widespread damage and repair
(Holgate et al., 2003). Microvascular-epithelial exudation of plasma is a hallmark of asthma
and of exacerbations of COPD and has multiple properties of pathogenetic potential in these
diseases (Persson et al., 2002).

4.5.2 Granulocytes

The morphological correlate to the extravasation of plasma is the formation of small interen-
dothelial gaps in venules residing just beneath the denuded zone. Although extravasation of
granulocytes also occurs across the venular walls, these leukocytes do not use the gaps but
migrate with a maintained sealing near these gaps. Early examinations by Felix Marchand
suggested that epithelial damage in severe asthma is patchy and associated with conglom-
erates of neutrophils, eosinophils, and fibrin (Persson and Erjefilt, 1997). Such foci of
epithelial injury and associated cells and proteins have also been demonstrated in guinea-
pig airway subjected to allergic inflammation (Erjefélt er al., 1997a). Thus, patchy sites
of epithelial injury-repair are associated with activated neutrophils, which even emerge
into the lumen as domes of clustering cells. Potentially, the neutrophilic feature of severe
asthma may, in part, reflect the occurrence of epithelial injury-repair events. Eosinophils
also may abound at the epithelial repair sites (Erjefilt er al., 1996). Eosinophils have not
only been implicated in damage and epithelial shedding, but these cells may also promote
repair in vivo, since their granules contain growth-promoting proteins. A particular mode of
eosinophil degranulation in vivo — primary cytolysis followed by tissue deposition of clusters
of free extracellular granules (Persson et al., 2000) — is seen both in asthmatic airway and
in areas of speedy epithelial repair processes in guinea-pig airway. This latter observation
contributes to complicating the discussion of the eosinophil as a culprit cell in bronchial
asthma.

4.5.3 Epithelial mesenchymal cross-talk and remodelling sequelae
to epithelial repair

In the absence of compelling evidence of extensive epithelial disruption, Holgate et al. (2003)
have considered that increased epithelial expression of EGF receptors reflects widespread
epithelial damage-repair in asthma. These authors have further argued that a correlation
between over-expression of these receptors and the thickness of the lamina reticularis links
epithelial injury to an underlying remodelling response. However, there appear to be even
stronger links between epithelial shedding-repair and airway remodelling. Experimental
in vivo findings have directly demonstrated multiple remodelling effects associated with the
epithelial restitution processes that follow upon ‘disease-like shedding’. The remodelling
seen at these shedding—restitution events in vivo involves the epithelium itself, its basement
membrane, the subepithelial fibroblasts, and the smooth muscle (Persson et al., 1996). The
repairing epithelium goes through a phase of epithelial metaplasia before restitution of
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a normal epithelium. However, simple shedding-like denudation, even if repeated several
times, does not produce the goblet cell hyperplasia that occurs in inflamed or diseased
airway. Other mechanisms than simple shedding—restitution would thus be involved in
generation of an abnormal, secretory epithelial lining. Yet, repeated denudation without
any additional airway inflammatory processes is sufficient for production of a significant,
asthma-like thickening of the reticular basement membrane. Furthermore, even a single cycle
of denudation-repair evokes markedly increased mitosis in subepithelial fibroblasts and
smooth muscle cells indicating important cross-talk between epithelium and mesenchymal
cells even in minor repair events. Intriguingly, disease-like remodelling mechanisms thus
emanate from the mere restitution events occurring after shedding of epithelial cells from an
otherwise normal and uninflamed airway mucosa. Such observations contribute to putting
focus on epithelial mechanisms as a causative component in the early pathogenesis of airway
diseases (Persson et al., 1996; Holgate et al., 2003; Hackett and Knight, 2007).
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Integration of Epithelial Ion
Transport Activities into Airway
Surface Liquid Volume and Ion
Composition Requlation
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5.1 Introduction: the role of fluid in airway/
alveolar physiology

The alveoli are the primary site of gas exchange in the lung; as such, a wet surface is
necessary to facilitate dissolution of gas. The airway, although not involved in gas exchange,
conduct air to the alveoli and in the process warm, humidify, and sterilize the air as it passes
down the respiratory tree. In the airway, fluid is important, not as a solvent for gas exchange,
but as a component of innate lung defence. The fluid lining of the airway supports the flow
of secreted mucus up the respiratory tree and in this way acts as the main barrier between
inspired pathogens/particulates and the epithelial surface. In addition, a body of evidence
is emerging which demonstrates that the physical properties of mucus, e.g., viscoelastic
properties and mesh-size of the polymer gel (mucus), are hydration-dependent, and have a
major effect upon the ability of mucus to trap and clear bacteria from the airway surfaces
(Matsui et al., 2005, 2006). Thus, fluid is a crucial element lining all respiratory surfaces
from the most proximal nasal epithelium to the most distal alveolar epithelium.

Obviously, regulation of the volume of this fluid is paramount: too much fluid leads to
alveolar flooding and impaired gas exchange, while too little fluid leads to airway dehydration
and impaired innate lung defence. Little is known about the interplay of fluid transport in
the alveolus and the airway. Fluid is likely secreted in the alveolus probably by the type
I pneumocytes and absorbed in the airway by the ciliated cells of the surface epithelium.
Additional volume is added to airway surfaces by secretions from the submucosal glands
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present further up the respiratory tree in the larger airway. Lung fluid secretion is a process
that starts during early embryo development. Indeed, fluid is crucial developmentally, since
it provides a distending pressure that acts as a stimulus for developing air spaces to grow.
Paucity of lung epithelial secretion during development leads to reduced alveolarization
and thickened alveolar septae at birth. Thus, fluid is a complex and obligate component of
alveolar/airway physiology.
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Figure 5.1 Schematic illustration of the human respiratory tract. Ion channels in the apical plasma
membrane of airway epithelial cells regulate periciliary fluid depth and mucus hydration. In ciliated
cells of the superficial epithelium, the epithelial Na* channel (ENaC) mediates Na* entry, and Cl~
and water follow through trans and/or paracellular pathways, decreasing airway surface hydration. In
contrast, CL™ secretion through the cystic fibrosis transmembrane conductance reqgulator (CFTR) and/or
calcium-activated Cl™ channels (CaCC), increases surface hydration. The airway are predominantly
absorptive although Cl™ secretion can be stimulated. Submucosal glands are also known to contribute
to airway surface liquid in the more proximal airway. In the alveolus, the type II cells are thought to
be the primary cells requlating fluid volume on the alveolar surface, with both secretory and absorptive
capacity. Little is known about the interface between the alveolus and the terminal bronchioles in
terms of fluid handling. Fluid may flow from the alveolus up into the airway (A), or the alveolus
may be isolated in terms of its fluid handling, with type II cells balancing secretion and absorption
without flow up onto the airway (B)
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The surface area of the lung decreases vastly as fluid travels up the respiratory tree.
Therefore, as mucus is propelled proximally, fluid volume must be controlled to prevent
flooding of the airway (Figure 5.1). However, water transport cannot be achieved directly
by biological systems. Cells can, however, transport ions, and those ions can create osmotic
gradients that provide the driving force for water flow. The airway epithelium is leaky,
and changing the mass of electrolytes on the luminal surface sets up the osmotic gradient
required for the flow of water from the interstitial fluid to the lumen. This can occur through

Absorption Secretion
[CH] 120 mM

H,0

[Na*] 100 mM

3Na- Cr

Figure 5.2 Mechanisms of ion transport and fluid secretion in the ciliated cells of the superficial
airway epithelium. Water absorption from the ASL is achieved osmotically by increasing the mass
of NaCl transported into the basolateral domain. The Na®-K*-ATPase maintains a low [Na™] inside
the cell, and provides an electrochemical gradient for Na* to flow into the cell through apically
located ENaC channels. Na* is then pumped into the basolateral space, creating a transepithelial
potential difference (PD) (apical negative). The transepithelial PD drives CL™ from the lumen to the
basolateral space via the paracellular route. Thus, increased [NaCl] in the basolateral space forms
an osmotic gradient for water flow. In contrast, NaCl transport into the apical space provides the
osmotic gradient required for water secretion. CL™ is accumulated inside the cell by the basolaterally
located electroneutral cotransporter. Under basal conditions Cl™ accumulates to ~60mM and is in
electrochemical equilibrium across the apical membrane. Upon stimulation, basolateral K™ channels
open, and ENaC closes, hyperpolarizing the cell and driving Cl™ through apically located channels
(CFTR and/or CaCC). The transepithelial PD provides the driving force for Na* to flow paracellularly,
thus, the osmotic gradient is formed to transport water from the basolateral to the apical space
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conductive cellular pathways (i.e. aquaporins) or through the paracellular route. Therefore,
ion transport is key for solute flow.

In the airway epithelium, net salt (ion) transport reflects a balance of two main ionic
conductances in the apical membrane: a CI~ conductance dominated by the cystic fibrosis
transmembrane conductance regulator (CFTR) and a Na' conductance mediated by the
epithelial sodium channel (ENaC). CFTR and ENaC are selective ion channels and, as such,
conduct ions in response to electrochemical gradients. Vectorial ion movement ultimately
depends upon the electrochemical gradients for Nat and CI~ permeation across the apical
membrane, generated by pumps and transporters on the basolateral membranes. A summary
of the main pumps, transporters, and channels thought to underlie solute transport in airway
is shown in Figure 5.2.

5.2 Model of ion and solute transport through
airway epithelia

Absorption of Na™ from the airway surface liquid (ASL) occurs via a ‘leak-pump’ mecha-
nism. Basolaterally located, the Na™-K*-ATPase pump is abundantly expressed and accounts
for 20-30 per cent of cellular ATP metabolism under resting conditions. For every two
K™ ions transported into the cell, three Na™ ions are moved out. This charge disparity sets
up an electrical gradient across the cell membrane. It is also largely the Na*t-K*-ATPase
that sets up the inwardly directed Na™ gradient ([Na*™]; ~20mM vs. [Na*], 100 mM) and
outwardly directed K* gradient ([K*];, 100mM vs. [K*], 5 mM) observed across epithelial
cell membranes. Since there is such a large inwardly directed Nat gradient, and a smaller
inward electrical gradient (cell interior negative), opening of apical membrane Na* channels
(ENaC) results in the flow of Na™' into the cell. Na™ is then pumped out of the cell to
the basolateral interstitial space by the Na*-K*-ATPase. This transport process creates a
potential difference (PD) across the epithelium (apical side negative). This transepithelial
electrical gradient drives anions (which are predominantly CI7) out of the apical space,
through the paracellular pathway, and into the basolateral space. Thus, NaCl is transported
from the apical to the basolateral side of the epithelium and sets up an osmotic gradient for
water flow, apical to basolateral.

