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Abstract

Many voice disorders are the result of intricate neural and/or biomechanical impairments

that are poorly understood. The limited knowledge of their etiological and pathophysiological

mechanisms hampers effective clinical management. Behavioral studies have been used

concurrently with computational models to better understand typical and pathological laryn-

geal motor control. Thus far, however, a unified computational framework that quantitatively

integrates physiologically relevant models of phonation with the neural control of speech

has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model

with physiologically based laryngeal motor control. We combined the DIVA model (an estab-

lished neural network model of speech motor control) with the extended body-cover model

(a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated

by comparing its model simulations with behavioral responses to perturbations of auditory

vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demon-

strated capability to simulate different modes of laryngeal motor control, ranging from short-

term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generat-

ing prosodic contours in speech. Simulations showed that LaDIVA’s laryngeal motor control

displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensa-

tory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activa-

tion levels leading to the same output. The model can also generate prosodic contours for

studying laryngeal motor control in running speech. LaDIVA can expand the understanding

of the physiology of human phonation to enable, for the first time, the investigation of causal

effects of neural motor control in the fine structure of the vocal signal.
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Author summary

With the incorporation of a physiologically relevant vocal fold model into a computational

speech motor control framework, LaDIVA is a neurocomputational model that includes

realistic laryngeal activity. The proposed model has demonstrated capability to simulate

different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and

long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours

in speech. LaDIVA displays properties of motor equivalence, i.e., it robustly generates

similar compensatory responses to auditory perturbations for all simulations regardless of

the variety in initial laryngeal muscle activation levels tested. LaDIVA can be used to

expand the understanding of the physiology of human phonation to enable, for the first

time, the investigation of causal effects of neural motor control in the fine structure of the

vocal signal.

Introduction

Voice disorders are a common and recurring occupational health disorder, affecting 7% of the

U.S. population and causing severe mental, physical, and emotional repercussions, as well as

adverse consequences on job performance [1]. Fifty percent of teachers report voice problems

during their career [2] and 2.5 billion dollars each year are spent on treatments and sick leave

for voice disorders in the U.S. [3]. Many voice disorders are the result of intricate neural and

biomechanical impairments that are poorly understood [4]. Effective clinical management of

many of these voice pathologies is hampered by the limited knowledge of their etiology and

pathophysiological mechanisms, as well as overlapping symptoms among multiple disorders

[5,6]. Identification of the pathophysiology of voice impairments and decoupling the neural

and biomechanical aspects of the pathology may provide new directions for clinical

intervention.

Speech production is a complex motor skill involving a multitude of neuromuscular execu-

tions in respiratory, laryngeal, and articulatory muscles [7]. Simultaneously, the neural motor

controllers integrate sensory information from multiple feedback modalities (i.e., auditory and

somatosensory feedback) to monitor the accuracy of the acoustic output [8]. Neurocomputa-

tional models of speech are designed to systematically unify available knowledge on speech

motor control, to simulate behavior, and test hypotheses related to speech motor control archi-

tecture [9–12]. Likewise, computational models of voice production have improved our under-

standing of typical and pathological phonation by providing access to relevant features that are

difficult, if not impossible, to directly measure [13–16]. However, current models do not yet

integrate physiologically relevant models of phonation into computational models of neural

motor control, which would allow for investigation of auditory and somatosensory processing

in voice production. Thus, despite the contribution of these models to enhance the clinical

assessment of vocal function, their capacity to study laryngeal motor control is lacking.

Neurocomputational models use mathematical representations and/or neural networks to

abstract components of brain function in a straightforward manner [17]. Of current biologi-

cally plausible neural network models of speech production [18,19], the Directions into Veloci-
ties of Articulators model (DIVA; [8, 20]) is possibly the most thoroughly defined and

physiologically validated neurocomputational model for articulatory speech motor control to

date. The DIVA model incorporates detailed neuroanatomical and neurophysiological infor-

mation into a unified platform, making it well-suited to generate simulations of speech pro-

duction for meaningful, quantitative comparisons with experimental observations [8,20–22].

PLOS COMPUTATIONAL BIOLOGY LaDIVA: A neurocomputational model of laryngeal motor control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010159 June 23, 2022 2 / 35

Funding: This research was supported by the

National Institutes of Health (NIH; https://www.nih.

gov/) National Institute on Deafness and Other

Communication Disorders (NIDCD;https://www.

nidcd.nih.gov/) through Grants No. P50 DC015446

(C.E.S, M.Z), F31 DC014872(G.C), F32 DC017637

(G.C), R01 DC016270(C.E.S, F.H.G), and R01

DC002852(F.H.G), and by the Agencia Nacional de

Investigación y Desarrollo (ANID;https://www.anid.

cl/) through Grants Nos. FONDECYT 1191369 (M.

Z) and BASAL FB0008(M.Z). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. The content is solely the responsibility

of the authors and does not necessarily represent

the official views of the NIH.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010159
https://www.nih.gov/
https://www.nih.gov/
https://www.nidcd.nih.gov/
https://www.nidcd.nih.gov/
https://www.anid.cl/
https://www.anid.cl/


DIVA is a neural network model whose components correspond to regions of the cerebral cor-

tex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas.

Although DIVA does not provide a complete account of the cortical and cerebellar mecha-

nisms involved, the mathematical model has been able to replicate behavioral and neural

responses via simulations of simple syllable productions. The model uses decades of behavioral

and neuroimaging data to tie the components of the mathematical framework to neural sub-

strates particularly related to articulation. The DIVA model was developed to replicate human

speech produced at behavioral, neurological, and developmental levels [8,11,20,23,24]. It con-

sists of a hybrid control system combining three main control components related to speech

articulation: 1) a feedforward controller that utilizes internally stored motor programs to pro-

duce sound, 2) an auditory feedback controller that detects errors between actual acoustic out-

put and acoustic feature targets, and 3) a somatosensory feedback controller that detects errors

between actual somatosensory (i.e., kinesthetic or proprioceptive) output and somatosensory

feature targets. The DIVA model has been successfully used in conjunction with brain imaging

and behavioral experiments to refine our understanding of the neural control of speech and

generate hypotheses for further behavioral studies [8,12,23–25]. However, the neuromuscular

control of laryngeal function is an important aspect of speech production that is not addressed

in the DIVA model [25]. Key acoustic features of voice production, such as vocal fundamental

frequency (fo), vocal sound pressure level (SPL), and voice signal quality are modulated via

laryngeal motor control in humans [26,27], and prior research suggests that disorders such as

spasmodic dysphonia, vocal hyperfunction, spastic dysarthria, and vocal tremor may be related

to abnormal laryngeal motor control [28–33]. Incorporating laryngeal motor control to mod-

els of speech motor control will enhance the ability to understand these disorders.

Characterizing laryngeal function in phonation requires a detailed understanding of the

underlying physiology, biomechanics, and neuromuscular control. The neural motor control

and biomechanical mechanisms of typical and disordered laryngeal function involved in vocal

production, and the interaction between them are poorly understood, partly due to the inva-

sive nature of assessment and characterization of laryngeal function (i.e., laryngeal electromy-

ography: [34–39], laryngeal endoscopy: [40,41], contact pressure probes:[42]). The geometry

and mechanical properties of the vocal folds (VFs) exhibit a great deal of variability as a func-

tion of intrinsic muscle activation, voicing conditions, sex, age, and individual anatomical fea-

tures, and complex physical interactions occur between VF tissue, airflow, and sound [43,44].

Thus, it is crucial to investigate these components and their variability to better understand

laryngeal function in typical and pathologic conditions. Low-order models of phonation such

as lumped-element VF models with acoustic and aerodynamic modules offer a simple yet

physiologically relevant framework for investigating biomechanical aspects of voice produc-

tion while remaining computationally efficient [45]. For instance, the well-established body-

cover model (BCM; [46–48]) can control supra and subglottal tract features such as subglottal

pressure (Ps), and neuromuscular activation of the cricothyroid (CT), thyroarytenoid (TA),

lateral cricothyroid (LCA), and posterior cricothyroid (PCA; [48]) intrinsic laryngeal muscles

[47–49]. Models extending the long-standing BCM have been broadly used to predict complex

physical phenomena in voice production in humans, such as irregular vibration in VF nodules

[50], contact mechanics [13,51], compensatory responses in vocal hyperfunction [14,49], cha-

otic vibration in unilateral VF paralysis [52,53], and dynamic mechanisms of atypical vocal

fold vibration in vocal tremor [54]. As higher order three-dimensional finite element models

[43,54–56] are computationally demanding to account for neural motor control effects, low-

order models are most suitable to comprehensive parametric stimulations of laryngeal motor

control. The extended body cover model selected in the current study (hereafter referred to as

extended BCM; [49]) is an extension of the BCM by Story and Titze (46), with the addition of
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a posterior glottal opening, and model parameters selected to simulate a male modal voice

using muscle activation principles defined in Titze and Story (48). See the original paper for

the equations for the motion of vocal folds in the extended BCM model [46]. The extended

BCM was specially selected considering its simplicity as well as scalability for future iterations

of LaDIVA. In summary, combining a low-order biomechanical model with models of neural

laryngeal motor control will provide an integrated framework to simulate vocal productions

that are comparable to outputs of behavioral study data collected from individuals with and

without voice disorders [57–60].

Behavioral studies are often conducted with the aim of understanding and quantifying

responses of the speech motor control system to erroneous feedback stimuli. Prior research

has behaviorally characterized laryngeal motor control with externally imposed short-term

(i.e. reflexive) and long-term (i.e. adaptive) alterations of auditory feedback of laryngeal fea-

tures (i.e., vocal fo, vocal SPL, duration). Reflexive paradigms targeting vocal fo (the physical

quantity underlying the perceptual feature of pitch) present sudden, unpredictable alterations

to auditory fo feedback to measure the feedback-based error detection, correction, and incor-

poration to real-time motor production (commonly termed pitch reflex; [61–64]). Adaptive

vocal fo paradigms present predictable, sustained perturbations to auditory fo feedback over

time to measure the speaker’s ability to correct errors in subsequent feedforward motor com-

mands [65–67]. Behavioral studies of these types have been performed with those with typical

voices [68] as well as speakers with neurological and/or voice disorders (e.g., Parkinson’s dis-

ease [PD; 69] and vocal hyperfunction [57,70,71]). Studies using auditory feedback perturba-

tions in vocal fo have indicated that individuals with PD have a higher reliance on the auditory

feedback subsystem for vocal motor control [72–75], and impaired auditory-motor integration

in terms of feedforward motor control [69]. Similar studies have also provided evidence that

individuals with vocal hyperfunction demonstrate potential signs of a motor speech disorder

[57,70,71] with difficulty using auditory feedback to update their feedforward control subsys-

tems. Moreover, these studies also observed larger individual variability in the vocal responses

of individuals with vocal hyperfunction compared to speakers with typical speech. Overall, the

outcomes of these studies suggest there are possible vocal motor control impairments related

to vocal fo in specific populations with voice disorders. These experimental data have been rep-

licated via a simple three-parameter model of speech and vocal production: simpleDIVA [76].