Secretion is achieved by CI™ transport from the basolateral to the apical surface of airway
epithelia. On the basolateral membrane, the electroneutral cotransporter Na*-K*-2Cl~ moves
CI™ into the cell. This step is vital, since ClI™ secretion can be abolished by blocking the
cotransporter with bumetanide. Na™ entering the cell through the cotransporter is pumped
back out by the Nat-K*-ATPase, while basolateral K* channels allow K* recycling at
the basolateral membrane. Cl™ is thus accumulated inside the cell (40-60 mM), but only
reaches electrochemical equilibrium across the apical membrane under resting conditions.
The opening of apical Cl~ channels (CFTR or CaCC) must be coordinated with opening
of basolateral (and possibly apical) Kt channels to hyperpolarize the cell interior and
provide an electrical driving force for CI™ to flow from the cell into the ASL. Without the
hyperpolarizing effect of opening K* channels, there would be no electrical driving force for
Cl™ secretion, and indeed, blocking K* channels inhibits C1~ secretion. The transepithelial
PD (apical side negative) generated by Cl~ secretion creates an electrical gradient for Na™
flow through the paracellular path to the apical domain. Thus, the mass of NaCl increases
in the ASL and an osmotic gradient is created for water secretion. Water flow, in response
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to the osmotic gradients set up by ion transport occurs via cellular conductive pathways,
i.e. aquaporins, or via the paracellular route.

Whether or not the secretory and absorptive processes occur in the same cells is still
debated. In the gut, secretion is predominantly from the bottom of the crypt, whereas
absorption occurs predominantly at the villi tip. Similar spatially distinct models have been
suggested for airway. However, to date, the majority of data, e.g., for channel localization and
electrophysiological studies, suggest that the superficial airway is predominantly absorptive
in nature but can be stimulated to secrete, and that the ciliated cells are the site of both
processes (Kreda er al., 2005; Rochelle et al., 2000; Tarran et al., 2006, 2005a).

5.3 Airway histology

The bronchi and bronchioles of human lungs have a pseudostratified epithelium with a
variety of different specialized cells. The superficial epithelium of the bronchi/bronchioles
is composed mainly of ciliated cells (50-70 per cent surface area), that control mucus
flow by ciliary beating, and regulate fluid transport onto the airway surface. Goblet cells
are interspersed, and secrete mucins (MUCS5AB), which form part of the polymer gel that
we know as mucus. In the upper airway and cartilaginous bronchioles, invaginations of
the epithelium form a ciliated duct into which the secretions from multiple acini collect.
These submucosal glands secrete fluid and mucins (predominantly MUC5B) and importantly,
unlike the superficial epithelium, are innervated by cholinergic nerves. Although submucosal
glands are known to secrete fluid, their function is not absolutely required, since rat and
mouse lungs are known to secrete fluid normally and yet have very few submucosal glands.

5.4 Airway ion secretion

Two main chloride secretory pathways are present in human bronchial epithelial cells, and
are often defined by the distinct second messengers that activate each pathway. The predom-
inant pathway is via the cAMP/PKA-mediated CI” channel, CFTR. It is known to be the
predominant pathway, since absence of this channel, as in cystic fibrosis, leads to reduced
fluid on airway surfaces. The CFTR pathway is thought to maintain the basal secretion
across the airway, and can be activated by such receptors that increase cAMP, e.g., adeno-
sine receptor A2b (apical), B2 receptor (basolaterally). In addition, an alternative chloride
secretory pathway (CaCC), sensitive to increases in free intracellular calcium concentration
([Ca®*],), is present in airway epithelium. This pathway can be activated by such receptors
that signal by increasing [Ca*"];, e.g., P2Y (apical), cholinergic, bradykinin (basolateral).
Together, these two pathways constitute the main conductances present on airway epithelial
cell apical membranes that determine anion and water secretion.

5.5 The cystic fibrosis transmembrane conductance regulator

5.5.1 Structure

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a 1480 amino
acid polypeptide that forms a two-membrane spanning domain anion channel. On its own,
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this polypeptide forms an ATP- and PKA-dependent low-conductance anion channel, typical
of that found in the apical membrane of many chloride secreting epithelial cells. It is
part of the superfamily of transporters called the ATP-binding cassette transporters (ABC-
transporters). Proteins are classified as ABC-transporters, based on a common motif for
ATP-binding, the nucleotide binding domain (NBD), of which CFTR has two. The NBDs of
ABC-transporters bind ATP, and energy from its subsequent hydrolysis drives the transport
of a wide range of substrates across cell membranes. In utilizing the energy from hydrolysis
of ATP, substrates can be transported against a concentration gradient. CFTR is unique
among the ABC-transporters in that ATP-hydrolysis plays a role in channel function, but
that substrate transport is based on the standing electrochemical gradients across the cell
membrane, i.e. ATP-hydrolysis regulates CFTR activity but does not drive anions against
their electrochemical gradient. While each of the NBDs is able to bind ATP, only NDB2
has ATP-hydrolytic activity, but the exact link between ATP hydrolysis and channel gating
remains controversial. Nevertheless, ATP binding is required for channel function.

In addition to the two cytoplasmic NBDs there is an R domain, which is rich in consensus
sites for PKA and PKC phosphorylation but displays no definite three-dimensional structure.
This regulatory domain is another unique feature amongst the ABC-transporters. The R
domain is thought to be involved in driving channel opening, since neither of the NBDs are
particularly affected by PKA phosphorylation.

5.5.2 Localization

The predominant location of CFTR in the airway remains controversial. Initial studies,
employing both in situ hybridization and immunohistochemistry in human airway demon-
strated that CFTR was expressed weakly in the superficial epithelium and the highest
expression levels were found in the serous cells of the submucosal gland (Engelhardt ez al.,
1992). This localization was important, since it suggested that submucosal glands were
the predominant site for Cl~ secretion and, therefore, the primary site of fluid transport.
However, functionally, CFTR is known to be present in well differentiated cultures of human
bronchial cells (Tarran et al., 2005a), which are almost exclusively composed of ciliated and
goblet cells and have a pseudostratifed structure reminiscent of the airway superficial epithe-
lium. A number of studies since have suggested that the ciliated cells of the superficial
epithelium do express CFTR and, indeed, the ciliated cells are the primary site of CFTR
expression in human airway. One comprehensive study in particular, which examined the
respiratory epithelium from the nose to the bronchioles, demonstrated that all ciliated cells,
whether on the surface epithelium or in the submucosal gland duct, exhibit CFTR expression
in all patients studied. Only half of the patients studied demonstrated CFTR expression in
the serous cells of the submucosal glands, suggesting, perhaps, that CFTR expression is
lower in these structures (Kreda ef al., 2005). Since the largest area in contact with airway
surface liquid is the airway surface, it makes sense that the superficial epithelium should
express channels to regulate solute secretion in airway.

5.6 Calcium-activated chloride channels

Calcium-activated chloride currents capable of stimulating solute transport have been known
in airway epithelium for over a decade (Knowles et al., 1991), and have generated much
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interest, since they represent a secretory pathway still functional in cystic fibrosis airway.
However, the molecular basis of these channels remains enigmatic. Unlike CFTR, the
CaCC conductance is not regulated by the second messenger cAMP. The calcium activated
currents in epithelial cells display some common features, such as the permeability sequence
I > CI" and sensitivity to niflumic acid and 4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic
acid (DIDS). These features, along with the complete dependency upon increased intracellular
Ca”" for activation of CaCCs, make discrimination of the two main secretory pathways in
airway epithelia relatively easy. However, there remains a range of diversities within the
described characteristics of CaCC, e.g., range 3—-250 pS conductances, differential regulation
by calmodulin kinase, and different calcium sensitivities, suggesting that there may be more
than one molecular candidate or at least variability in the arrangement of the molecule/s.
While no definitive channel has been identified as ‘the’ CaCC in any epithelial cells, a
number of candidates have been proposed.

5.6.1 Bestrophins

Recently, the bestrophin family of chloride channels has been proposed as the putative CaCC
underlying the calcium mediated C1™ secretory response in airway (Kunzelmann et al., 2007).
This ~70kDa protein demonstrates a hydropathy profile suggesting a protein with four to
six candidate membrane spanning domains. These domains occur within the first 360 amino
acids, the region most conserved between bestrophin family members (Tsunenari et al.,
2003). Bestrophins have a high sensitivity to Ca*" and demonstrate an ECs, for Ca*" of
~200nM, well suited to respond to the changes in [Ca®"]; generated by receptor activation
in epithelial cells. Furthermore, bestrophins 1, 2 and 3 have been detected by RT-PCR in
mouse trachea and nasal epithelium, although functional evidence of ATP-mediated chloride
secretion and bestrophin 1 protein were only found in trachea. Human lung-derived immortal
cell lines expressing bestrophin 1 were found to have ATP-stimulated chloride secretion,
whereas those cell lines not expressing bestrophin 1 failed to respond to ATP. This ATP-
mediated chloride secretion was DIDS-sensitive and could be abrogated by bestrophin 1
RNAI treatment of cells. In addition, bestrophin 1 localizes to the apical membrane of murine
tracheal epithelium (protein not detected in nasal epithelium) and proximal colon (but not
distal). An exact functional correlation was found in that ATP-mediated short circuit current
could be stimulated in tracheal and proximal colon but neither nasal or distal colon (Barro
et al., 2006). Therefore, bestrophins are still in firm contention as the channels underlying
CaCC in airway epithelial cells.

5.7 K* channels

Although K channels are less well characterized in airway epithelial cells than the apical
membrane ion channels for CI~ and Na™, they are important nonetheless. K* channels
largely determine the membrane voltage and provide the driving force for other permeant
ions. Driving force is defined by the difference between membrane potential (V,,) and
the equilibrium potential of the ion. In normal physiological conditions, the equilibrium
potentials (E,) for Na* and C1~ are ~ +68 mV and ~ —30mV respectively. Since the resting
apical membrane potential is in the —30mV range, a hyperpolarizing effect of opening K*
channels leads to an increased driving force for Na™ entry into the cell or an increased driving
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force for CI™ exit, depending on which channels are active in the membrane. Typically,
secretagogues stimulate the opening of apical chloride channels and basolateral K* channels
simultaneously, and inhibition of basolateral K* channels leads to inhibition of C1~ secretion
by reducing driving force. Similarly, opening apical membrane Na™ channels leads to cellular
depolarization, and K™ channel activation offsets that effect.

In airway epithelia, basolateral K™ conductances can be stimulated by either an increase
in [Ca®"]; or cAMP/PKA. Increased [Ca’"]; activates K.,3.1(KCNN4/hSK4) K* channels
which are sensitive to clotrimazole and Ba*" while cAMP/PKA activates the K 7.1 channel
that is sensitive to Ba*", clofilium and chromanol 293B (KCNQI1/K,LQT1) when associated
with the accessory subunit KCNE1 (Mall et al., 2000, 2003). However, these channels
display low activity under resting conditions, displaying activity only when the epithelia
are stimulated to secrete/absorb. The K* channels that maintain membrane potential under
basal conditions are largely unknown. However, a recent report suggests a role for the
Ba"-insensitive twin-pore domain K* channels (Inglis et al., 2007).

5.8 Airway ion absorption

5.8.1 Structure of the epithelial Na* channel - ENaC

In the airway epithelium, the main channel responsible for sodium, and hence, salt and water
absorption, is the epithelial sodium channel ENaC. ENaC is composed of three different
subunits («, B and vy) that share 30 per cent homology at the protein level. Each subunit has
a topology predicting two transmembrane domains, short cytoplasmic amino- and carboxy-
termini and a large extracellular loop. There is still debate about the stoichiometry of native
channel organization, since the o subunit alone can form a Na' selective pore, and co-
expression of afd or oy subunits confer channel activity, albeit well below native channel
levels. However, in vitro, co-expression of a3y subunits forms a Na® selective channel
that demonstrates characteristics of the native ENaC conductance, e.g. high Na® selectivity,
sensitivity to amiloride in nM range and slow gating characteristics. It has been proposed,
and there is some consensus, that the native protein is formed with a heterotetrameric struc-
ture of afBay subunits (Rossier, 2004). However, other regulatory subunits exist [§ ENaC
(Ji et al., 2006)], and it is unknown how all of these subunits form as a native protein. What
is known, however, is that when af3y subunits of ENaC are co-expressed, subunit turnover
decreases dramatically, suggesting that the channel is stabilized in the membrane when all
subunits interact (Valentijn er al., 1998).

5.8.2 Localization

The general pattern of expression of ENaC in respiratory structures of rodents is that of
increased ENaC expression in the distal airway, type II cells of the alveolus, and nasal
epithelium, with less abundance in the trachea. Interestingly, there is also a difference
between lung regions in the ENaC subunit mRNAs that are expressed. In general, in those
structures known to be associated with significant amiloride-sensitive ion transport capabil-
ities, e.g., mouse nasal epithelium, rat type II cells, all three ENaC mRNAs were reported.
However, in lung and trachea, which display variable amiloride-sensitive current, « ENaC
mRNA seems dominant. The bronchus, bronchioles, and alveolar type II cells also all demon-
strated a strong presence of a3y ENaC mRNA (Rochelle et al., 2000). In human lung,
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B and vy ENaC has been localized in ciliated cells of the bronchial /bronchiolar surface
epithelium, and Clara cells demonstrate detectable amounts of ENaC protein in the apical
membrane (Gaillard et al., 2000). In situ hybridization has also demonstrated a3y ENaC
mRNAs in the superficial epithelium of airway (Burch et al., 1995).

5.8.3 CFTR regulation of ENaC

While ENaC-mediated absorption may be regulated by cAMP raising agonists, CFTR plays
a central role in the regulation of ENaC activity in airway epithelia. Patch clamp studies
have demonstrated that PKA will activate ENaC in the absence of CFTR, and inhibit it
in the presence of CFTR (Stutts er al., 1995). ENaC inhibition via cAMP/PKA activation
of CFTR is physiologically appropriate, since for effective Cl~ secretion, ENaC must be
inhibited to maintain the driving force for CI™ exit. A tissue-specific interaction between
CFTR and ENaC is likely, since in sweat gland duct cells this phenomenon is not apparent.
It remains to be resolved how CFTR is capable of inhibiting ENaC activity, e.g., either by
a direct interaction or through some unknown accessory protein/pathway.

5.9 Measurement of ion and water transport
in airway epithelia

5.9.1 Ussing chamber studies

A classic technique to identify the active ion transport capacities of an epithelium is to
perform ‘Ussing chamber’ experiments. With this technique, freshly excised or cultured cells
are placed in hemi-chambers that perfuse each surface of the epithelium independently with a
defined solution, typically a Krebs bicarbonate buffer, and the tissues are continually gassed
by gas-lift devices. The transepithelial PD (V,) is measured with macroelectrodes placed near
to the apical and serosal surfaces, and V, is nulled to zero by the passage of current from two
silver/silver-C1™ electrodes placed at an ‘infinite’ distance from the epithelial surfaces. With
this technique, the open circuit V, is measured, the transepithelial resistance (R,) calculated
from the voltage response to current pulses from Ohm’s law, and the current required to null
V, to zero (the short-circuit current, /) directly measured or calculated.

The continuously short-circuited approach was developed to identify and quantitate active
ion transport by epithelia. This technique was utilized to characterize active ion transport in
freshly excised human airway epithelia, both from the upper (nasal) and lower airway (third
to sixth generation bronchi) (Knowles et al., 1984). As shown in Figure 5.3(A), the dominant
active ion transport process under short-circuit conditions is electrogenic, amiloride-sensitive
(i.e., ENaC-mediated) Na™ transport. Little, if any, secretion of Cl~ is measured under these
conditions. Studies also identified a small net component of K* secretion. This technique
also identified the capacity of human airway epithelia to secrete Cl™. For example, when the
apical membrane Na® conductance (ENaC) is blocked, the apical membrane potential (V,)
becomes more negative, generating an electrochemical potential for CI™ secretion. It should
be noted that the identification of ion fluxes under short-circuit conditions is perturbed by
the fact that short-circuiting an epithelium does modestly change driving forces for ion flow.

Epithelia can also be studied in Ussing chambers under so-called ‘open circuit conditions’,
i.e., when the spontaneous V, is not nulled. This condition more closely mimics the in vivo
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Figure 5.3 Summary of the ion transport processes of nasal and bronchial epithelia under open circuit
and short-circuited conditions as measured by radioisotope flux in the Ussing chamber. (A) Under
baseline short-circuit conditions, active jon transport is dominated by Na* absorption in nasal and
bronchial epithelia. Symmetric CL™ fluxes were observed indicating no net CL™ transport under baseline
conditions. Application of amiloride to block apical ENaC, abolished Na™ absorption and initiated CL~
secretion, an effect of cellular hyperpolarization. Under open circuit conditions, the transepithelial
PD formed by Nat absorption leaves the apical side negative and slows positive charge absorption
(Na*). In addition, the spontaneous transepithelial PD drives Cl~ ions from the lumen resulting in
net Cl™ absorption. (B) A summary of the ion transport processes as measured by nasal potential
difference in normal and CF patients. Normal nasal PDs are dominated by Na™ absorption, as shown
by their sensitivity to amiloride. Note that CF patients display much higher baseline PDs due to
increased Na™ absorption in the absence of CFTR, which is demonstrated by the large amiloride-
sensitive change in PD. Upon perfusion of low chloride, normal epithelia hyperpolarize significantly,
indicating a significant contribution to the PD by CL™, this effect is absent in CF epithelia due to
absence of the main Cl™ conductive pathway, CFTR. Isoprenaline is then added to increase cellular
cAMP, and activate CFTR, this effect is maximized in low Cl™ since there is a greater driving force
for CL™ to exit the cell down its concentration gradient into low Cl™. Again, normal nasal epithelium
hyperpolarizes in response to isoprenaline, while CF epithelia display no response. Finally, ATP is
perfused to increase intracellular Ca®" concentration via activation of P2Y, receptors, and initiate
calcium-activated chloride currents (CaCC). Both normal and CF epithelia display a robust response to
ATP since CaCC are present in CF epithelia, and are unaffected in CF. (A) Reproduced, with permission,
from the American Journal of Respiratory and Critical Care Medicine 1992, Vol. 150, pp. 271-286. (B)
Reproduced with permission from Human Gene Therapy 1995, Vol 6, pp. 445-455
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Figure 5.3 (Continued)

situation, and, combined with isotope flux experiments, has yielded important data with
respect to the function of human airway epithelia. As shown in Figure 5.3(A), Na*t absorption
persists under open circuit conditions, albeit at a somewhat slower rate, and C1™ absorption
is detected under these conditions (Boucher, 1994). Na™ absorption is the active component
of the net NaCl™ absorptive flux, with C1™ passively absorbed via the paracellular path to
preserve electroneutrality. The application of amiloride blocks Na* absorption and induces
CI™ secretion. Under these conditions, active CI™ secretion occurs via the transcellular path,
whereas Na™ is now ‘secreted’ passively in response to the electrochemical gradient via
the paracellular path. Thus, these studies have highlighted that airway epithelia can both
absorb and secrete NaCl, and that, for these functions, a relatively nonselective paracellular
path is required for ion transport under open circuit conditions. Direct measures of the
permselectivity of the paracellular path have shown that it is, indeed, nonselective (Johnson
et al., 2004).

5.10 In vivo transepithelial PDs

The transepithelial PD across airway epithelia that is generated by active ion transport can
be measured in vivo as well as in vitro. For this technique, a ‘ground’ electrode is placed in
a submucosal compartment, typically under the skin of the forearm, and a flowing solution
electrode is placed on the airway epithelial surface, with both electrodes connected via
calomel half-cells to a voltmeter. Several manoeuvres can be performed to characterize the
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ion transport processes that contribute to the basal PD (Knowles er al., 1995). Typically,
the absolute magnitude of the PD is a reflection of the rate of Na™ transport. However, any
nonspecific effects on the electrical resistance (R,) of the epithelial barrier will modify this
interpretation. The second manoeuvre, the application of amiloride to the surface, is also
employed to estimate the contribution of active Na™ absorption to the basal PD. However,
again, one must be cautious of this interpretation, as amiloride, as described above, not only
inhibits Na™ absorption, but also induces Cl~ secretion. Thus, airway epithelia that manifest
a large active Cl~ conductance may exhibit a small amiloride-sensitive PD that does not
reflect a small rate of Na™ transport, but rather, the efficient induction of Cl~ secretion.

Several manoeuvres are utilized to estimate the magnitude of Cl~ conductance in the
apical membrane. As noted above, the residual PD after the application of amiloride reflects
the capacity of the airway epithelium to secrete C1~. This Cl™ secretory capacity is a function
of both the magnitude of the apical membrane conductance and the driving force for C1~
secretion. Since these driving forces may vary in the basal state, a useful manoeuvre to
assess the resting C1~ conductance of the apical membrane is to create a very large artificial
driving force for CI™ secretion by removing all CI™ from the luminal electrode perfusate.
Under these conditions, there is a virtually ‘infinite” chemical driving force for CI™ secretion,
and hence, the response of the epithelium to ‘low C1™ solutions’ is a reasonable index of the
basal CI” conductance in the apical membrane.

Finally, manoeuvres are often performed to estimate the relative contribution of the CFTR
Cl™ conductance and the Ca”'-activated Cl~ conductance to the resting membrane Cl~
conductance and the regulation of each of these permeabilities, respectively. Typically, to
investigate the regulation of CFTR CI™ conductance, isoproterenol is included in the luminal
perfusate to raise cell cAMP and activate CFTR. Thus, the isoproterenol-sensitive PD is
a good measure of the regulated CFTR Cl™ conductance in airway epithelia. Conversely,
UTP is typically added to the luminal perfusate to activate, via P2Y, receptors, increases in
intracellular Ca®* and, hence, CaCC.

The nasal PD technique has been seminal in identifying the ion transport defects in CF, and
it has been a useful tool in identifying and characterizing novel therapeutic agents that may
normalize CF ion transport defects. Thus, as shown in Figure 5.3(B), a typical normal nasal
PD tracing reveals a basal PD of —30mV, a PD that is 40 per cent inhibited by amiloride,
a large PD response to the 0 ClI” manoeuvre, and a PD response to both isoproterenol
and UTP activation of the CFTR and CaCC conductances, respectively. In contrast, the CF
nasal PD tracings exhibit a higher resting basal PD and a larger amiloride-sensitive PD,
both reflecting increased Na™ transport rates, virtually no response to 0 ClI~ manoeuvres,
reflecting the absence of resting CFTR function, no response to isoproterenol, reflecting the
absence of cAMP-regulated CFTR conductance, and a large response to UTP, reflecting a
large CaCC conductance in the apical membrane.