Although simpleDIVA successfully abstracts the DIVA architecture to model both articulatory

and laryngeal motor control, the simplification of DIVA to three mathematical equations has

its own limitations; namely, it implicitly assumes a laryngeal system that will perfectly achieve

commanded movements. A neurocomputational model of laryngeal motor control equipped

with biomechanical mechanisms of laryngeal function would allow comprehensive investiga-

tion via repeated simulations of numerous experimental conditions, that may be exhaustive to

participants during behavioral experimentation, or inaccessible to conduct/assess due to tech-

nical limitations in experimentation (e.g., voice quality perturbation, combined perturbations,

running speech perturbation). Model simulations of laryngeal motor control would be particu-

larly valuable to address these limitations and to better understand typical and atypical laryn-

geal motor control behaviors.

In this paper, we introduce the laryngeal DIVA model (LaDIVA), a neurocomputational

model that integrates biomechanics of phonation and neural laryngeal motor control in a sin-

gle computational framework. The novel model is based on two widely accepted existing mod-

els, the DIVA model for the neural laryngeal motor control component [8] and the extended

BCM [49] for the biomechanical component. The combined model, LaDIVA, is able to

dynamically control the intrinsic laryngeal muscles of the extended BCM by assessing the

resultant acoustic output based on auditory feedback and feedforward mechanisms. LaDIVA
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will significantly expand the capabilities and potential of current VF modeling tools, particu-

larly for investigating voice disorders in which neuropathy related to auditory and/or somato-

sensory systems is suspected. In addition, LaDIVA can be used to predict variations in

underlying feedforward and feedback control mechanisms between typical vocal production

and disordered voice production, which could motivate future behavioral study designs to

investigate laryngeal function in voice disorders.

In the following sections, we describe the construction of LaDIVA and the initial simula-

tions performed to validate the model using behavioral data. The Model Overview summarizes

the architecture and the computational implementation of LaDIVA, which currently enables

vocal fo and vocal SPL (the physical quantity underlying the perceptual feature of loudness)

control. In the Results, we evaluate LaDIVA to show that it can replicate human laryngeal

motor control qualitatively and quantitatively. Data collected from a previous behavioral

experiment [68] from adults with typical speech were used to validate LaDIVA.

Model overview

LaDIVA is a neurocomputational laryngeal control model, combining two well-established

and physiologically validated models describing different aspects of speech production. DIVA

[8], a neurocomputational model of speech, and the extended BCM [49], a biomechanical

model of phonation. Fig 1 illustrates a simplified version of LaDIVA architecture with adapted

modules from DIVA shaded in light grey and adapted modules from the extended BCM

shaded in dark grey. The controlled variables of the model are listed in Table 1.

In DIVA [8], there are multi-dimensional goal regions defined for controlled variables.

These regions are termed targets and are expressed in task space and mobility space variables.

The relevant task space variables in DIVA required to define laryngeal movement are vocal fo
for auditory tasks pace and vocal SPL for somatosensory task space (see Table 1: in LaDIVA,

vocal SPL is modified to be an auditory task space variable). The motor planning layer of

DIVA contains the speech sound map, an expansive list of speech sounds composed of pho-

nemes, syllables, or word sounds. Each speech sound is mapped to a three-component repre-

sentation of controlled variables. The first component is an articulatory trajectory (i.e.,

generally referred to as motor trajectories) that defines the mobility space targets of a specific

speech sound (i.e., the information related to the position of a particular articulator; repre-

sented in orange in Fig 1). The other two are distinct target trajectories in auditory and

somatosensory task spaces (represented in purple and green respectively in Fig 1). These three

types of target trajectories constitute the reference signals for the feedforward controller, audi-

tory feedback controller, and somatosensory feedback controller in DIVA, respectively.

At the beginning of a speech sound production, the speech sound map for that sound is acti-

vated, leading to a readout from memory of a learnt set of motor target trajectories for that spe-

cific sound. The feedforward controller compares these motor targets with the current motor
control signal (Ci

motor(x, t); dark orange arrows) and generates a feedforward motor control signal
(FFmotor(x,t); light orange arrows). In the feedback controllers, auditory and somatosensory feed-

back error between the sensory outputs and desired sensory targets are inversely transformed

(i.e., J-1(x)) from tasks space variables to mobility space variables, and the resultant feedback error
correction signals (i.e., FBaud(x,t) and FBsom(x,t); dotted light orange arrows), are incorporated to

the feedforward control signal to generate the subsequent motor control signal (Ci+1
motor(x, t); i.e.,

dark orange arrows). DIVA then uses a forward transformation (i.e., F{~}) to generate the subse-

quent auditory and somatosensory outputs relevant to the motor control signal.

DIVA primarily controls movements of the supralaryngeal vocal tract articulators. These

articulators define the shape of the vocal tract “tube”, which is used in combination with a
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simplified glottal wave model [77] to convert vocal tract articulatory mobility space trajectories

into auditory and somatosensory task space trajectories [78]. Ten different articulatory posi-

tion dimensions are used to define articulatory mobility space trajectories. The forward trans-

formation of these articulatory trajectories results in sensory trajectories with three auditory

task space dimensions (i.e., F1, F2, F3) and seven somatosensory task space dimensions (i.e., six

places of constriction in the vocal tract and a glottal constriction). The model also includes

three voicing-related output variables (i.e., for VF tension, subglottal pressure, and voicing),

but values for these are specified directly by the user rather than computed by the model’s feed-

forward and feedback control system interactions.

Fig 1. LaDIVA model architecture. Modules in light grey are adapted from the DIVA model and the module in dark grey represents the larynx,

mathematically modeled via the extended body-cover model for vocal folds. Mobility space variables are denoted by x, and task space variables are denoted by

y. Pathways denoted in auditory task space are purple. Pathways denoted in somatosensory task space are green. Pathways denoted by motor mobility space are

orange. See Materials and Methods for annotated equations.

https://doi.org/10.1371/journal.pcbi.1010159.g001

Table 1. LaDIVA Model Parameters.

DIVA component! BCM component

Mobility Space (xmotor) Articulatory

dimensions (10)

Ten vocal tract shapes N/A

Source dimensions (4) Cricothyroid Muscle Activation (aCT), Thyroarytenoid Muscle

Activation (aTA), Subglottal Pressure (PS)
Input Parameters

Glottal constriction dimension Voiced state handled via BCM (aLC)

DIVA component BCM component

Auditory Task Space (yaud) Source dimensions (2) Vocal Fundamental Frequency (fo), Vocal Sound Pressure Level (SPL) Output Parameters (derived via glottal

flow signal; Ug)

Articulatory

dimensions (3)

First Formant (F1), Second Formant (F2), Third Formant (F3) N/A

Somatosensory Task Space

(ysomat)

Articulatory

dimensions (6)

Place of constriction in vocal tract: Labial, Alveolar/Dental, Palatal,

Velar, Uvular, Pharyngeal

N/A

Source dimensions (1) Glottal constriction dimension Voiced state handled via BCM (aLC)

https://doi.org/10.1371/journal.pcbi.1010159.t001

PLOS COMPUTATIONAL BIOLOGY LaDIVA: A neurocomputational model of laryngeal motor control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010159 June 23, 2022 6 / 35

https://doi.org/10.1371/journal.pcbi.1010159.g001
https://doi.org/10.1371/journal.pcbi.1010159.t001
https://doi.org/10.1371/journal.pcbi.1010159


In contrast, in LaDIVA, the extended BCM is used to convert VF mobility space trajectories

(i.e., laryngeal trajectories) to changes in auditory and somatosensory task space trajectories.

Three different VF mobility space dimensions are used, namely, 1) activation level of cri-

cothyroid muscle (aCT), 2) activation level of thyroarytenoid muscle (aTA), and 3) subglottal

pressure level (Ps). These laryngeal mobility space trajectories are then converted into sensory

task space trajectories consisting of two auditory dimensions (vocal fo and SPL). With this

inclusion, both laryngeal and vocal tract articulatory components of the speech sound are con-

trolled via the feedforward-feedback control architecture of LaDIVA. The extended BCM

model is shown in Fig 2. A more detailed technical description of LaDIVA is provided in Mate-
rials and Methods. Note that the current implementation of LaDIVA does not contain a

somatosensory task space representation for laryngeal mobility space variations due to the lim-

ited somatosensory task space representation in DIVA for laryngeal motor control.

Results

Here we present an evaluation of LaDIVA’s ability to simulate human laryngeal motor control.

A series of model simulations were carried out to validate the model qualitatively and

quantitatively.

Model response to reflexive and adaptive auditory perturbations

We used data collected from a previous behavioral experiment [68] to validate LaDIVA. A

series of model simulations replicating vocal fo reflexive and adaptive perturbation paradigms

were conducted. LaDIVA simulation responses were comparable with behavioral responses to

vocal fo reflexive and vocal fo adaptive perturbations of auditory feedback of laryngeal features

(i.e., vocal fo) collected in adults with typical speech [68]. Fig 3 shows the simulation responses

Fig 2. Extended Body-Cover Model. Vocal fold mobility variables input from or output to the DIVA model are shown in orange and

blue shaded regions, respectively. Reproduced from Zañartu, Galindo [49] (https://doi.org/10.1121/1.4901714), with the permission of

the Acoustical Society of America.

https://doi.org/10.1371/journal.pcbi.1010159.g002
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in LaDIVA in comparison with the mean group response (20 young adults with typical speech)

of the behavioral dataset.

In LaDIVA we focused on five tunable parameters for the simulations: two parameters

from DIVA and three from the extended BCM. These were defined within physiologically rele-

vant ranges and tuned to best match behavioral data from the previous study [68]. The DIVA

parameters are auditory feedback gain (gaudfb), and feedforward learning rate (λff). See Materi-
als and Methods for parameter incorporation via mathematical equations. The extended BCM

parameters are the mobility space targets for CT muscle activation (aCT), TA muscle activation

(aTA), and subglottal pressure (Ps). All other parameters in DIVA and extended BCM were set

to replicate male VFs as described in Story and Titze Body-Cover Models [46,48], with a base-

line vocal fo of 134 Hz [79] and a vocal intensity represented by a radiated sound pressure level

of 75 dB SPL at 30 cm from the lips.

The auditory feedback gain (gaudfb) was determined using a reflexive paradigm simulation.

The vocal fo of the auditory feedback signal fed into the model was artificially shifted by +100

cents (1 semitone) after 500 ms from vocal onset (see Fig 3A: only 100 ms before perturbation

onset is shown) and the perturbation was sustained until the end of the utterance. LaDIVA

was used to replicate the real-time response for the utterance of a target vowel /α/, with the

added auditory perturbation. The LaDIVA auditory state indicates the current auditory feed-

back the model receives, which is comparable to the headphone signal a participant hears in an

experimental session. See Eq 10B in Materials and Methods for details. Thus, the system

response to the auditory perturbation can be calculated as the difference between the current

Vocal fo Reflex Paradigm Vocal fo Adaptation Paradigm
f o

P
er

tu
rb

at
io

n
  
(c

en
ts

)

100

f o
P

er
tu

rb
at

io
n
  
(c

en
ts

)

100

Baseline
Region

3 15 27 39 51 63 75 87 99
Trial Number (Averaged every 3 trials)

N
o
rm

al
iz

ed
R

es
p
o
n
se

 (
ce

n
ts

)
f o

-1
00 0

10
0

20
0

30
0

40
0

50
0

Baseline
(24 trials)

Ramp
(30 trials)

Hold
(30 trials)

After-effects
(24 trials)

(a) (b)

3 15 27 39 51 63 75 87 99
60

0

R
es

p
o
n
se

 d
ev

ia
ti

o
n
 (

ce
n
ts

)
f o

Time from perturbation onset (ms)

(c)a
g = 0.1audfb

g = 0.2audfb

g = 0.3audfb

g = 0.4audfb

g = 0.5audfb

g = 0.6audfb

g = 0.7audfb

g = 0.8audfb

g = 0.9audfb

g = 1.0audfb

Behavioral

-1
00 0

10
0

20
0

30
0

40
0

50
0

60
0

-40

-30

-20

-10

0

-10

-50

(d)

-140

-120

-100

-80

-60

-40

-20

0

20

λff = 0.025

λff = 0.050

λff = 0.075

λff = 0.100

λff = 0.150

λff = 0.200

λff = 0.250

Full Compensation

Behavioral

Fig 3. Simulation responses of LaDIVA compared with the mean group response (20 adults with typical speech) of the behavioral dataset. (a) Applied fo
perturbation for a perturbed trial in the vocal fo reflexive paradigm. (b) Vocal fo perturbation across all 108 trials of the vocal fo adaptive paradigm. (c)

Simulation response for vocal fo reflexive paradigm. (d) Simulation response for vocal fo adaptation paradigm. All simulations in panel (c) and (d) were

conducted under initial laryngeal muscle activation settings (Case B: aCT = 0.169, aTA aTA = 0.175, and Ps = 800 Pa). Group mean response of behavioral dataset

in black with 95% CI error bars).

https://doi.org/10.1371/journal.pcbi.1010159.g003
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auditory state and the applied auditory perturbation. Normalized vocal fo responses for vocal

fo reflexive paradigm simulations are provided in Fig 3C for varied auditory feedback gains

(gaudfb ranging from 0.1–1.0). The model simulation results were overlaid with the behavioral

data of the reflexive group mean fo response, and the best fit for feedback gain was selected.

With the lowest RMSE and difference between area under the curves, gaudfb = 0.5 provided the

best fit for the behavioral mean vocal fo reflexive response (RMSE = 0.91, R2 = 1.0; See

Table 2). Note that the feedforward learning rate parameter (λff) was kept constant for the

auditory feedback gain parameter exploration as reflexive paradigms are designed to avoid

learning effects by avoiding the presentation of sustained and predictable perturbations to

auditory feedback that may cause persistent auditory feedback errors.

The feedforward learning rate parameter (λff) was determined through the use of a vocal fo
adaptive paradigm simulation (gaudfb was kept constant). The vocal fo of the auditory feedback

signal fed into the model was perturbed according to four ordered phases; 1) Baseline: no per-

turbations, 2) Ramp: vocal fo shift increasing by +3.3. cents in each adjacent trial, 3) Hold:

vocal fo shifted by +100 cents, and 4) Aftereffect: no perturbation applied. See Material and
Methods: Behavioral study dataset section for more details. For perturbed trials, the vocal fo of

the auditory feedback signal fed into the model was shifted before vocal utterance onset and

the perturbation was sustained until the end of the utterance in the simulation. The model sim-

ulation was run for 108 adjacent simulations (i.e., trials) to replicate 108 trials of target vowel

/α/ utterances, with added auditory perturbation in specified phases. The vocal response is a

combination of the feedforward and feedback motor commands acting on current vocal pro-

duction. See Material and Methods Eq 9 for more details. In order to extract the acoustic

response driven by feedforward motor commands alone, an analysis window from 40 ms to

120 ms after the vocal onset was selected. This analysis window was selected to target the feed-

forward motor command based response as auditory feedback is assumed to affect current

vocal productions with a latency of 120 ms [63]. The initial 40 ms of the response signal was

discarded to avoid vocal onset variability generally present in human vocal production. The

mean response fo for the analysis window of each trial was calculated to represent the adaptive

response per each trial. Note that in the model simulations, the analysis window captures pure

feedforward signals as the modeled auditory feedback signal latency is 120 ms. Although this

analysis window is identical to the behavioral data analysis, in behavioral data from human

speech motor control systems, there could be somatosensory feedback signals (i.e., with feed-

back latency 65–75 ms; [80]) present and affecting the speech signal in the selected analysis

window. Normalized vocal fo responses per each trial for the adaptive paradigm simulations

are provided in Fig 3D for the preselected auditory feedback gain via vocal fo reflexive

Table 2. Goodness-of-fit statistics for behavioral dataset for vocal fo reflexive paradigm explained by model simulations. AUC = area under the curve.

Feedback Gain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R-squared -0.40 0.19 0.62 0.87 0.98 0.97 0.83 0.59 0.24 -0.17

RMSE 12.67 9.63 6.61 3.90 1.49 1.95 4.41 6.87 9.32 11.62

Absolute Difference AUC 596.06 473.42 312.46 161.15 15.79 93.14 235.85 375.19 513.57 645.51

https://doi.org/10.1371/journal.pcbi.1010159.t002

Table 3. Goodness-of-fit statistics for behavioral dataset for vocal fo adaptive paradigm explained by model simulations. AUC = area under the curve.

Feedforward learning rate 0.025 0.050 0.075 0.100 0.150 0.200 0.250
R-squared 0.16 0.33 0.33 0.32 0.26 0.21 0.20

RMSE 24.02 21.44 21.43 21.57 22.55 23.24 23.41

Absolute Difference AUC 545.85 227.93 52.90 27.58 131.07 184.41 203.94

https://doi.org/10.1371/journal.pcbi.1010159.t003
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simulations (gaudfb = 0.5) and for different feedforward learning rates (λff ranging from

0–0.25). Although an ideal fit was not observed, with the lowest RMSE and difference between

area under the curves, λff = 0.1 provided a consistent fit for the behavioral mean vocal fo adap-

tive response (RMSE = 21.57, R2 = 0.32; See Table 3).

Motor equivalence in simulated vocal productions

The initial biomechanical conditions of the VFs define how the compensatory responses to

auditory perturbations are handled in dimensions that are acoustically less important. This is

known as motor equivalence [20]. Based on this theory, we carried out two sets of simulations

to characterize LaDIVA’s behavior. Initial laryngeal mobility space variables aCT, aTA, and Ps
were preset parameters for the extended BCM. We used these parameters to characterize the

model behavior in a controlled manner to understand how differences in CT and TA muscle

activations affect the acoustic outcomes of the system. We confirmed that a variety of combi-

nations of aCT and aTA parameters could produce the same vocal fo while subglottal pressure is

kept constant (i.e., Ps = 800 Pa). See Fig 4A Muscle Activation Map for vocal fo (fo = 134 Hz

contour line). Vocal SPL also remained fairly constant during these simulations (range: 71–76

dB SPL), which is consistent with in vivo work that observed minimal change in SPL in the

lower register (i.e., including modal phonation) when Ps is kept constant [81]. See Fig 4B Mus-

cle Activation Map for vocal SPL. Four combinations of initial aCT and aTA levels were used to

simulate four different initial conditions in phonation (see Table 4 and Fig 4A and 4B cases).

For each of these cases, a simulation of a vocal fo reflexive paradigm was carried out and the

model outputs of each paradigm were compared across cases (see Fig 4). We observed that,

although aCT and aTA trajectories varied across the simulations (Fig 4C and 4D), the vocal fo
responses (i.e., the acoustic output) were comparable to the behavioral dataset across cases (Fig
4E). For very small values of aCT, we see aTA dominance in fo control (shown in case A in Fig

4). For the rest of the cases, aCT takes precedence in controlling vocal fo and aTA plays a less

dominant role. This is consistent with prior literature that suggests antagonistic relationships

between vocal fo and aCT and aTA across the chest register [55,82,83]. The vocal SPL target

range was maintained at 68–80 dB for the simulations to mimic the vocal SPL outputs expected

in the behavioral study (i.e., participants were instructed to speak in their typical speaking

voice). As we maintained a constant subglottal pressure through all simulations, in the range

of aCT and aTA considered, the change in vocal SPL output was less than 1 dB SPL. Thus, the

vocal SPL outputs did not exceed the target range, and no corrective feedback signals modify-

ing SPL output were generated. As a result, no deviations in vocal SPL were observed for the

simulations. For all simulations in Cases A through D, the auditory feedback gain and feedfor-

ward learning rate were kept constant (i.e., gaudfb = 0.5 and gff = 0.1).

Prosodic contour simulations

Auditory perturbations have been carried out to understand the vocal motor control mecha-

nisms for control of vocal fo and SPL in a task-dependent manner during the production of

suprasegmental features (e.g., stress, intonation) in running speech [84–86]. Different prosodic

contours are generated by participants for running speech utterances and vocal fo perturba-

tions are carried out at different stages of the utterance to investigate the task-relevance of

compensatory responses to these perturbations. To model these dynamic perturbations, as an

initial step, speech production models should be able to generate running speech utterances

with different vocal fo contours. So far, the DIVA model has been unable to simulate dynamic

vocal fo perturbations as vocal fo and SPL were not controlled variables in the model. As an ini-

tial step to assess and showcase the LaDIVA model’s ability to conduct dynamic vocal fo
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Fig 4. Simulation responses of LaDIVA for four different initial laryngeal muscle activation levels. (a-b) Cases A, B, C, and D muscle activation

levels are indicated by dots on the fo = 134 Hz solid line, with subglottal pressure (Ps) = 800 Pa. (a) shows fo contours (Hz units) and (b) shows SPL
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perturbations, we carried out a series of model simulations incorporating four intonation pat-

terns to a single base statement. These examples showcase that the LaDIVA model can be used

to embed different prosodic contours in phrases as vocal fo is a controlled component. We

expect that this methodology can be used in the future to generate stimuli for auditory vocal fo
perturbations of running speech.

LaDIVA contains an acoustic synthesizer that is adapted from DIVA and modified to

accommodate the extended BCM. See Materials and Methods for more information on the

acoustic synthesizer. The prosodic contour simulations can also be used to assess the function

of the acoustic synthesizer and the naturalness of the acoustic outputs generated. See S1 Audio
for audio recordings of original and LaDIVA-synthesized utterances. The statement “Buy

Bobby a Puppy” was recorded from one of the authors (F.H.G.) with four different prosodic

contours, providing different intonation patterns, and thus, different contextual information.