5.11 Volume flow measurements

Epithelial ion transport can modulate the composition of a luminal solution, e.g., reduce the
concentration of NaCl (as in sweat), or volume (water) transported across the epithelium.
Therefore, studies were performed in which the capacity of airway epithelia to transport
volume transepithelially was examined. Miller and colleagues showed that human airway
epithelia under baseline conditions absorbed volume, consistent with net Na™ transport.
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Further, volume secretion could be initiated with the application of amiloride (Jiang et al.,
1993). These studies also suggested that CF airway epithelia hyperabsorb volume, consistent
with the raised basal rate of Na™ transport. Thus, these studies were consistent with airway
epithelia as primarily volume-transporting epithelia.

The observation that airway epithelia exhibit volume transport has two implications.
First, the prediction is that airway epithelia should be relatively water-permeable. Direct
measurements of the hydraulic permeability of the epithelium to water and osmotic water-
permeability of airway epithelia have been made in freshly excised tissues and culture
preparations (Farinas et al., 1997, Matsui et al., 2000). All data agree that human airway
epithelia are very water-permeable, with the apical membrane being the more permeable
of the two barriers. Second, because most epithelia affect isotonic volume transport, the
prediction is that the solutions on human airway surfaces are isotonic. Although a matter
of some debate in the mid-1990s, most measurements at present suggest that human airway
epithelia have an isotonic liquid on their surfaces (Knowles et al., 1997; Kotaru et al.,
2003). The Na™ concentration is somewhat lower than plasma, i.e., ~ 120mM, but the K*
concentration is raised compared to plasma, i.e., ~20-25 mM. Thus, sum of the cations x 2
predicts an isotonic solution, consistent with direct measurements of osmolality. The major
anions in the ASL are C1~ and bicarbonate, at approximately the concentrations in plasma.

5.12 Physiologically ‘thin film" measurements of ASL
volume regulation with confocal microscopy
and microelectrodes: studies of normal and CF
airway epithelia

Over the past decade, a technique has been developed that measures the physiologic regula-
tion of the ASL compartment under conditions that mimic those observed in vivo. For this
technique, well-differentiated cultured cells are utilized (Figure 5.4(A)). These preparations
exhibit the capacity to transport ions similarly to freshly excised tissues, have high water
permeabilities, secrete mucins, form two layers on their surfaces (periciliary and mucus),
and coordinate ciliary activity to effect mucus transport (Matsui et al., 1998b). To study
ASL volume regulation in these preparations, the ASL is labelled with fluorescent probes,
typically Texas red dextran to label the water compartment, and 1-wm beads to label the
mucus layer. Microelectrodes are inserted into the thin apical solution (~7um) with a
serosal macroelectrode to measure the transepithelial PD and correlate active ion transport.
Interfacing this preparation with a confocal microscope has allowed the dynamic measure-
ment of ASL volume regulation and a dissection of the components of ion transport that
mediate these processes.

The typical experiment performed on cultures maintained under standard static tissue
culture conditions between confocal measurements is shown in Figure 5.4(B-E) (Tarran
et al., 2001). In this experiment, a small volume of an ASL mimic (PBS) is added to the
apical compartment and the epithelial response to this liquid challenge monitored over time.
The normal human airway epithelial culture absorbs the added excess volume and continues
to do so until a height of ~ 7 um is reached. At this point, volume absorption stops, and this
height is maintained over many hours. A height of 7 wm appears to be appropriate for key
physiologic functions of ASL, as this height allows cilia to extend fully during the ciliary beat
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Figure 5.4 Airway surface liquid regulation in cultured human bronchial epithelial cells. (A) Perflu-
orocarbon 0s0, fixed human bronchial epithelial cultures display periciliary fluid (PCF) as a clear layer
between the cell surface and overlying mucus, cilial shafts can be seen in this layer. The cultures
develop as a pseudostratified epithelium with columnar ciliated cells and goblet cells atop the basal
cells, reminiscent of native airway epithelium. The PCL can be observed in live cells by inclusion of
a cell impermeant fluorescent marker, in this case dextran-labelled Texas red, the height of which is
measured using confocal microscopy. (B) and (C) ASL absorption is measured over time after addition
of 20wl of an ASL mimic, phosphate buffered saline (PBS), including dextran-labelled Texas red. ASL
volume starts high and over a period of 12 h is absorbed until it reaches a height of ~7um, where
it is maintained. A 7-wm ASL height allows the cilia to effectively maintain mucociliary transport.
(D) and (E) Transepithelial PD is measured after addition of 20wl of PBS. The PD initially starts high
reflecting high rates of amiloride sensitive Na* absorption. As ASL is absorbed, overall PD falls and
becomes predominantly bumetanide sensitive, reflecting a shift from a predominantly absorbing to
a predominantly secreting epithelium. Reproduced, with permission, from the American Journal of
General Physiology, 2001, 118: 223-236

cycle and move mucus. Evaluation of the bioelectric responses to volume challenge suggests
that early, the volume absorption phase is dominated by an amiloride-sensitive absorptive
process, whereas later, when volume absorption slows, Na™ absorption also slows, and CI~
secretion is induced. When ASL volume steady state is reached, absorption of Na® and
secretion of CI™ are balanced (Figure 5.5(A)). Interestingly, this response mimics studies of
freshly excised tissues, in which the initial volume stimulus was initiated by gland secretion,
followed by absorption of liquid, as measured by cryopreservation techniques (Widdicombe,
2002). Thus, this type of volume regulation appears to be a fundamental process of human
airway epithelia.

An important observation made with this technique was that CF airway epithelia, typically
missing the CFTR protein in the apical membrane, have a very different volume regulatory
response to ASL addition (Matsui et al., 1998a; Tarran et al., 2005a, 2005b). First, the added
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Figure 5.5 Regulation of ASL volume (hydration) by normal human bronchial cells under static and phasic
motion culture conditions. Each graph depicts ASL height immediately after deposition of a small volume
of PBS followed by confocal measurements. The dashed line in each graph represents the ‘normal’” ASL
height, consistent with effective mucociliary transport. The horizontal bar depicts the relative magnitudes
of Na™ absorption and Cl™ secretion as measured by microelectrode transepithelial PD (post amiloride or
post bumetanide for Na* and Cl™ transport respectively). The insert in (A), depicts the cilia as observed at
7pm ASL height, i.e., outstretched and capable of mucociliary transport. In normal airway cultures under
static conditions (A) added ASL is reabsorbed until a height of ~ 7 um is reached, the ability to reach
this height reflects the coordinated activity of Na™ absorption by ENaC and Cl~ secretion via CFTR. After
liquid deposition, Na* absorption predominates, and as ASL height approaches 7 wm, Na™ absorption slows
and CL™ secretion increases. If bumetanide is added to inhibit Cl™ secretion or nystatin is added (as an
alternative pore for cation entry) to allow unrestrained absorption, then ASL fails to be regulated to 7 um.
Cultures grown under phasic motion (B), display a higher ASL height with two Cl™ secretory components.
One component is via calcium-activated Cl™ channels (CaCC), stimulated by ATP release from the epithelium
and inhibitable by apyrase (which catalyses ATP breakdown). The second component is via CFTR, which
is stimulated by adenosine/A2b/cAMP pathway, and inhibitable by adenosine deaminase (an enzyme that
catalyses the breakdown of adenosine). (C) Thus, under resting conditions, secretion is maintained by
adenosine/A2b/cAMP activation of CFTR. ATP is rapidly hydrolysed in ASL, producing adenosine, and the
low rate of ATP release under resting conditions fails to stimulate CaCC. However, under phasic motion (to
produce shear stress), ATP release rate increases and ATP/Ca®" activation of CaCC adds to the secretion by
CFTR, while inhibiting Na* absorption through ENaC
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ASL is absorbed more rapidly, consistent with accelerated net Na* absorption. Perhaps
more importantly, there is an absence of the appropriate regulation of ASL homeostasis.
Specifically, CF airway epithelia absorb all of the liquid from the airway surface, so that
cilia cannot extend and beat normally. A corollary is that CF cultures cannot maintain mucus
transport under these conditions for a period longer than 24 h.

Bioelectric measurements yielded insights into the mechanisms of this dysfunction. First,
Na™ absorption is not regulated as a function of ASL volume, e.g., Na™ absorption persists
unabated at 48h despite the fact that virtually all liquid has been removed. Second, CF
epithelia cannot initiate CI™ secretion as the volume of liquid on airway surfaces thins/reduces
and approaches 7 pm. Both the failure to regulate ENaC, and the inability to initiate C1~
secretion, reflect the absence of CFTR function in the CF epithelium.

5.13 The role of physiologic airway shear-stress in ion
transport and ASL regulation

A recent improvement in this technique has been the capacity to maintain cells under the
phasic motion conditions that reprise the mechanical stresses that are exerted on the airway
epithelia in vivo during normal tidal breathing (Button et al., 2007; Tarran et al., 2005b).
Techniques to mimic both the surface airflow during tidal breathing and the transmural
compressive stress that occurs during tidal breathing have been developed. Quantitatively
different results are observed with respect to ASL volume regulation under these phasic
motion conditions. In normal airway epithelia, the height of ASL on airway surfaces increases
from ~7 to 14um in the steady state. Importantly, in CF airway epithelia, ASL height
approximates 7 wm. Correlative mucus transport measurements reveal that mucus transport
rates are faster in normals under phasic motion conditions, and restored to measurable
levels in CF. Subsequent studies, in which the mucus layer was maintained on airway
surfaces, suggested that the extra fluid observed on the normal airway surface during
phasic motion conditions is ‘stored’ in the mucus layer, i.e., it acts as a reservoir (Tarran
et al., 2001).

These observations raise the intriguing question of what regulates the volume of liquid
on airway surfaces in health and disease. This issue is complex and is not fully understood.
There appears to be no absolute ASL volume sensor; for example, airway epithelia without
cilia appear to exhibit ASL volume regulation quite normally. Rather, it appears likely that
ASL volume is not fixed, but can vary in response to local stresses on the surface and
disease. For example, it may be more advantageous to have more liquid on airway surfaces
during infection and inflammation, increasing the efficiency of mucus transport.

There appear to be at least two pathways that may be important in regulating the ion
transport processes that mediate ASL volume homeostasis. First, regulation of the activation
state of ENaC (see above) sets the rate of Na™ transport by the epithelium. It appears that the
epithelial Na™ channel can be activated on airway surfaces by channel-activating proteases
(CAP) that convert silent ENaC on the apical membrane into active channels (Vallet et al.,
1997). Further, it appears that airway epithelia release antiproteases into ASL that can inhibit
the activation of CAPs (Bridges et al., 2001; Tarran et al., 2006; Tong et al., 2004). These
data have suggested that the antiprotease activity may, in a concentration-dependent manner,
regulate the activity of CAPs and hence, ENaC. For example, as ASL volume is reduced,
CAP inhibitor concentrations may increase, more effectively inhibit CAP, and slow the rate
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of Na® absorption. Thus, it is very possible that the CAP/CAP inhibitor system may be
critically involved in determining overall rates of Na* transport and the sensitivity of the
epithelium to CI™ secretagogues.