The sentence was also synthesized in the model by defining auditory and somatosensory tar-

gets in the articulatory domain such that a monotonic production of the sentence was pro-

duced. The simulated sentence duration was 1815 ms. Original recordings were time-

normalized by warping each recording in the time domain to match the model production.

From each time-warped recording, the pitch contour was extracted. Initial aCT and aTA levels

of case B were used to conduct all pitch contour simulations, resulting in an initial vocal fo of

134 Hz. A baseline vocal fo increase of 30 Hz was applied to all extracted pitch contours to

match the original recordings (i.e., of a male with 100 Hz vocal fo) to model production that

has a baseline fo of 134 Hz. The pitch contours were then smoothed using a 5-point moving-

average, before being fed to the model as vocal fo target contours. A series of simulations was

carried out until the output of each vocal fo pitch contour converged to the target contour. The

number of iterations required for contour convergence was determined be faster or slower

based on the model parameters used. The model parameters were set as following for the simu-

lations shown in Fig 5 (gfb_aud = 1; λff = 0.5). See Fig 5 for time-warped versions of the original

pitch contours of the four different intonations patterns plotted against synthesized versions of

the same contours from LaDIVA. These results showcase LaDIVA’s potential to perform sim-

ulations for studies incorporating intonation, tonal languages, and running speech fo perturba-

tions [85, 86].

Discussion

In the current study, we introduced LaDIVA, a neurocomputational model of laryngeal motor

control. LaDIVA extends the well-established neurocomputational model DIVA,

contours (dB units). (c) Cricothyroid muscle activation level trajectory over the simulation for all initial conditions. (d) Thyroarytenoid muscle

activation level trajectory over the simulation for all initial conditions. (e) Vocal fo simulation response for vocal fo reflexive paradigm in comparison

with mean group response (20 adults with typical speech) of behavioral dataset marked in black with 95% CI error bars. Note: vocal SPL output deviation
was zero as the SPL target range was set to 68–80 dB and all cases remained within target range.

https://doi.org/10.1371/journal.pcbi.1010159.g004

Table 4. Initial laryngeal intrinsic muscle activation levels applied for simulations. aLC was kept fixed at 0.5 for all simulations.

Case A Case B Case C Case D

aCT and aTA relationship aCT > aTA aCT = aTA aCT < aTA aCT << aTA

aCT level 0.300 0.169 0.202 0.256

aTA level 0.050 0.175 0.400 0.600

Subglottal Pressure (Ps) 800 800 800 800

Vocal fo output (Hz) 134.20 133.98 133.96 133.97

Sound Pressure Level (dB SPL) 76 74 71 71

https://doi.org/10.1371/journal.pcbi.1010159.t004
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Fig 5. Prosodic Contours of “Buy Bobby a Puppy”. Fig 5A–5D Vocal fo contour extraction, transformation, model simulation, and

model synthesis output shown for two intonation patterns. (a) Original recordings recorded from author F.H.G. (male 100 Hz vocal

fo). (b) A baseline vocal fo increase of 30 Hz was applied to all extracted pitch contours to match case B model mean vocal fo of 134 Hz.

The pitch contours were smoothed using a 5-point moving-average. (c) Transformed pitch contours were then fed as vocal fo target

contours to the model and a sequence of simulations were carried out until the output vocal fo contour matched the target contour.
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incorporating a biomechanical VF model for dynamic adjustment of laryngeal function.

Model performance was validated via empirical evidence from a behavioral study on adults

with typical speech involving reflexive and adaptive vocal fo auditory feedback perturbation

paradigms. Through the application of LaDIVA, we were able to successfully replicate both

the reflexive and adaptive auditory vocal fo responses observed in the behavioral data. The

simulations also provided CT and TA laryngeal muscle activation levels across time for the

paradigms. However, these predicted muscle activations remain to be experimentally vali-

dated via behavioral studies. Intrinsic laryngeal muscle activity is difficult to obtain in

behavioral settings due to its invasive recording procedures using laryngeal electromyogra-

phy techniques [34,35,37]. Only one previous study measured laryngeal electromyography

responses to a vocal fo auditory feedback reflexive perturbation paradigm [36]. The para-

digms conducted in that study with conversational speech did not elicit observable patterns

in CT and TA muscle activation levels and the authors speculated that the muscle activation

levels were not detectable due to high levels of underlying neuromuscular signal noise.

Nonetheless, the current model results are supported by a prior study conducted using

graded muscle simulations on an in vivo canine larynx that observed general laryngeal

motor equivalence, i.e., the ability of the larynx to produce same vocal fo and SPL outputs

with multiple combinations of intrinsic laryngeal muscle activations [81]. Thus, modeling

efforts could be an effective way to investigate intrinsic laryngeal muscle activity related to

vocal fo reflexive paradigms further in future.

Auditory feedback gain and feedforward learning rate in LaDIVA are model parameters

that can be modified to represent neural motor control impairments related to neurological

(i.e., Parkinson’s disease; PD) or functional voice disorders (i.e., vocal hyperfunction). Hyper-

active auditory feedback responses in persons with PD who are off medication have been

noted by multiple altered auditory feedback behavioral studies for vocal fo [72–75] and for

vocal SPL [73]. Reduced adaptive responses were also observed in several studies carried out

with persons with PD (vocal fo: [69], vocal SPL: [87]). Overall, these studies suggest that per-

sons with PD have hyperactive auditory feedback and weakened auditory-motor integration

that causes impaired feedforward motor control. Thus, the vocal motor control deficits in PD

can be modeled using LaDIVA by increasing the auditory feedback gain and decreasing the

feedforward learning rate. Altered auditory feedback behavioral studies have also indicated

that there is a possible auditory-motor phenotype for individuals with vocal hyperfunction in

which atypical vocal motor control is observed [57,70,71]. Deficits in auditory motor integra-

tion has been identified via adaptive vocal fo studies conducted in individuals with vocal hyper-

function [57,70]. Thus, the suspected vocal motor control deficits in vocal hyperfunction can

be modeled using LaDIVA by decreasing the feedforward learning rate. However, vocal hyper-

function has not been sufficiently investigated to conclude if the origins are neurological, ana-

tomical, or has components from both neural control and biomechanical control. The

objective of LaDIVA was to combine a neurocomputational model of vocal motor control and

a biomechanical model of the peripheral laryngeal apparatus, thus providing a comprehensive

model of voice motor control. We can manipulate the model’s neurocomputational as well as

biomechanical parameters to investigate and gather insight on how the respective changes

affects the vocal motor outcomes of the system.

(d) output signal and vocal fo contour produced by LaDIVA acoustic synthesizer. (e) Simulated vocal fo contours of four different

intonation patterns of producing the sentence ‘Buy Bobby a Puppy’ time warped to be the same duration in time. Bolded and

underlined sections highlight stressed words. Note: model parameters were set as following for these simulations (learning rate = 0.5;
feedback gain = 1). The contour convergence process can be faster or slower based on the parameters used.

https://doi.org/10.1371/journal.pcbi.1010159.g005
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An interesting finding of the current study was that LaDIVA yielded similar acoustic out-

puts to a reflexive paradigm across different initial muscle activation conditions. Based on VF

physiology, laryngeal muscle activations vary across individuals with typical laryngeal function

based on sex, age, and different voicing conditions [88]. These observations might be instru-

mental in understanding how similar acoustic outputs are achieved despite individual variabil-

ity in internal neuromuscular activations. LaDIVA can be used with individualized parameters

to reflect physiological changes in VFs due to age or sex, and the variability in laryngeal muscle

activations can be quantified, using simulation outcomes such as vocal fo reflexive responses.

These quantitative results may be instrumental in identifying what degree of variability is due

to variations in laryngeal physiology. At the same time, these results caution us against using

only the acoustic vocal fo response measures in characterizing neural laryngeal motor control

function, specifically in individuals with voice disorders characterized by increased laryngeal

muscle tension. For example, individuals with vocal hyperfunction are thought to exhibit

higher laryngeal muscle activation [89,90]. However, a recent study found no significant differ-

ences in vocal fo reflexive responses in individuals with vocal hyperfunction compared to indi-

viduals without vocal hyperfunction [57]. Thus, individuals with vocal hyperfunction seem to

be generating similar acoustic outcomes as individuals without vocal hyperfunction, but pre-

sumably with higher intrinsic muscle activation levels. This could be a possible explanation for

the clinical observations of low vocal efficiency in individuals with vocal hyperfunction

[90,91].

We note that LaDIVA’s adaptive paradigm simulations are not as well-fit to the behavioral

data as reflexive paradigm simulations. There could be multiple reasons for this observation,

including: 1) vocal motor variability not being a modeled characteristic in LaDIVA, 2) somato-

sensory feedback not being a modeled component, 3) a single parameter (i.e., feedforward

learning rate) defining adaptive behavior in LaDIVA, and 4) identical feedback error contribu-

tions being used for feedforward and feedback motor control. Trial-to-trial noise in speech

acquisition, production, and learning are inherent characteristics in empirical data related to

speech motor control [92–94]. However, the current implementation of LaDIVA contains no

model characteristic defining vocal motor production or perception variability. Behavioral

responses used in the current study clearly show the trial-to-trial noise variations whereas the

model simulations are noise-free and smooth across trials. See S2 Text for production noise

related variations observed in simulated adaptive paradigm outputs when varying levels of pro-

duction noise are included in the LaDIVA model. Adding noise-based variability at produc-

tion, perception, and/or learning levels will be carried out in future iterations as it requires

qualitative and quantitative specification of noise characteristics via behavioral paradigms.

Somatosensory feedback of the model remains unchanged during auditory feedback perturba-

tions and would cause the feedforward control system to correct for accumulated somatosen-

sory errors over time. Thus, the overall effect would yield a lower fo magnitude for the

simulated adaptive response. In addition, identical feedforward learning rates are chosen for

the incorporation of auditory and somatosensory feedback to feedforward controller in

LaDIVA. As somatosensory feedback contributions are set to zero in the current iteration of

LaDIVA, this assumption does not affect the overall adaptive response simulations. Further-

more, a recent study examined the error sensitivity of feedforward and feedback motor control

systems using adaptive paradigms in first and second vowel formants and the state-space

model [95]. The study provided initial evidence that feedforward and feedback control systems

may function independently, with higher error sensitivity in feedback control compared to

feedforward control. These recent findings are in contrast to the DIVA model assumption that

the feedback and feedforward motor controllers share identical error sensitivity. LaDIVA
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shares this assumption, which could be a possible explanation for poorer simulation fits for the

adaptive paradigm compared to reflexive paradigm.

In this validation study, we have demonstrated LaDIVA’s capability to simulate both adap-

tive and reflexive paradigms of sustained vowels as well as its capability to handle running

speech utterances (see Results section on prosodic contours). LaDIVA provides the flexibility

to observe feedback- and feedforward-based fo contours across the time span of a trial, as well

as to focus on specific time windows. Thus, LaDIVA can be used to replicate and study charac-

teristics of feedback and feedforward responses separately (i.e., via late and early time windows

in each trial) using adaptive paradigm simulations [95]. The capability to simulate running

speech utterances embedded with laryngeal motor control gives LaDIVA the unique capability

to model vocal fo perturbation studies in running speech, which has so far not been modeled

to the best of our knowledge. Thus, LaDIVA may allow for the generation of better hypotheses

for behavioral studies related to vocal fo perturbations in running speech. We have carried out

parameter fitting for auditory feedback gain and feedforward learning rate parameters in the

current study as a validation of the model’s capability to model instances of laryngeal motor

control with hyperactive auditory motor control mechanisms and weak auditory-motor inte-

gration capabilities. Thereby, we showcase LaDIVA’s capability to replicate vocal motor con-

trol deficits that have been documented in voice disorders related to PD and vocal

hyperfunction. Thus, the parametric fitting carried out in the validation of LaDIVA serves a

larger purpose than merely showcasing that the model can fit data. It sheds light to the neuro-

biological control of vocal fo.

Comparisons with simpleDIVA

SimpleDIVA is a 3-parameter model recently developed to fit average data from different

cohorts under different auditory and somatosensory adaptive paradigms. It can be used to

predict auditory and somatosensory feedback gains, as well as the feedforward learning

rates used by each behavioral dataset [76]. SimpleDIVA can be used to predict the outcome

fo contours of specific adaptive auditory feedback paradigms based on prior assumptions

about feedback gains and the feedforward learning rate. SimpleDIVA is a powerful model-

ing tool due to its simplicity leading to unique solutions with limited degrees of freedom.

Although simpleDIVA successfully abstracts the DIVA architecture to model both articula-

tory and laryngeal motor control, its simplification of DIVA to three mathematical equa-

tions has its own limitations.

SimpleDIVA and LaDIVA are radically different in both their architecture and more

importantly, their intent. LaDIVA is a control model of vocal and supralaryngal production

that is capable of learning. Moreover, LaDIVA is capable of simulating acoustic responses and

brain activations to behavioral paradigms. SimpleDIVA is, conversely, a way to fit a set of

equations to time-series data to estimate gain parameters. Thus, LaDIVA can complement

simpleDIVA in studying laryngeal motor control. LaDIVA can be used to support the develop-

ment of hypotheses that can be tested empirically in behavioral studies to ultimately advance

the field of laryngeal motor control. LaDIVA increases the predictive power in hypotheses by

incorporating biomechanical and physiological restrictions of the VFs in producing vocaliza-

tions. A biologically relevant neural model of laryngeal motor control provides a unique plat-

form to model voice disorders that are hypothesized to have neurological origins.

The availability of multiple degrees of freedom in LaDIVA can be a disadvantage due to the

large number of non-unique solutions the data fits could provide. However, the inclusion of

the VF model provides its own physiologically valid restrictions on laryngeal motor control

function of LaDIVA and thus safeguards LaDIVA from resulting in biologically infeasible
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solutions. Moreover, due to the large number of defined biomechanical control parameters,

LaDIVA possesses the ability to carry out subject-specific simulations. This feature is inherited

to LaDIVA from the extended BCM, which has been successfully used to conduct subject-spe-

cific modeling in individuals with vocal hyperfunction [14,96]. Although simulating subject-

specific data is out of scope for the current investigation, this is a potential area of future

expansion of LaDIVA.

Auditory acuity and auditory target size

Vocal fo acuity can be assessed via the minimum noticeable difference in vocal fo, commonly

referred to as the Just Noticeable Difference (JND; inversely related to vocal fo acuity) between

two frequencies in behavioral paradigms. In LaDIVA, vocal fo acuity is a preset parameter. See

Materials and Methods: targets section for more detail. The JND for vocal fo in LaDIVA was set

during all simulations to be significantly smaller compared to the maximum perturbation

magnitude utilized in the perturbation paradigms (here, vocal fo JND = 5 cents << maximum

perturbation magnitude = 100 cents). Here, a five-cent JND threshold was selected to reflect a

model with excellent fo acuity, since prior studies have indicated that participants respond to fo
shifts as small as 10 cents in reflexive paradigms [97,98]. However, vocal fo acuity has been pre-

viously shown to differ across individuals and thus could be varied as a parameter in future

versions of LaDIVA [99–101]. Prior studies have provided evidence that participants with bet-

ter vowel formant acuity generate larger compensatory response magnitudes to adaptive vowel

formant perturbation paradigms [102–104]. A single study using DIVA was able to replicate

this relationship for simulated participant responses, with vowel formant target sizes modeled

using Gaussian distributions with varying distribution variances (i.e., vowel formant acuity

was inversely related to distribution variance; [104]). However, in terms of laryngeal motor

control, there have been conflicting prior study observations about the relationship between

auditory feedback perturbation magnitudes and corresponding vocal fo acuity, suggesting that

there could be a complex relationship (or lack thereof) between generating corrective feedback

for auditory feedback errors and perceiving those feedback errors [68,98,105,106]. Including

vocal fo acuity as a variable parameter will allow for modeling intra-speaker fo acuity variability

in LaDIVA, helping to interpret these recent findings.

Limitations

The current implementation does not include physical tissue-aero-acoustic interactions at the

glottis (i.e., the modification of VF dynamics due to acoustic and aerodynamic feedback; [81]).

The DIVA model provides a modified Maeda model [78] based vocal tract, which is integrated

in LaDIVA. When coupling effects due to vocal tract acoustics are neglected, the laryngeal

adjustments resulting from the coordinated control of VF stiffness, geometry, and position do

not adequately model the effects on the source intensity or vocal quality. This is backed by

laryngeal, physical, or computational models of phonation [107]. The effect of laryngeal adjust-

ments on vocal intensity becomes more relevant in the presence of an interactive vocal tract

model [14]. DIVA currently contains an articulatory synthesizer that incorporates simplified,

custom source-filter interactions that are mathematically defined. However, a more physiolog-

ically relevant source-filter interaction can be modeled using biomechanical VF models with

vocal tract interactions. The Maeda model used for vocal tract modeling in DIVA is compati-

ble with any biomechanical VF model. Moreover, an added advantage specific to Maeda’s

model is that it allows simulation of vocal tract elongation/shortening, which is perceptually

important for speech simulation [78,108,109]. Thus, a possible future modification that can be

implemented in LaDIVA is to incorporate the tissue-aero-acoustic interaction at the glottis
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using the extended BCM, and the acoustic effects due to subglottal tract dynamics by intercon-

necting the BCM with the Maeda model, making LaDIVA to be more physiologically relevant.

Currently, LaDIVA focuses mainly on the auditory feedback controller and auditory feed-

back perturbations. We kept the somatosensory feedback controller offline for the current ver-

sion by setting the somatosensory feedback gain to zero. However, laryngeal motor control is

reliant on feedforward motor commands and sensory feedback provided via both auditory

and somatosensory feedback subsystems [110,111]. Thus, the contributions of the somatosen-

sory feedback controller cannot be ignored completely. Many auditory sensorimotor adapta-

tion studies in vowel formants as well as vocal fo showcase that the amount of adaptation

plateaus well before reaching full compensation [66,68,69,104,112]. This partial compensation

is explained in the DIVA model as being driven by the competition between counteracting

auditory and somatosensory feedback signals. At the beginning of a trial when auditory feed-

back is artificially modified, the somatosensory feedback controller does not find any discrep-

ancies between somatosensory feedback received (unaltered) and desired somatosensory

targets. As the system starts compensating for the artificial auditory feedback alterations by

modifying subsequent feedforward motor commands and producing altered speech sounds,

the somatosensory feedback also starts to be altered, causing errors between somatosensory

feedback and desired somatosensory targets. These counteracting feedback signals eventually

cause the compensatory response to plateau, before it fully compensates for the altered audi-

tory feedback. This reasoning may explain why LaDIVA’s adaptive simulations do not produce

fo contours that fit empirical data as well as its reflexive simulations.

With regard to reflexive vocal fo paradigms (i.e., where real-time feedback error correction

is investigated) there are also behavioral observations of partial compensation [113–117].

These compensatory magnitudes are explained in the DIVA model as being driven by the

competition between feedforward and feedback control systems, as well as the competition

between auditory and somatosensory feedback mechanisms. Since the corrective auditory

feedback-driven motor command is (weighted and) summed with the feedforward command

to produce the final speech signal, theoretically the system can maximally produce a partial

compensation of 50% (see Eq 9). This is a strong prediction of the model and can be observed

via the reflexive paradigm simulations (see Fig 3C and Fig A in S1 Text). In these simulations,

setting the total feedforward gain to 1, the auditory feedback gain to 1, and the somatosensory

feedback gain to 0 results in a partial compensation of 50 cents for a 100 cent- reflexive pertur-

bation of auditory feedback, which converts to a 50% (partial) compensation. With non-zero

somatosensory feedback contributions, the partial compensation will be even less, as observed

in literature [113–117].

In LaDIVA, the glottal constriction is the only parameter for somatosensory representation

of vocal motor function and it was not controlled by the extended BCM in the current version

(i.e., it was predefined as constant values for voiced and unvoiced portions of productions and

not dependent on LCA or PCA muscle activity in the extended BCM). Better understanding of

the somatosensory feedback controller contribution to laryngeal motor control needs to be

obtained to define accurate somatosensory representations for vocal features. For example, it

remains unknown whether vocal fold collision and tactile feedback during voicing onset and

offsets are monitored via the same somatosensory feedback mechanisms as those that monitor

vocal fo control via VF vibratory activity during sustained phonation. Thus, more information

about the types of somatosensory feedback (i.e., tactile, vibratory, and proprioceptive) used in

laryngeal motor control needs to be acquired to define multiple somatosensory representations

for laryngeal motor control in LaDIVA. Prior research suggests that somatosensory feedback

provides prephonatory information about the intrinsic laryngeal musculature and the length

of the VF (i.e., proprioceptive feedback), prior to the onset of the vocalization [118,119]. This
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may indicate that auditory and somatosensory feedback controllers operate over different time

scales when providing corrective signals for laryngeal motor control. Finally, individual vari-

ability in the sensitivity to or reliance on somatosensory feedback may be important. Women

have shown exhibited increased sensitivity to somatosensory feedback manipulations relative

to men, suggesting a higher density of mechanoreceptors in women compared to men due to

anatomical differences [120]. Furthermore, prior work using vowel formants suggests that

there is a sensory preference in the articulatory domain for either auditory and somatosensory

feedback that varies across individuals [121,122]. In sum, there are many factors affecting the

contribution of somatosensory feedback to laryngeal motor control, which should be incorpo-

rated into future modeling efforts.