The second major system that controls the volume of ASL is the extracellular nucleotide—
nucleoside system (Lazarowski et al., 2004; Lazarowski and Boucher, 2000). The key concept
is that the rate of ATP release from the epithelium, reflecting both a basal rate of release and a
shear stress-regulated component, is a major determinant of ASL volume (Figure 5.5 (A-C))
(Tarran et al., 2005b). It is important to note that when ATP is released onto the airway
surface, there is a complex set of enzymes that will metabolize ATP ultimately to adenosine,
which then can be further metabolized to inosine, with both nucleosides being scavenged
and taken back up into the epithelial cells by specific transporters (Lazarowski et al., 2004).
The ratio of ATP to adenosine on airway surfaces will depend on the rate of release and the
distribution of the enzymes on the airway surface, both of these processes can be regulated
by disease, e.g., inflammation.

ATP itself regulates ASL volume via interactions with a luminally positioned P2Y,
receptor. This receptor is activated by ATP in a concentration-dependent manner to inhibit
ENaC via likely at least two mechanisms, by hydrolysis of inner leaflet PIP2 and PKC
activation (Ma et al., 2002; Yue et al., 2002). The inhibition of the apical membrane
Na™ conductance poises the epithelium to secrete Cl~ in response to activation of apical
membrane CI™ conductances. ATP interactions with the P2Y, receptor activate both CFTR,
via a PKC-dependent mechanism, and CaCC, by an IP3-dependent mechanism (Mason et al.,
1991). Thus, the net effect of ATP activation of P2Y, receptors is to initiate NaCl and
volume secretion.

In parallel, adenosine activates a luminally positioned A,, receptor that is linked to the
formation of cAMP in cells (Huang et al., 2001). cAMP, via an interaction with PKA,
activates the CFTR protein in the apical membrane. CFTR, by as yet unknown mechanisms,
can inhibit ENaC itself, and activation of CFTR in the presence of ENaC inhibition gener-
ates Cl™ secretion. Thus, normal human airway epithelia exhibit redundant mechanisms
for responding to ATP release with secretion, i.e., via ATP/P2Y,-R and adenosine/A,,
signalling. Importantly, it is likely that the overall secretion of ASL is ultimately dependent
on the nucleotide—nucleoside system.

The physiology of the nucleotide—nucleoside system also explains the differences in phys-
iology for both normal and CF cultures under static phasic motion conditions. For example,
under static culture conditions, the rate of ATP release is low (300fmol/cm?/min), and
the enzyme system on the airway surface converts most ATP to adenosine (ATP concen-
tration ~ 1 nM; adenosine concentration ~ 100nM). Under these conditions, normal airway
epithelia have the capacity to produce sufficient ASL to maintain 7pm of volume on
the surface and efficient mucus transport via the ADO-A, -CFTR axis. In contrast, CF
cultures fail to respond to activation of A,, receptors by adenosine due to the absence
of CFTR protein in the apical membrane. Thus, they cannot inhibit ENaC and initiate
CI" secretion as normal cultures do. Under phasic motion conditions, the rate of ATP
release is increased ~ 10-fold. Under these conditions, the ASL ATP concentrations reach
~ 30-40nM, and the adenosine concentrations, ~ 200nM. In normal airway epithelia,
the P2Y,—R activation of CFTR and CaCC produces the increase in ASL height/volume
from 7pm to 14pm, as noted above, whereas in CF cultures, the P2Y,—R activa-
tion accounts for the increase from 3pum to ~ 7pum of liquid observed under these
conditions.
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5.14 Fluid transport across the alveolar epithelium

The distal airway is comprised of two main cell types, the alveolar type I and the alveolar
type II cells. Type I cells are large squamous-like cells that constitute most of the internal
surface area of the lung, while type II cells are smaller cuboidal cells that cover 2—5 per cent
of the alveolar surface (Matthay et al., 2005). Since alveolar type II cells can be readily
isolated in vitro, they have been studied at length.

Type II cells have been identified as the progenitor cells for the alveolar epithelium, and
have been shown to be responsible for restructuring the distal airway after damage to the
very susceptible type I cells (Mason, 2006). Type II cells have also been shown to synthe-
size and secrete surfactant to facilitate proper alveolar expansion (Rooney ef al., 1994).
Moreover, type II cells possess the ability for Na™ and Cl~ transport, mediating crucial
fluid homeostasis within the distal airway. Na™ uptake occurs on the apical surface of the
type II cell, in large part, through an amiloride-sensitive epithelial Na™ channel (ENaC)
(Eaton et al., 2004; Jain et al., 1999; Yue et al., 1995). In the lung, in situ hybridization
studies have identified the presence of mRNA for all three subunits of ENaC in vivo and
in vitro (Jain et al., 1999; Yue et al., 1995). Na™ diffuses through the alveolar cell to the
basolateral surface and is pumped into the interstitium by the ouabain-sensitive Nat, K*-
ATPase pumps (Eaton et al., 2004; Factor er al., 1998). Ussing chamber studies have
identified functional ENaC-mediated vectorial ion transport in vitro across high-resistance
rat alveolar type II cell monolayers by measuring short-circuit currents (/) (Factor et al.,
2007). Collectively, this well-regulated process is important for maintaining fluid home-
ostasis within the alveolus by aiding in the clearance of alveolar edema within intact
alveoli.

In addition to understanding the process of the clearance of excess fluid within the distal
airway, there have also been studies exploring the transport pathways involved in basal
lung Na™ and water movement. The exact role that ENaC plays, in the absence of agents
that are known to stimulate the activity of ENaC, is not clearly understood. However,
using RNA interference for a-ENaC, current studies suggested the critical role for ENaC
upon [3-adrenoceptor stimulation of lung fluid absorption, whereas baseline fluid absorption
appeared less dependent on ENaC (Li and Folkesson, 2005).

Although numerous studies have focused on the role of active Na™ transport as a primary
determinant for regulating fluid transport across the distal alveolar epithelium, the involve-
ment of CI™ transport pathways, mediated by CFTR, and their physiological significance to
vectorial fluid transport across the distal lung is still unresolved. Experiments in wild-type
mice, and the ex vivo human lung, demonstrated that fluid absorption caused by stimulation
was inhibited by glibenclamide, suggesting a role for CFTR-dependent CI™ absorption (Fang
et al., 2002, 2006). Moreover, both fluid absorption and C1~ uptake from the distal airspace
were stimulated by (3-agonists in wild type, but not in CFTR-mutant (AF508) mice.

More recently, alveolar type II cells were identified as one of the major cell types within
the distal lung where CFTR may play a role in cAMP-mediated fluid transport, demonstrating
that CFTR is expressed in alveolar type II cells, and that the CFTR Cl~ channel contributes
to cAMP-regulated fluid transport within the distal airspace of the lung (Fang et al., 2002,
2006; Leroy et al., 2006). However, a challenge still remains in understanding the relative
roles of CFTR-mediated Cl™ secretion or absorption in the alveolus.

Alveolar type I cells, which cover approximately 95 per cent of the alveolar surface,
are large, flat cells whose primary function is to mediate gas exchange; however, their
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role in ion transport is still unclear. Current thoughts are that type II cells are the main sites
of ion transport in the lung, while type I cells provide a passive barrier, rather than an active
function. Detailed studies of type I cells have been limited to date, due to the difficulty
of maintaining them in cell culture. However, recent studies have demonstrated that type
I cells may not only express the machinery for active ion transport, but more importantly,
exhibit functional ion transport. For instance, several studies have established a possible
contribution of type I cells to vectorial fluid transport. To date, it is established that type I
cells express ENaC (Johnson et al., 2002), Na™, K*-ATPase (Borok et al., 2002), and aqua-
porins, specifically aquaporin 5, an integral membrane protein that facilitates water transport
across cell membranes in response to an osmotic gradient (Verkman, 2007). Interestingly,
studies have also found functional CFTR in freshly isolated type I cells (Johnson et al.,
2006), further demonstrating the potential importance of type I cells in maintaining fluid
balance.

Important advances have been made in the understanding of the reabsorption of fluid and
solutes by the distal alveolar epithelium with characterization of Na® and CI~ transporters
under physiological and pathological conditions. Understanding the molecular and biophys-
ical properties of these transporters in vivo, and how these channels are regulated within
physiological and pathological environments, is crucial to developing targeted therapeutics.
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6.1 Introduction

In general, the mucociliary apparatus serves several important functions in the airway. The
major function is to provide a mechanical barrier for trapping particulates in the surface
liquid covering the airway epithelium and clearing them from the tracheobronchial tree
by ciliary action, a mechanism called mucociliary clearance. Cilia are the motors for this
transport while mucus (see Chapter 7) serves as the transport vehicle for foreign substances.

Cilia are restricted to the conductive airway proximal of the respiratory bronchioles. While
the size of the total alveolar surface of a normal human lung is approximately 85m?, the
ciliated surface measures only about 0.15 m?. This ciliated area, however, is responsible for
propelling all particles deposited onto the airway surface to the pharynx. Cilia beat in a low-
viscosity, aqueous environment called the periciliary liquid layer. This layer is covered by
mucus, which binds and entraps deposited particles for transportation out of the airway. For
mucociliary transport to be effective, several epithelial functions need to properly interact
with each other, including epithelial water and ion transport (see Chapter 5), mucin secretion
(see Chapter 7), and ciliary action. If mucociliary clearance fails, airway and lung disease
ensue as illustrated by diseases such as chronic bronchitis, cystic fibrosis or primary ciliary
dyskinesia. This chapter will focus on the motor aspect of this transport, namely the cilia,
including their structure and function as well as the relation of their functional failure to
diseases.

6.2 Structure

Each motile human cilium is approximately 6—7um long and 0.2-0.3 wm in diameter.
Structurally, the cilium consists of a microtubular axoneme surrounded by a membrane
that is in continuation with the plasma membrane of the cell but seems to contain specific
proteins otherwise not found in the apical membrane and vice versa. The axoneme is
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made up of microtubules, dynein arms, radial spokes and interdoublet links (Figure 6.1).
The ultrastructure of axonemes has been preserved throughout evolution and has been
well characterized by electron microscopy. In addition, recent advances in proteomics have
enabled delineation of a catalogue of ciliary proteins. Pazour et al. identified 360 proteins
with high confidence and an additional 292 proteins with moderate confidence in flagella of
Chlamydomonas rheinhardii (Pazour et al., 2005), while Ostrowski et al. identified more than
200 proteins and over 200 expressed sequence tags (ESTs) in human axonemes (Ostrowski
et al., 2002). Such catalogues make clear that the axoneme is an incredibly complex structure
and remind us that we are still far from understanding its structure—function relationship
completely. This section can only provide a brief overview of the complexity of the ciliary
structure and function.

Radial NS

Spoke B —~
mg 00

Outer dynein arm Inner arm

Figure 6.1 Structure of respiratory cilia. (A) Transverse section by transmission electron microscopy
through an ovine cilium with a schematic and explanations below. Bar is 0.3 wm. (B) Single airway
epithelial cell by scanning electron microscopy. Bar is 5um. (C) Surface of ciliated ovine airway
epithelium by scanning electron microscopy. Magnification x 2000

6.2.1 Membrane

Until recently, there has been little information available on the composition and function
of human airway ciliary membrane proteins. In the proteomic analysis by Pazour et al.
mentioned above, 39 of the identified 360 proteins were known to be membrane components
(Pazour et al., 2005). The identified proteins included six ion pumps or channels, three plasma
membrane Ca®*-ATPases and four closely related proteins that have 8 to 12 transmembrane
helixes, and a domain that is a sensory motif involved in detecting such diverse stimuli as
light, oxygen, redox state and small ligands (Taylor and Zhulin, 1999). Identification of the
latter proteins suggests that the ciliary membrane performs an important sensory and signal
transduction function. This is a relatively new concept for motile cilia, even though it has been
known that cilia can increase their beating force when adjusting to the changes in the outside
environment such as increasing viscosity of the periciliary fluid layer (Johnson et al., 1991).
Thus, signalling molecules could be expressed on the ciliary membrane. In support of this
hypothesis, recent publications describe expression of the tyrosine kinases Tie-1 and Tie-2
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(Teilmann and Christensen, 2005), the transient receptor potential vaniloid 4 (TRPV4) cation
channel and polycystin-1 and polycystin-2 (Teilmann er al., 2005) on motile cilia of the
oviduct in mice and humans. TRPV4 has been shown to regulate ciliary beat frequency (CBF)
in hamster oviduct in response to increasing viscosity by allowing Ca*" influx (Andrade
et al., 2005). Thus, an increasing number of publications suggest that the ciliary membrane is
important in regulating CBF and beating force. Other functions may also be attributed to the
ciliary membrane as a recent publication reveals expression of the organic cation/carnitine
transporter N2 (OCTN?2) at this location (Horvath et al., 2006).

6.2.2 Axoneme

The axoneme is the detergent-resistant, membrane-stripped structure of the cilium. The
ultrastructure of motile axonemes is typically described as a 9 + 2 arrangement of doublet
microtubules as seen in transmission electron microscopy studies (Figure 6.1). But besides
microtubules, cilia also contain a large number of other structural elements including inner
and outer dynein arms (the motors of movement), radial and circumferential spokes and
interdoublet links (Satir and Sleigh, 1990).

The outer microtubular doublets consist of an A and B subfibre, both assembled from
o and B tubulin heterodimers (Nogales et al., 1999) with the polymerizing (4) end at the
ciliary tip. There, the doublets simplify to single tubules (subfibre A) which insert into a
disc that usually forms the cytoplasmic surface of a transmembrane complex, called the
ciliary crown (Satir and Sleigh, 1990). At the base, the axoneme ends on a centriole, called
a basal body, where cytoplasmic microtubules also attach, thereby stabilizing the ciliary
machinery on the cytoskeleton. There seems to be a ‘gate’ at the ciliary base, controlling
what is allowed to enter the cilium. While small molecules can likely enter the cilium by
diffusion (calcium and cAMP for instance), others need to be transported via intraflagellar
transport, a feature immensely important for proper assembly and function of cilia (Scholey
and Anderson, 2006; Rosenbaum and Witman, 2002).

Radial and circumferential linkages integrate the individual microtubules into a func-
tioning axoneme (Satir and Sleigh, 1990). The T-shaped radial spokes connect the doublet
microtubules to the central pair complex. They usually are arranged in groups of three
along subfibre A and extend the entire ciliary length with a 96-nm period (McEwen et al.,
1986). Studies of Chlamydomonas revealed that radial spokes contain at least 23 distinct
polypeptides (Yang et al., 2001; Piperno et al., 1981), with a combined molecular mass of
approximately 1200 kDa. Many of these identified proteins are predicted to contain domains
associated with signal transduction, including Ca®"-, AKAP- and nucleotide-binding domains
(Yang et al., 2006). These studies show that radial spokes are far more than just connectors
between microtubules, at least in Chlamydomonas, but likely also in mammalian cilia (even
though the regulation of beating is somewhat different between the two).

Interdoublet links were termed nexins (Stephens, 1970). Nexins are arranged along the
doublets every 86 nm between adjacent subfibres A and B (Warner, 1976). Recent studies
using cryoelectron tomography (Nicastro et al., 2006) interpret nexin as a major part of
the dynein regulatory complex (see below) with connection to the A subfibre, close to
the attachment of the second radial spoke, and the adjacent B subfibre. This arrangement
suggests that nexins may mediate regulatory signals between radial spokes and inner and
outer dynein arms. The initially predicted elastic character of the protein (Warner, 1976) is
supported by its zigzag structure (Nicastro et al., 2006).
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Dyneins are the force-producing molecular motors that cause the doublet microtubules to
slide with respect to one another (Satir and Christensen, 2006). Outer and inner dynein arms
are attached to the dynein regulatory complex (Nicastro et al., 2006). All outer dynein arms
have the same structure in electron microscopy studies. In mammalian tracheal cilia, the
outer dynein arm is a two-headed bouquet-like molecule with a molecular size of 1-2 million
Da (Hastie et al., 1988). Each head contains a heavy chain ATPase of 400 000-500 000 Da.
During ciliary beating, these dynein heavy chains interact with adjacent microtubules and
move the microtubules relative to each other. According to studies in Chlamydomonas, the
outer dynein arm is the frequency-regulating center of the cilium (Brokaw and Kamiya,
1987), and some limited studies in patients who suffer from respiratory illnesses due to
missing outer dynein arms seem to confirm this notion (Chilvers et al., 2003). Further
sophisticated analysis of beating patterns are now under way to evaluate whether these data
can be confirmed in a large population (C. William Davis, personal communication).

Inner dynein arms are structurally and functionally more complex than outer dynein arms.
In Chlamydomonas, at least eight different inner-arm dynein heavy chains are organized
with various dynein intermediate and light chains into seven distinct complexes: one two-
headed dynein and six single-headed isoforms (Kamiya, 2002). By electron microscopy one
double-headed and five single-headed inner dynein arm complexes could be shown (Nicastro
et al., 2006).

As already exemplified by the assembly of nexins and radial spokes, cilia are built as
repetitive ‘modules’ along the ciliary axis. The basic module is 96 nm in length, consisting
of four outer dynein arms, three inner dynein arms, three radial spokes and one pair of
interdoublet links (Satir and Sleigh, 1990).

6.3 Function

6.3.1 Beat pattern of single cilia

After an effective stroke in the direction of mucus transport, the cilium goes through a
recovery stroke by swinging almost 180° horizontally backward more closely to the cell
surface and in a plane perpendicular to that surface. Extended almost to full length, the
effective stroke reaches a maximal velocity of 1 mm s~! at the ciliary tip describing an arc
of approximately 110°, thereby propelling the mucus towards the pharynx. The effective
stroke is approximately two to three times faster than the recovery stroke (Sanderson and
Dirksen, 1985). These early studies suggested that the cilium rests shortly after completing
the effective stroke before resuming motion into the recovery and effective strokes. Recent
data, however, have started to cast doubt on the resting phase of the cilium (P. Sears and
C. William Davis, personal communication).

Dyneins are the motor molecules and they produce sliding of the microtubules relative
to each other. Since the motor activity is restricted to a single polarity, the movement can
only go in one direction. In order to achieve three-dimensional motion, some asynchrony of
the arm activity must therefore be present. A hypothesis for how this asynchrony may work
was provided by the switch point theory (Satir and Sleigh, 1990). This hypothesis states that
half of the doublets of the axoneme have active arms when the axoneme is moving through
its effective stroke and that the other half has active arms during the return stoke. When a
switch is blocked, the cilia will come to rest in one specific position, no matter where in the
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beat cycle the block is applied. Blocking the second switch will lead to ciliary arrest in a
second position (Satir and Sleigh, 1990). As shown in mussel gill cilia, one arrest position
is near the beginning of the effective stroke and the second is near the beginning of the
recovery stroke (Wais-Steider and Satir, 1979). The overall movement, however, is more
complicated and more work is needed to really understand how dynein arms can bring about
a complex motion in their arrangement in the axoneme.

6.3.2 Coordination of ciliary beat

Cilia are oriented to beat in the same, or at least similar, direction within a plane roughly
perpendicular to the epithelial surface. How cilia align during development to beat in the
same direction remains a mystery. The coordination between beating cilia gives rise to the
metachronal wave. The wavelength of a metachronal wave has been measured to be around
5-9wm. The wave propagation has been reported at different angles (likely depending on
the length of the measurement field) and up to 125° clockwise to the direction of the
effective stroke (Gheber and Priel, 1994; Wong et al., 1993). The mechanisms of how cilia
are coordinated to create these waves are not well understood. Cilia on single cells seem
to beat together (personal unpublished observations and Gheber and Priel, 1989), but this
is not necessarily true for cilia on different cells if the cilia of these cells are farther apart
than about 10 wm (Gheber and Priel, 1989). These findings thus imply that the close spatial
relationship between cilia is important for their coordination. Furthermore, the environment
in which cilia beat consists at least in part of fluid; thus, significant hydrodynamic forces
must exist between beating cilia. These hydrodynamic interactions are believed to be the
most important factor for ciliary coordination on epithelial surfaces (Gheber et al., 1998)
and may explain why the lengths of metachronal waves are limited (Gheber and Priel, 1989;
Sanderson and Sleigh, 1981a).

6.3.3 Regulation of CBF

CBF changes are modulated by changes in the phosphorylation state of ciliary targets, the
intracellular calcium concentration ([Ca®"],), intracellular pH (pH,) as well as changes in
[HCO; /CO,];, independent of pH changes (Figures 6.2 and 6.3).

cAMP-dependent modulation of CBF

It is well accepted that axonemal beating can be stimulated by cAMP in different mammalian
species (Sanderson and Dirksen, 1989; Salathe et al., 1993a; Wyatt et al., 1998, 2005; Di
Benedetto ef al., 1991). Sources of cAMP in airway epithelial cells are usually thought to
be the G-protein coupled, transmembrane adenylyl cyclases (tmAC). However, the pres-
ence of soluble adenylyl cyclase (SAC) has been described as well (Schmid er al., 2005)
and cAMP from this source could be important for ciliary beating. Therefore, the cell
has multiple possibilities to regulate CBF via increases in cAMP: through stimulation
of G-protein-coupled receptors (e.g., B2- or A2b receptors, Salathe, 2002; Morse et al.,
2001), direct calcium activation of tmACs, and activation of sAC by CO,/HCO;~ (Schmid
et al., 2005).

Phosphodiesterases are strategically localized around the areas where cAMP is produced
to create micro-domains with high concentrations of cAMP that is not allowed to diffuse
freely throughout the cell. It seems that the effects of cAMP on the axoneme and thus on
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Figure 6.2 Diagram of signalling pathways that increase CBF. See text for details

ciliary beating are mainly mediated by protein kinase A (PKA), which is phosphorylating
an outer arm dynein light chain. This target was originally described in Paramecium but it
is also found in several mammalian cilia including the human airway axoneme.