When repeated vocal productions are carried out (e.g., via adaptive paradigms), vocal

fatigue increases vocal fold tension, which in turn causes the mean vocal fo for each trial to

drift upwards in later trials [123–125]. In behavioral data analysis, a control experiment with

the same number of trials as an adaptive experiment is carried out and each trial mean adap-

tive fo magnitude is subtracted from the adaptive experiment responses to account for this

drift [68,69]. In contrast, LaDIVA does not simulate accumulated vocal fatigue over multiple

trial repetitions. For each trial, LaDIVA simulated VF dynamics starting from the same initial

conditions and there were no carry over components of VF characteristics related to vocal

fatigue. In future versions of LaDIVA, the VF model could incorporate features that represent

effects accumulated muscle fatigue (i.e., increased tension in intrinsic VF musculature).

Future directions

LaDIVA can be used to expand the understanding of the physiology of human phonation and to

elucidate the origins of specific disorders affecting voice that have or are speculated to have neuro-

logical origins (i.e., laryngeal dystonia, hypokinetic dysarthria, vocal hyperfunction). The improve-

ments introduced in LaDIVA provide practical benefits for the investigation of key aspects of the

auditory-motor function involved in human phonation. We foresee the application of LaDIVA to

simulate behavior of laryngeal motor control for speakers with typical vocal function as well as

speakers with voice disorders. LaDIVA can thus provide informative clinical insights for generat-

ing hypotheses for future behavioral studies. Moreover, LaDIVA can be used to fit individual par-

ticipant data. This subject-specific parameterization can provide better understanding of different

conditions and individual variability seen in previous behavioral studies [69,70].

Behavioral data collected from cohorts with voice disorders can be used to validate the

hypothesis-driven modeling efforts for voice disorders, in a manner similar to the simulations

carried out in our model validation. One such example is modeling unilateral VF paralysis

(UVFP). UVFP is classically viewed as an isolated peripheral motor condition [126,127]. How-

ever, a recent pilot study carried out in a cohort with UVFP has suggested that this isolated

peripheral injury to the larynx may have important consequences that impact central auditory

processing [58]. Individuals with UVFP were found to generate significantly smaller compen-

satory responses to reflexive vocal fo perturbations, compared to responses from adults with

typical speech. However, the study findings are challenged by the sex-mismatch in the group

of individuals with UVFP and control participants (i.e., the majority of participants in UVFP

group were female and the majority of participants in control group were male). Unfortu-

nately, sex is an external factor affecting vocal fo control, and male speakers have been observed

to produce significantly larger vocal fo responses in prior work [128]. Thus, there is not suffi-

cient evidence to conclude whether the group difference found was due to a sex-mismatch or

due to an underlying impairment in vocal motor control in individuals with UVFP. LaDIVA’s

incorporation of both neural motor control and biomechanical mechanisms of vocal
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production could allow for a deeper understanding of UVFP. The extended BCM could be

modified to mimic the physiology of a larynx with UVFP in LaDIVA. A patient-specific

UVFP-based LaDIVA model, with an asymmetric VF model with reduced/null motor control

signaling to one VF, may provide insights about the laryngeal motor control of the disorder

[49,53,129]. The model could provide simulated patterns of CT and TA muscle activations and

subglottal pressure in the process of simulating responses to reflexive fo auditory perturbations,

which would be helpful in understanding the underlying mechanisms of UVFP.

The main objective of the current implementation of LaDIVA was to assess the validity of a

computational model of neural control of laryngeal function with neural and biomechanical

components. We have opted to use a combination with minimal computational complexity,

providing near real-time simulations of vocalizations. Thus, LaDIVA uses a low-order

lumped-element model to describe the biomechanics of phonation that does not model the

complexities of three-dimensional geometry characteristics of the VFs provided by higher-

order VF models [81]. In future iterations of LaDIVA we hope to incorporate more accurate

models that could increase the accuracy of VF modeling of LaDIVA. Another simplification in

LaDIVA was maintaining subglottal pressure at 800 Pa through all simulations. This was an

intention choice to characterize the effects of different laryngeal muscle activation configura-

tions on vocal fo and SPL outputs in a controlled manner. However, future work should be car-

ried out to improve the forward model solution optimization to handle instances in which

multiple vocal fo and SPL output solutions are available for a selected combination of aCT, aTA,

and Ps in a way that does not cause discontinuities in vocal fo values across time steps in model

simulations. Currently, there is a future implementation underway considering additional

inputs and outputs to extend the scope of the model to incorporate all five intrinsic muscle

activation variations (i.e., CT, TA, LCA, PCA, and IA) and vocal quality-based modifications.

Conclusion

In this study, we have introduced and validated LaDIVA, a new neurocomputational model

with physiologically based laryngeal motor control. LaDIVA combines the DIVA model for

neural motor control with a lumped-element physics-based vocal fold model. LaDIVA simula-

tions were qualitatively and quantitatively compared and contrasted against adaptive and

reflexive behavioral responses to vocal fo auditory feedback perturbations collected in individ-

uals with typical speech. In addition, simulations of different natural intonation patterns for a

running speech utterance were successfully performed. LaDIVA allows for investigation of

comprehensive parameter variations, complex stationary and dynamic perturbations that are

difficult to assess psychophysically, and causal effects, thus providing a tool for advancing the

understanding of typical and disordered voice production.

Materials and methods

Notation

Mobility space (x; _x) represents positions and changes in positions of a physical structure

being controlled. In LaDIVA, mobility space is defined by 14 variables (see Fig 1; mobility

space pathways denoted in orange). Ten variables are used to represent the vocal tract, each

variable defining a specific vocal tract articulatory composition (x1−x10). Three variables repre-

sent the larynx, each variable defining activation levels of three intrinsic laryngeal muscles

(aCT, aTA, aLC). One variable represents the respiratory system, defining the subglottal pressure

applied on the larynx via the lungs (Ps). The first ten variables representing the vocal tract are

preserved from DIVA model, and the variables representing the larynx and respiratory system

are modified in LaDIVA. More details are provided in the Extended Body-Cover Model section.
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Mobility space variables are represented by 1) the symbol x if referring to a mobility space

state, and 2) the symbol _x if referring to the change in the mobility space state.

Task space (y; _y) represents sensory inputs in auditory and somatosensory domains. In

LaDIVA, auditory task space is represented by five variables (see Fig 1; auditory task space

pathways denoted in purple). Three variables represent the vocal tract and are defined as the

first three resonant frequencies of the vocal tract. These are referred to as first, second, and

third vowel formants (F1, F2, and F3). Two variables represent the larynx and are defined as the

vocal fundamental frequency (fo; the acoustic correlate of vocal pitch), and the vocal sound

pressure level (SPL; the acoustic correlate of loudness). In LaDIVA, somatosensory task space

is represented by seven variables, which are preserved from DIVA (see Fig 1; somatosensory

task space pathways denoted in green). Six variables represent the vocal tract and are defined

as constriction levels of six different places of constriction along the vocal tract (S1−S6). One

variable represents the larynx and is defined as the constriction at the glottis (referred to as the

glottal constriction in DIVA) in somatosensory task space. Task space variables are generally

represented by 1) the symbol y if referring to a task space state, and 2) the symbol _y if referring

to the change in task space state. More specifically, auditory and somatosensory task space var-

iables are referred to as yaud and ysomat, respectively.

Targets rα(β, t), where α = {motor, aud, somat} and β = {x, y}, represent the specific refer-

ences for each sound unit, provided in the speech sound map in the brain (see Fig 1; outputs of

speech sound map). Targets are defined as auditory and somatosensory task space reference

targets for a given speech sound. The initial states of mobility state variables are set to zero for

untuned targets. Through several iterations of simulations, the mobility space variables can be

tuned to produce the desired auditory and somatosensory task space outcomes. The tuning

process involves identifying the auditory and somatosensory feedback errors from desired

auditory and somatosensory targets and produced auditory and somatosensory outputs of the

system in current iteration and incorporating corrective motor programs to subsequent pro-

ductions from the system using inverse mapping capabilities. See Inverse Mapping subsection

for more details. These tuned targets can be saved as mobility space variables. As reference tar-

gets vary over time, they are defined as time series of minimum and maximum target values

that each domain variable can operate within (e.g., raudmin(y,t) and raudmax(y,t)). From these

maximum and minimum values, the value closest to the domain variable at each time step is

considered the target for the purpose of error calculation.

In LaDIVA, similar to DIVA, targets are specified in auditory and somatosensory task

space variables when initially loaded for simulations. For all simulations using the sustained

vowel /a/, the vowel /a/ was tuned to obtain the desired auditory and somatosensory reference

targets by tuning the mobility space variables. For the sustained vowel /a/, the vocal fo target

maximum and minimum are defined to be + 5 and—5 cents from baseline fo value of produc-

tion. For the sentence ‘Buy Bobby a puppy’, first the sentence was tuned to obtain the desired

auditory and somatosensory reference targets in articulatory domain by setting the vocal fo tar-

get to be monotonic (i.e., fo = 134 Hz) across the utterance. Then, for each of the four prosodic

contours, the sentence was separately tuned to obtain the desired auditory reference target

defining each prosodic contour. For prosodic contours, both vocal fo target maximum and

minimum were set to the baseline fo contour of each intonation pattern, thus a point trajectory

was considered instead of a region.

In the current version of LaDIVA, the perceptual acuity (i.e., measured by just noticeable

difference (JND) between two values in a task space variable) is considered to be identical to

the reference target of that task space variable. For example, for the sustained vowel /a/, the

vocal fo target maximum and minimum are defined to be + 5 and—5 cents from the baseline fo
value of the production. Thus, an error larger than 5 cents from baseline vocal fo will be
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detected and corrected by the control system. The just noticeable difference is also set to be 5

cents. In future versions of LaDIVA, acuity in each task space can be differed to provide addi-

tional variability to the targets.

Intrinsic delays τvariable, represent the intrinsic delay parameters defined in DIVA to

mimic neural and biomechanical processing delays. The propagation delay of signal transmis-

sion in cortico-cortical connections between premotor cortex and motor cortex as well as

between auditory/somatosensory areas and motor cortex is set to 5 ms. The time it takes for a

motor command to have effects on articulatory mechanisms is set to 50 ms. The time it takes

an acoustic signal transduced by cochlear to make its way to the auditory cortical areas (i.e.,

superior temporal cortex; auditory state map in DIVA) is set to 50 ms. The time it takes for

somatosensory feedback from peripheral regions to reach higher order somatosensory cortical

areas (i.e., inferior parietal cortex; somatosensory state map in DIVA) is set to 20 ms. The rest

of the delays in DIVA correspond to ‘learned’ or ‘necessary’ delays for accurate representation

of neural signal calculations. The learned delays between premotor cortex (speech sound map

in DIVA) and auditory and somatosensory areas (auditory and somatosensory error maps) are

set to 55 ms and 25 ms, respectively, to make the auditory and somatosensory expectation sig-

nals arrive at the error maps at the same time that the corresponding auditory and somatosen-

sory state signals do, such that the error signals are computed correctly. The learned delays

between premotor cortex and motor cortex (for the pathway through the cerebellum) are simi-

larly set to 55 ms and 25 ms, respectively for auditory and somatosensory components, to

make the learning signals arrive at the motor cortex at the same time that the corresponding

feedback corrective signal such that the correct portion of the feedforward command is

adapted. These ‘learned’ delays are necessary for the correct behavior of the model but they

could be implemented in many different ways (e.g., differentially delaying the auditory and

somatosensory areas’ projections to motor cortex to make the somatosensory and auditory

error signals arrive at the same time despite different intrinsic delays, so that the rest of the

‘learned’ delays to the motor cortex need not differentiate between the auditory and somato-

sensory signals). The equations in the following sections include delay parameters discussed

above in more detail. Note that the delays above are those specified in the DIVA Simulink ver-

sion (2017), which were used for implementation of LaDIVA. Please refer to Guenther, Ghosh

[21] for a detailed description of DIVA intrinsic delays and the neurobiological literature sup-

porting the selections.

Control Modules in LaDIVA

Auditory feedback controller. In LaDIVA, the auditory feedback controller calculates the

difference between the reference auditory target, raud(y,t), and the current auditory output,
Caud(y), to calculate the auditory error signal, eaud(y) (Eq 1). The Jacobian inverse mapping, J

(x)−1, translates the auditory error from auditory task space to mobility space (i.e., eaud(y)!

eaud(x); Eq 2). A fraction of the translated error is then carried forward as the output of the

auditory feedback controller, FBaud
_ðxÞ, to be added as a corrective command to the feedfor-

ward controller. To achieve this fractional addition, the translated error is multiplied by a gain

factor (auditory feedback gain; 0<gfb_aud<1). See Eq 3.

eaudðy; tÞ ¼ raudðy; tÞ � Caudðy; tÞ ð1Þ

eaudðx; t � tAuMÞ ¼ JðxÞ� 1
� eaudðy; t � tAuMÞ ð2Þ

FBaudð _x; tÞ ¼ gfb aud � eaudðx; t � tAuMÞ ð3Þ
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Here, reference auditory target = raud(y,t), current auditory output = Caud(y,t), auditory

error signal in auditory task space = eaud(y,t−τAuM), auditory error signal in mobility

space = eaud(x,t−τAuM), Jacobian inverse mapping = J(x)−1, auditory feedback gain = gfb_aud

and output of the auditory feedback controller = FBaudð _x; tÞ. τAuM (set to 5 ms) is the long

range cortico-cortical signal transmission delay between superior temporal cortex (i.e., audi-

tory error map) and motor cortex (i.e., articulatory velocity position map). Note that

FBaudð _x; tÞ is a 14-n array containing the rate of change in mobility space variables. Thus, the

exact corrective command, FBaudðx; tÞ ¼
R
FBaudð _x; tÞ dt.

Somatosensory feedback controller. Similarly, the somatosensory feedback controller in

LaDIVA calculates the difference between the reference somatosensory target, rsomat(y,t), and

the current somatosensory output, Csomat(y), to calculate the somatosensory error signal, eso-

mat(y) (Eq 4). The Jacobian inverse mapping, J(x)−1, translates the somatosensory error from

somatosensory task space to mobility space (i.e., esomat(y)!esomat(x); Eq 5). A fraction of the

translated error is then carried forward as the output of the somatosensory feedback controller

to be added as a corrective command to the feedforward controller. To achieve this fractional

addition, the translated error is multiplied by a gain factor (somatosensory feedback gain;

0<gfb_somat<1). See Eq 6.

esomatðy; tÞ ¼ rsomatðy; tÞ � Csomatðy; tÞ ð4Þ

esomatðx; t � tSoMÞ ¼ JðxÞ� 1
� esomatðy; t � tSoMÞ ð5Þ

FBsomatð _x; tÞ ¼ gfb somat � esomatðx; t � tSoMÞ ð6Þ

Here, reference somatosensory target = rsomat(y,t), current somatosensory

output = Csomat(y,t), somatosensory error signal in somatosensory task space = esomat(y,t

−τSoM), somatosensory error signal in mobility space = esomat(x,t−τSoM), Jacobian inverse

mapping = J(x)−1, somatosensory feedback gain = gfb_somat, and output of the somatosensory

feedback controller = FBsomat
_ðxÞ: τSoM (set to 5 ms) is the long range cortico-cortical signal

transmission delay between inferior parietal cortex (i.e., somatosensory error map) and motor

cortex (i.e., articulatory velocity position map). Note that the exact corrective command,

FBsomatðx; tÞ ¼
R
FBsomatð _x; tÞdt.

Feedforward controller. In LaDIVA, the feedforward controller calculates the feedfor-
ward motor command FFmotor(x,t) by multiplying the reference mobility target, rmotor(x,t) by a

weighting parameter wmotor(x) and the total feedforward gain gff total
. See Eq 8. The weighting

parameter wmotor(x) is calculated by considering a fraction of the corrective motor commands

from auditory and somatosensory feedback controllers (i.e., eaud(x,t)+esomat(x,t)). See Eq 7A.

The feedforward learning rate is defined to quantify the fraction of feedback corrective com-

mands incorporated into subsequent motor output Ciþ1

motorðx; tÞ; (Feedforward learning rate;
0<λff<1). See Eq 7B. Note that the original DIVA model has an additional gain parameter

defined to represent total feedforward gain (total feedforward gain; 0 < gff total
< 1) that should

not be confused with λff. Given that an adult system should possess fully tuned motor pro-

grams, the feedforward gain was set to its maximum value (gff = 1). Unless there is an anatomi-

cal change or sensory deficit that affects speech production, the feedforward gain is not

expected to differ across time courses relevant to behavioral paradigms [8]. The current motor

output Ci
motorðx; tÞ is a combination of the feedforward motor command FFmotor(x,t) and a

fraction of the corrective motor commands from auditory and somatosensory feedback con-

trollers. See Eq 9. The total feedback gain is defined to quantify the fraction of the combined
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auditory and somatosensory feedback corrective commands incorporated into subsequent
motor output Ciþ1

motorðx; tÞ (total feedback gain; 0 < gfbtotal
< 1). For LaDIVA simulations, gfbtotal

was set to 1.

emotorðx; tÞ ¼ eaudðx; tÞ þ esomatðx; tÞ ð7AÞ

DwmotorðxÞ ¼ lf f � emotorðx; tÞ � Cbðx; t � tlearntÞ ð7BÞ

wmotorðxÞ ¼ wmotorðxÞ þ DwmotorðxÞ ð7CÞ

FFmotorðx; tÞ ¼ gfftotal
� rmotorðt � tPreMÞ � wmotorðxÞ ð8Þ

Ciþ1

motorðx; tÞ ¼ FFmotorðx; tÞ þ gfbtotal
�

Z

ðFBaudð _x; tÞ þ FBsomatð _x; tÞÞ dt ð9Þ

Here reference mobility target = rmotor(x,t), subsequent motor output = Ciþ1

motorðx; tÞ, feedfor-

ward motor command error = emotor(x,t), output of the feedforward motor

controller = FFmotor(x,t), output of the auditory feedback controller = FBaudð _x; tÞ; output of the

somatosensory feedback controller = FBsomatð _x; tÞ. For LaDIVA, auditory task space variables:

fo and SPL, mobility space variables: aCT, aTA, aLC, and Ps, and the somatosensory task space

variable: glottal constriction, are the relevant parameters. The learned delays τlearnt between

premotor cortex and motor cortex (for the pathway through the cerebellum) are set to 55 ms

and 25 ms, respectively, for auditory and somatosensory components to make the learning sig-

nals arrive at the motor cortex at the same time that the corresponding feedback corrective sig-

nal such that the correct portion of the feedforward command is adapted. τPreM (set to 5 ms) is

the long range cortico-cortical signal transmission delay between premotor cortex (i.e., speech

sound map) and motor cortex (i.e., articulatory velocity position map).

Forward mapping F{x}. The forward model in LaDIVA, denoted by F{~}, predicts the

auditory consequences, Caud(y,t), of the CT and TA laryngeal muscle activations and subglottal

pressure buildup due to respiratory function. See Eq 10. Although somatosensory conse-

quences of motor commands, Csomat(y,t), can also be predicted, the current version of LaDIVA

focuses on auditory consequences. The forward mapping is a consolidation of 1) conversion of

current motor output Cmotor(x,t−τMoAc), to positions of the articulators Artic(x,t), 2) the con-

version of positions of the articulators to the resultant to acoustic output Acoustic(t) as derived

by the acoustic synthesizer in DIVA, and 3) the conversion of the acoustic signal to the current

auditory output at the cochlear Caud(y,t). Thus, Eq 10 can be further broken down to three

equations. See Eqs 10A–10C.

Caudðy; tÞ ¼ FfCi
motorðx; t � tMoAc � tAcAuÞg ð10Þ

Artic ðx; tÞ ¼ FMoArfC
i
motorðx; t � tMoAcÞg ð10AÞ

AcousticðtÞ ¼ SynthesizerfArticðx; tÞg þ PertðtÞ ð10BÞ

Caudðy; tÞ ¼ FAcAufAcoustic ðt � tAcAuÞg ð10CÞ

If any auditory perturbation is added to the system, it will be added to the acoustic signal as

per Eq 10B. Here, τMoAc is the time it takes for the motor command to have its effects on the
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articulatory mechanisms. τAcAu is the time it takes an acoustic signal transduced by the cochlea

to make its way to the auditory cortical areas.

Jacobian Inverse Mapping J(x)−1. The Jacobian inverse mapping in LaDIVA, denoted by

J(x)−1, converts the auditory error signals from auditory task space to mobility space (i.e.,

Caud(y,t) to Caud(x,t)). Similarly, somatosensory error signals in somatosensory task space are

converted to mobility task space (i.e., Csomat(y,t) to Csomat(x,t)). In the current version of

LaDIVA, we focus on auditory error signals. Eqs 11 – 14 summarize the computations

involved in generating the Jacobian inverse mapping required to convert the auditory error

signals from auditory task space to mobility space corrective motor commands.

Ci
motorðxþ Dx; t � tlearnedÞ ¼ Ci

motorðx; t � tlearnedÞ þ x � IðxÞ ð11Þ

eaud
y
Dx

� �
¼ F Ci

motorðxþ Dx; t � tlearnedÞ
� �

� Caudðy; tÞ ð12Þ

JðyÞ ¼ eaud
y
Dx

� �
� eaud

y
Dx

� �T
ð13Þ

JðxÞ� 1
¼ x � IðxÞ � eaudð _yÞ � ½JðyÞ þ g � x

2
� IðyÞ�þ ð14Þ

eaudðx; t � tAuMÞ ¼ JðxÞ� 1
� eaudðy; t � tAuMÞ ð2Þ

Here, F{~} = forward model in LaDIVA, Caud(y,t) = current auditory consequences, I(x) =

identity matrix, γ = Jacobian regularization factor, ξ = Jacobian step size, Cmotor(x,t) = current

motor command, Δx = Jacobian step size change in mobility space, eaud
y
Dx

� �
= auditory task

space change for a Jacobian step size change in mobility space, J(y) = Jacobian matrix, J(x)−1 =

Jacobian inverse mapping, [~]+ = Moore Penrose pseudo inverse, eaud(y,t) = auditory error sig-

nal in auditory task space, eaud(x,t) = auditory error signal in mobility space. τlearned is the

delay within the motor cortex between the current motor position signal and the Jacobian

inverse-map. τlearned is set to 55 ms make the current articulator position signal arrive at the

inverse-map at the same time that the corresponding error signals such that the inverse projec-

tion is computed based on the motor configuration of the articulators at the time of the error

generating production.