Calcium

Whereas cAMP-dependent regulation of CBF seems to be similar between unicellular organ-
isms and mammals, the regulation of CBF by Ca’" is, at least in some aspects, different. In
mammals, elevation of [Ca®"]; is always associated with an increase of CBF. The regulation
of CBF by Ca®" occurs within one beat cycle and only small changes in [Ca®"]; are needed
to change CBF (Salathe and Bookman, 1999; Lansley and Sanderson, 1999; Zhang and
Sanderson, 2003a). The mechanism of the Ca*"-mediated regulation of CBF is debated.
Even though some reports indicated the involvement of kinases in the CBF response to initial
Ca”" changes, others have provided clear evidence that Ca*" acts directly on a ciliary target
(Salathe and Bookman, 1999; Zhang and Sanderson, 2003a). It is also clear, however, that
transient Ca*" increases can activate additional pathways that have an effect on CBF such
as cAMP and ¢cGMP pathways (Zhang and Sanderson, 2003a, 2003b; Lieb er al., 2002).
Whether or not the initial Ca®" response requires a baseline level of cyclic nucleotides
(Ma et al., 2002) remains unclear.
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Figure 6.3 Diagram of signalling pathways that decrease CBF. See text for details

Cyclic GMP modulation of CBF

c¢GMP is produced by activation of either soluble or membrane-bound guanylyl cyclase.
The membrane-bound form is stimulated by c-type natriuretic peptide and atrial natriuretic
peptide and the soluble form by nitric oxide (Padayatti et al., 2004). cGMP is described to
elevate CBF in mammalian airway cells, involving the activation of PKG (Wyatt ef al., 1998,
2005; Geary et al., 1995). In bovine axonemes, CBF increases are similar upon stimulation
of comparable concentrations of cAMP and cGMP, but the highest stimulation was achieved
with a combination of cAMP and cGMP (Wyatt et al., 2005). cGMP has been shown to
regulate CBF in rabbit airway in both a Ca*"-dependent and an independent manner. Since
the cGMP-PKG signalling pathway is not required for rapid, calcium-dependent increases in
CBF, cGMP seems to act independently of Ca®* (Zhang and Sanderson, 2003b). However,
calcium can also activate the cGMP-dependent pathway (Zhang and Sanderson, 2003b).

pH;-dependent modulation of CBF

CBF in human airway epithelial cells is also regulated directly by pH,. Changes in extra-
cellular pH per se (without influencing pH;) seems to have only minimal effects on CBF,
unless the pH becomes extreme and likely changes pH, (Clary-Meinesz et al., 1998; Kienast
et al., 1994). On the other hand, small changes in pH; have profound effects on CBF
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(Sutto et al., 2004). Alkalization increases CBF whereas acidification decreases CBF and
these changes are not related to PKA activation/inhibition or influences on other protein
kinases and phosphatases (Sutto er al., 2004). These findings therefore support a direct
effect of pH; on CBF. In favour of this hypothesis, human spermatozoa lacking outer dynein
arms failed to exhibit higher beat frequency during mild alkalization in contrast to normal
spermatozoa (Keskes et al., 1998).

6.4 Ciliary dysfunction associated with disease

6.4.1 Primary ciliary dyskinesia (PCD)

Motile cilia play a crucial role in clearing mucus and debris from the airway. If cilia
are dysfunctional, airway disease ensues. This is clearly demonstrated in patients suffering
from primary ciliary dyskinesia or PCD (e.g., Mitchison et al., 2006; Moller et al., 2006).
A report of a patient with symptoms of bronchiectasis and situs inversus one hundred years
ago is likely the first account of PCD (Siewert, 1904). Kartagener added chronic sinusitis
to the syndrome that was then named after him. About thirty years ago, abnormalities in
the ultrastructural composition of motile cilia were finally recognized by Afzelius as the
cause of PCD (Afzelius, 1976). Many clinical features of PCD are thus related to impaired
mucociliary clearance and include rhinitis, sinusitis, otitis media, and chronic productive
cough. The loss of normal mucociliary function leads to bronchiectasis.

There is considerable heterogeneity of dynein arm abnormalities in these patients. A recent
study analysing the different defects reported that 43 per cent of PCD patients have outer
dynein arm defects, 29 per cent have inner dynein arm defects, and 24 per cent have defects
of both arms (Noone et al., 2004). However, anomalies of the central microtubular pairs,
radial spokes, or nexin links and abnormal alignment of the beating plane can also cause
abnormal ciliary beating and thus lead to PCD.

Genetic approaches have elucidated at least some of the heterogeneous molecular defects
underlying PCD (reviewed in Zariwala et al., 2006) by focusing on genetic linkage analysis
and candidate gene analysis. Linkage analysis has identified several PCD loci, including
DNAHS5 on chromosome 5pl5, CILD2 on 19q, and additional loci on 16p12 and 15q13-15.
Selection of candidate genes for mutational analysis has also proved successful with identi-
fication of mutations in DNAII on chromosome 9p13-p21 and DNAHI1 on 7pl5.

The reasons for situs inversus totalis in patients with PCD has been at least partially
elucidated. The cloning of an axonemal dynein heavy-chain gene, left/right-dynein, that was
mutated in a strain of mice with a 50 per cent incidence of situs inversus, was the first clear
indication that situs inversus was related to a ciliary defect (Supp et al., 1997). Then, cilia
were found in the embryonic node at the time of left-right asymmetry determination and
these cilia were motile despite their ‘940’ ultrastructure. This motility creates a directional
flow across the embryonic node that seems to determine left-right asymmetry (McGrath
et al., 2003; Hirokawa et al., 2006; Nonaka et al., 1998).

6.4.2 Other airway diseases associated with abnormal ciliary function
Bacteria, bacterial products, and viruses

Hemophilus influenzae, a bacterium commonly encountered in chronic bronchitis, can induce
epithelial cell damage (Dowling et al., 1998) and ciliary dysfunction (Wilson et al., 1985).
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In addition, bacterial products from Pseudomonas aeruginosa such as hydroxyphenazine,
pyocyanin, and a thamnolipid as well as bacterial culture supernatants have been shown to
decrease CBF (Wilson ef al., 1985, 1987, 1988; Jackowski et al., 1991; Hingley et al., 1986;
Kanthakumar et al., 1993; Wilson and Cole, 1988). While pyocyanin can lower cAMP and
ATP levels of cells (Kantar er al., 1994), pyocyanin and 1-hydroxyphenazine also stimulate
inflammatory cells to release reactive oxygen species (Jackowski er al., 1991). In fact,
high concentrations of radicals have been reported to decrease CBF (e.g., Min et al., 1999;
Burman and Martin, 1986; Kantar et al., 1994) and even lower concentrations (>10 M) of
hydrogen peroxide reduce CBF (Jackowski et al., 1991; Kobayashi et al., 1992), possibly
by activating PKC (Kobayashi et al., 1992). In fact, the finding of decreased CBF upon
PKC activation has been consistent in all mammalian cilia examined (Kobayashi et al.,
1989; Wyatt et al., 2000; Wong et al., 1998), even though the mechanisms by which PKC
inhibits CBF are not fully understood. Whether or not a ciliary membrane phosphorylation
target for PKC found in ovine cilia (Salathe et al., 1993b) plays a role needs further
examination.

Mycoplasma pneumoniae (Biberfeld and Biberfeld, 1970) and viruses especially from
the influenza group (Camner et al., 1973a) can cause epithelial disruption and mucociliary
dysfunction if more than 50 per cent of ciliated cells are destroyed (Battista et al., 1972).

Chronic bronchitis

Mucociliary clearance is impaired at least during exacerbations of chronic bronchitis
(Svartengren et al., 1996; Dirksen et al., 1987; Vastag et al., 1985; Mossberg et al., 1976;
Santa Cruz et al., 1974) and COPD (Smaldone et al., 1993, Camner et al., 1973b). Whether
or not ciliary dysfunction is involved remains a subject of debate. However, there are
detrimental effects on cilia encountered in these diseases.

In chronic bronchitis, airway inflammation with neutrophils and bacterial infections are
common. The effects of bacterial products on cilia were discussed above. In addition,
neutrophil elastase causes abnormal ciliary function, possibly by disruption of epithelial
barriers (Amitani et al., 1991; Smallman er al., 1984; Tegner et al., 1979). Airway infec-
tion and inflammation can lead to acquired ciliary disorders including misalignments of
the central microtubules between adjacent cilia, compound cilia, and supernumerary micro-
tubules (Afzelius er al., 1983), all of which may contribute to mucociliary dysfunction.
Finally, airway acidification during COPD and bronchiectasis exacerbations (Kostikas et al.,
2002) may adversely affect cilia (see above).

Asthma

Mucociliary clearance is also dysfunctional during asthma exacerbations (Ahmed et al.,
1981). In vitro studies, however, showed that ciliary activity was not depressed upon allergen
challenge (Maurer et al., 1982b; Wanner et al., 1986). In fact, inflammatory mediators
usually stimulated ciliary beating (Maurer et al., 1982a; Tamaoki et al., 1991). There were
notable exceptions, however, that caused ciliary dysfunction including platelet activating
factor (Seybold et al., 1990; Ohashi et al., 1994; Ganbo et al., 1991), eosinophilic major basic
protein (that accumulates in the sputum of asthmatic patients) (Frigas et al., 1980, 1981),
and leukotriene C, in the presence of gamma-glutamyl transpeptidase (Ganbo ef al., 1996).
Furthermore, other serum proteins (including complement C3a and C5), released into the
airway lumen during inflammation, decrease CBF (Sanderson and Sleigh, 1981b; Kennedy
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et al., 1982). Airway acidification also occurs during exacerbations of asthma (Hunt er al.,
2000; Ojoo et al., 2005) and may affect CBF.

Cystic fibrosis

CBF of cells from patients suffering from cystic fibrosis (CF) has been reported to be
normal when measured in vitro (Rutland and Cole, 1981). However, multiple products
found in CF airway in vivo can cause ciliary dysfunction including bacterial products
and neutrophil elastase (see above). A decrease in the periciliary fluid level, expected at
least during exacerbations (Tarran et al., 2006), also will impede ciliary function (Matsui
et al., 1998; Mall et al., 2004; Trout et al., 2003). Finally, airway acidification during
exacerbations (Coakley and Boucher, 2001; Coakley et al., 2003) could again lead to ciliary
dysfunction.
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Composition and Function
of Airway Mucus

Duncan F. Rogers
National Heart & Lung Institute, Imperial College London, UK

Inhalation of ~ 500L of air an hour bombards the airway epithelium with up to 600 million
particles a day (Seaton et al., 1995). Cigarette-smoking more than doubles that amount
(Hollander and Stober, 1986; Lippmann er al., 1980). As a result, the airway epithelium
has developed ways to combat this onslaught of soot, dust, microbes and allergens. First-
line defence against an inhaled insult impinging on, and causing damage to, the epithelium
is the production of mucus. This mucus is a viscoelastic gel that forms a thin film that
overlies the internal surface of the airway (Figure 7.1). It is an important homeostatic defence
mechanism with a variety of functions (Table 7.1) that have evolved to reduce potential
epithelial damage by inhaled irritants. Under normal circumstances airway mucus protects
the epithelial lining by entrapping foreign debris, bacteria and viruses and clearing them
from the airway by ciliary movement (Rose and Voynow, 2006). In contrast, in clinical
conditions associated with airway mucus hypersecretion, for example asthma (Del Donno
et al., 2000), chronic obstructive pulmonary disease (COPD) (Houtmeyers et al., 1999;
Maestrelli ez al., 2001) and cystic fibrosis (CF) (Robinson and Bye, 2002), the mucus shifts
from a protective role to one that contributes to respiratory disease. Excessive production
of airway mucus, termed mucus hypersecretion, and changes in the biophysical properties
of the mucus, can lead to decreased mucociliary clearance and accumulation of mucus in
the lungs (Figure 7.2), leading to difficulty in breathing, increased morbidity and, in severe
cases, increased mortality. The latter aspects are covered in the present chapter and are
introduced in the following sections.

7.1 Airway ‘mucus’

Airway mucus is a complex dilute aqueous solution of lipids, glycoconjugates and proteins.
It comprises salts, enzymes and anti-enzymes, oxidants and antioxidants, exogenous bacterial
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Figure 7.1 Visualization of airway luminal mucus and cilia. Upper plate: Scanning electron micro-
graph of human bronchus showing mucus ‘flakes’ or ‘rafts” (M) resting on top of cilia (C) (courtesy of
P. K. Jeffery). Lower plate: Mucociliary clearance in bovine trachea. Mucus (M) sits on top of the cilia
(C), which are seen bent at different stages of the beat cycle (courtesy of K. Pritchard)

Table 7.1 Functions of airway mucus

Physical barrier to inhaled airborne organisms, particles and
other irritants, as well as to aspirated foods and liquids

Entrapment of organisms, particles and irritants

Formation of the vehicle on which irritants are transported by
mucociliary activity for clearance from the airway

Provision of a waterproof layer over the epithelium to limit
dehydration

Humidification of inspired air

Insulation

pH-buffering capacity

Lubrication

Neutralization of toxic gases

Selective macromolecular sieve

Source of antibacterial and other protective enzymes, and
provision of extracellular surface for their activity

Source of immunoglobulins, and provision of extracellular
surface for their activity
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Figure 7.2 Mucus obstruction of the airway in COPD and asthma. (A) Mucus obstruction (M) in an
intrapulmonary airway of a cigarette smoker. (B) Fatal interaction between bronchoconstriction and
luminal mucus. Intrapulmonary airway of a patient who died of an acute severe asthma attack showing
airway epithelium (E) thrown into folds by smooth muscle contraction, and occlusion of remaining
lumen by mucus (M)

products, endogenous antibacterial secretions, cell-derived mediators and proteins, plasma-
derived mediators and proteins, and cell debris such as DNA. Airway mucus is considered
to form a liquid bi-layer whereby an upper gel layer floats above a lower, more watery sol,
or periciliary liquid, layer (Knowles and Boucher, 2002). The functions of the sol layer are
debated, but are presumed to include ‘lubrication’ of the beating cilia. The gel layer traps
particles and is moved on the tips of the beating cilia. The inhaled particles are trapped
in the sticky gel layer and are removed from the airway by mucociliary clearance. When
the mucus reaches the throat, it is either swallowed and delivered to the gastrointestinal
tract for degradation or, if excessive, as in respiratory disease, it is coughed out (Rose and
Voynow, 2006).

Respiratory tract mucus requires the correct combination of viscosity and elasticity for
optimal efficiency of ciliary interaction. Viscosity is a liquid-like characteristic and is the
resistance to flow and the capacity to absorb energy when moving. Elasticity is a solid-like
property and is the capacity to store the energy used to move or deform it. Viscoelasticity
confers a number of properties to the mucus that allow effective interaction with cilia.
These properties have been variously described in terms of spinnability, adhesiveness and
wettability (Houtmeyers er al., 1999). An important characteristic of mucus is that it is
non-Newtonian: its viscosity decreases as the applied force increases (Sleigh et al., 1988).
Consequently, the ratio of stress to rate of strain is nonlinear, with the result that the more
forcefully the cilia beat, the more easily the mucus moves. Viscoelasticity is conferred
on the mucus primarily by high molecular weight mucous glycoproteins, termed mucins
(Figure 7.3).
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Figure 7.3 Schematic representation of a gel-forming mucin molecule. The mucin subunit (~ 500 nm
in length) comprises an amino acid backbone with highly glycosylated (linear) domains and folded
regions, stabilized via disulphide bonds, with little or no glycosylation. Glycosylation is via 0-linkages
and is highly diverse. In secretions, the subunits are joined end-to-end by disulphide bonds (S—S)
to form long, thread-like mature mucin molecules

7.2 Respiratory tract mucins

In health, mucins comprise up to 2 per cent by weight of the airway mucus (Davies et al.,
2002). In the airway, mucins are produced by goblet cells in the epithelium (Rogers, 2003)
(Figure 7.4) and sero-mucous glands in the submucosa (Finkbeiner, 1999). Although the
emphasis of the present book is the pulmonary epithelium, submucosal glands will be
mentioned herein where relevant as a comparison with goblet cells.

Mucins are long, thread-like, complex glycoconjugates (Figure 7.3). They consist of
a linear peptide backbone (termed apomucin) encoded by specific mucin (MUC) genes
(see below), to which hundreds of carbohydrate side-chains are O-linked, but also with
additional N-linked glycans. The glycosylation pattern is complex and extremely diverse
(Hanisch, 2001), and is associated with complementary motifs on bacterial cell walls, thereby
facilitating broad-spectrum bacterial attachment and subsequent clearance (Dell and Morris,
2001; Moniaux et al., 2001). Within the main protein core are variable numbers of tandemly-
repeated serine- and/or threonine-rich regions which are unique in size and sequence for each
mucin (Rose and Voynow, 2006), and represent sites for mucin glycosylation. These complex
glycoproteins are polydisperse, linear polymers that can be fragmented by reduction to give
monomers termed ‘reduced subunits’ (Sheehan er al., 1991, Thornton et al., 1990, 1991,
1994). There are at least two structurally and functionally distinct classes of mucin, namely
the membrane-associated mucins (Table 7.2) and the secreted (gel-forming or non gel-
forming) mucins (Tables 7.3 and 7.4). Membrane-tethered mucins, which have a hydrophobic
domain that anchors the mucin in the plasma membrane, contribute to the composition of
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Figure 7.4 Airway goblet cells. (A) Goblet cell (GC) and ciliated cell (CC) in human bronchial
epithelium. MG = mucin granule, L = lumen. Transmission electron micrograph after gluteraldehyde
fixation and post-fixation in osmium tetroxide. (B and C) Exocytosis of mucin (M) by guinea-pig
tracheal goblet cell, visualized after tannic acid incubation, demonstrating ‘omega’ profile formed
by fusion of intracellular granule and apical membrane: ultrathin section (B) and freeze-fracture
replication (C). L = lumen

Table 7.2 Human MUC genes producing membrane-associated mucins

Gene Tissue distribution

MUC 1 Lung, cornea, salivary glands, oesophagus, stomach, pancreas, large intestine,
breast, prostate, ovary, kidney, uterus, cervix, dendritic cells

MUC 3A  Thymus, small intestine, colon, kidney

MUC 3B Small intestine, colon

MUC 4 Lung, cornea, salivary glands, oesophagus, small intestine, kidney, endocervix
MUC 11 Lung, middle ear, thymus, small intestine, pancreas, colon, liver, kidney, uterus,
prostate

MUC 12 Middle ear, pancreas, colon, uterus, prostate

MUC 13 Lung, conjunctiva, stomach, small intestine, colon, kidney

MUC 15 Conjunctiva, tonsils, thymus, lymph node, breast, small intestine, colon, liver,
spleen, prostate, testis, ovary, leukocytes, bone marrow

MUC 16 Conjunctiva, ovary

MUC 17 Intestinal cells, conjunctival epithelium

MUC 18 Prostate

MUC 20 Lung, liver, kidney, colon, placenta, prostate
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Table 7.3 Human MUC genes producing secreted, cysteine-rich (gel-forming) mucins

Gene Tissue distribution

MUC 2 Lung, conjunctiva, middle ear, stomach, small intestine, colon, nasopharynx, prostate

MUC 5AC Lung, conjunctiva, middle ear, stomach, gall bladder, nasopharynx

MUC 5B Lung, middle ear, sublingual gland, laryngeal submucosal, glands, oesophageal
glands, stomach, duodenum, gall bladder, nasopharynx

MUC 6 Stomach, duodenum, gall bladder, pancreas, kidney

MUC 19 Lung, salivary gland, kidney, liver, colon, placenta, prostate

Table 7.4 Human MUC genes producing secreted, cysteine-poor

mucins

Gene Tissue distribution

MUC 7 Lung, lachrymal glands, salivary glands, nose
MUC 8 Oviduct

MUC 9 Submandibular glands

the cell surface (Rose and Voynow, 2006). Secretory mucins are stored intracellularly in
secretory granules and are released at the apical surface of the cell in response to stimuli. It
would appear that mucus production is such a fundamental homeostatic process that virtually
all acute interventions examined trigger airway mucin secretion (Table 7.5). In addition,
many of these same mediators when administered more chronically not only induce mucin
secretion but also upregulate mucin gene expression, with concomitant increases in mucin
synthesis: the latter is associated with goblet cell hyperplasia (Table 7.5).

Table 7.5 Inducers of airway mucus secretion, goblet cell hyperplasia and mucin
(MUC) synthesis/gene expression

Stimulation Secretion Hyperplasia MUC
Cytokines

Interleukin (IL)-1B + NP NP
IL-6 + NP Yes
IL-9 NP NP Yes
IL-13 (IL-4) + Yes Yes
TNFa ++ Yes* Yes®
Gases

Irritant gases (e.g. cigarette smoke) ++ Yes Yes
Nitric oxide —ve/+ NP NP
Reactive oxygen species 0/+ NP NP
Inflammatory mediators

Bradykinin + NP NP
Cysteinyl leukotrienes ++ NP NP
Endothelin 0/+ NP NP

Histamine + NP NP
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PAF + Yes® Yes*
Prostaglandins 0/+ NP NP
Proteinases +++ Yes NP
Purine nucleotides ++ NP NP
Neural pathways
Cholinergic nerves ++ NP NP
Cholinoceptor agonists ++ Yes NP
Nicotine ++ Yes NP
Tachykininergic nerves + NP NP
Substance P ++ NP NP
Neurokinin A + NP NP
Miscellaneous
EGF (+ TNFa) NP Yes Yes
Sensitization followed by challenge + Yes Yes
+++ highly potent, ++ marked effect, + lesser effect, 0 minimal effect. NP, effect not
published.
2 Effect only observed wi