Modification to extended BCM

Overview of extended BCM. To incorporate motor control of glottal function into

DIVA, biomechanical low-dimensional lumped-element modeling of vocal fold (VF) oscilla-

tions was applied. For this, an extended version of the well-established body-cover model

(BCM) developed by Story and Titze [46] resembling internal layered tissue structure in the

VFs was chosen. The extended version of the BCM introduced by Zañartu, Galindo [49],

which contains the original BCM mathematical equations as well as added features including a

revised glottal flow model with a posterior glottal gap, was used. The BCM formulation allows

for accurate description and simulation of many fundamental aspects of vocal function, at a

low computational cost [45]. These include flow-induced self-sustained oscillations, the verti-

cal mucosal surface wave, and fold collision during the closed phase [43,130]. It further consid-

ers the three-way interaction at the glottis between sound, flow, and VF tissue; and is

compatible with acoustic wave propagation schemes for modeling vocal tract articulation

[131]. In the extended BCM model, the effects of a posterior gap on the VF tissue dynamics are

also taken into account, which is crucial for modeling vocal hyperfunction [49].
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For the implementation in this paper, the DIVA acoustic synthesizer was applied to gener-

ate the acoustic signal outputs of the model (see Materials and Methods: acoustic synthesizer
section). However, it should be noted that DIVA does not contain biomechanically-relevant

source-filter interactions in its acoustic synthesizer. Intrinsic laryngeal muscles control the VF

configurations in the BCM. The thyroarytenoid (TA) muscle comprises the body of the VFs

and contributes to changing the tension and length of the VFs. The cricothyroid (CT) muscle

tilts the thyroid cartilage forward, which in turn tightens and stretches the VFs. The interaryte-

noid (IA) and lateral cricoarytenoid (LCA) muscles work in conjunction to adduct the glottis.

The opposite action is performed by the posterior cricoarytenoid (PCA) muscle solely. Intrin-

sic laryngeal muscles also control VF posturing and tissue properties. In the BCM, VF adjust-

ment (i.e., controlled modification of geometrical and biomechanical model parameters) is

obtained using a simplified muscle activation scheme based upon a set of physiological rules

[46,48]. The defined set of rules allow for capturing the essential effects on vocal function dur-

ing phonation due to the activation of intrinsic musculature. The rules consider normalized

activation levels of CT (aCT) and TA (aTA) muscles, whereas the resulting adductor effect due

to both the LCA and PCA is represented through a single activation level (aLC). Subglottal

pressure (Ps) is not controlled by the rules and it is a separate input parameter that controls the

driving force of the self-sustained model and affects the resulting amplitude and pitch. In the

current implementation of LaDIVA we have mainly focused on the activations of CT and TA

intrinsic muscles for the production of acoustic outcomes. LCA, PCA, and IA muscle activa-

tion is kept constant at an adducted state to simulate voice production via the extended BCM

for LaDIVA. Unvoiced productions are handled via the noise generator in DIVA acoustic syn-

thesizer. In future iterations we hope to incorporate all five intrinsic laryngeal muscles (i.e.,

CT, TA, LCA, PCA, IA) and their activations in LaDIVA.

Combining DIVA and extended BCM. The extended BCM requires CT and TA muscle

activations (aCT, aTA) and subglottal pressure (Ps) as inputs. These were linked from DIVA

vocal fold mobility trajectories. For all simulations, the initial mass, position, velocity, and

acceleration of the VFs were specified as per the original BCM formulation [46]. The main out-

put of the extended BCM is the glottal area waveform. However, DIVA requires auditory task

space variables as sensory inputs. To generate the auditory targets compatible with DIVA,

vocal fo and radiated SPL signals were generated from the glottal area waveform provided by

the extended BCM. Vocal fo was generated from the glottal area waveform using an autocorre-

lation algorithm. Radiated SPL at glottis was calculated as 20log10[rms(Zv
�(dUg/dt)/(2x10-5)],

where impedance constant Zv was set to 45000 kg.m-4 and Ug was the glottal flow signal [132].

These derived outputs were used as sensory inputs to DIVA.

Generating forward maps. The control loop in the DIVA implementation operates itera-

tively over 5-ms non-overlapping windows. At each 5-ms time step of an utterance, the motor

representations are converted to auditory and somatosensory representations via the forward

maps and error signals are calculated and inverse mapped to motor presentations. Thus, con-

necting DIVA and extended BCM together with a set of auditory task space parameters and

motor mobility space parameters at their connection interface meant that simulations were

required to be run every 5 ms across the two systems. Firstly, this limited the near real-time

simulations of LaDIVA. Secondly, a 5-ms simulation in extended BCM was not sufficient to

generate a glottal airflow signal stable enough to calculate a vocal fo (i.e., due to vocal variability

at the start of production in extended BCM). See Acoustic Synthesizer section below fo more

details. Thus, we generated a forward mapping for all combinations of motor mobility space

variables (i.e., aCT, aTA, and Ps) to auditory task space variables (vocal fo and SPL), using model

simulations of the extended BCM for all possible combinations of input parameters; aCT

(range: 0–1, initial step size: 0.02, smoothed step size: 0.001), aTA (range: 0–1, initial step size:
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0.02, smoothed step size: 0.001), and Ps (range 10–2010 Pa, initial step size: 100 Pa, smoothed

step size: 5 Pa). Linear interpolation was used to smooth the forward map outputs. This for-

ward mapping was connected to the DIVA model to replicate vocal fold biomechanical param-

eters in the feedforward controller (see Fig 1). In a similar manner, the Jacobian inverse

functions were modified to refer to the new forward mapping added for vocal fold parameters

in order to conduct the inverse mapping required in the error correction processes in the audi-

tory and somatosensory feedback controllers [22] (See Fig 1).

Behavioral study dataset. In order to validate LaDIVA, an experimental dataset previ-

ously collected from 20 female adults with typical speech and no neurological, speech, or hear-

ing disorders was used [68]. The participants underwent reflexive and adaptive vocal fo
perturbation paradigms, and the group responses for each paradigm were considered as the

reference standard in the current study to fit the simulated responses generated via the new

model implementation. For both vocal fo reflexive and adaption paradigms, participants were

asked to repeatedly produce the sustained vowel /α/ for 108 trials. For the vocal fo reflexive par-

adigm, auditory feedback for the vocal production was delivered unaltered for 75% of the tri-

als. For a randomly selected 25% of the trials, auditory feedback presented via headphones to

the participants was altered in real-time. The vocal fo was increased by +100 cents using pitch

shifting hardware (Eclipse V4 Harmonizer; Eclipse, Little Ferry, NJ), and presented with a jit-

tered perturbation onset of 500–1000 ms from vocal onset (see Fig 3A). For the vocal fo adap-

tive paradigm, the first 24 trials of the paradigm (termed baseline phase) had unperturbed

auditory feedback provided to the participant. The next 30 trials of the paradigm (termed

ramp phase) had each trial’s auditory feedback shifted by an increasing step size of 3.33 cents

from 0 to +100 cents. For the next 30 trials (termed hold phase), the auditory feedback pertur-

bation was held steady at +100 cents in each trial. The last 24 trials (termed after effect phase)
contained unperturbed auditory feedback (see Fig 3B). The vocal fo of the auditory feedback

signal was shifted prior to vocal onset and the perturbation was sustained until the end of the

trial.

Model simulations. LaDIVA was implemented in MATLAB based on the DIVA imple-

mentation using the Simulink platform. All simulations for LaDIVA were carried out via

MATLAB scripts and Simulink (Mathworks, Natick, MA, Version R2018a). Reflexive and

adaptive vocal fo perturbation paradigms identical to those in the behavioral dataset were sim-

ulated for LaDIVA with initial muscle activations and subglottal pressure set to replicate a

male voice with vocal fo = 134 Hz (achieved via four initial cases of laryngeal muscle activation

levels; see Table 4).

Acoustic synthesizer. The incorporation of the extended BCM in LaDIVA follows the

same principle in order to be compatible with the DIVA control loop and acoustic synthesizer.

See Fig 1 and Table 1 for the LaDIVA control loop architecture and controlled parameter list,

respectively. The control loop in the DIVA implementation is decoupled from its acoustic syn-

thesizer such that the control loop operates iteratively over 5 ms non-overlapping windows. At

each 5-ms time step, the motor representations are converted to auditory and somatosensory

representations via the forward maps and error signals are calculated and inverse mapped to

motor presentations. See Eq 10 in the Forward mapping section above. At the end of the full

simulation (e.g., an utterance of total duration of 3050 ms for the sustained vowel /a/), the

motor representation time series is applied to the acoustic synthesizer to generate the time

varying acoustic signal. See Eqs 10A and 10B.

The reasoning for not calculating the acoustic signal per each 5 ms time window is as fol-

lows. According to the source-filter theory, the glottal air volume velocity (glottal air flow) is

the source of phonation [133]. The glottal airflow signal is filtered through the vocal tract

model for modulating the spectral information (e.g., enhancing spectral formant regions or
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deemphasizing anti-formant regions; [47]). In the latest version of the DIVA model (dated Oct

22, 2017), a static signal for the glottal air flow is simulated via the glottal function in Liljen-

crantz-Fant glottal flow model [77], which is filtered via the time-varying vocal tract filter of

DIVA speech synthesizer. For the LaDIVA implementation, we inputted trajectories of CT

and TA muscle activation and subglottal pressure signals as control signals to the extended

BCM to simulate VF dynamics for a full speech utterance (i.e., 3050 ms duration) that in turn

generated a time-varying glottal area waveform. The derivative of this waveform is calculated

to generate the glottal airflow signal, that is then filtered by the time-varying DIVA vocal tract

filter to generate the resulting acoustic output of LaDIVA. The VF dynamics require initial

kinematics of VFs (i.e., position, velocity, and acceleration) to be defined at the beginning of

simulation and outputs end kinematics of VFs at the end of each simulation. If the muscle acti-

vations and subglottal pressure were fed to extended BCM every 5 ms, the simulation would

reset the VF kinematics to initial state at the beginning of each 5 ms, which would generate dis-

continuities in VF movement and thereby discontinuities in the derived glottal airflow signal.

Moreover, a 5 ms window is not sufficient for the extended BCM to generate a stable glottal

airflow signal to calculate vocal fo. Thus, for the purposes of acoustic synthesis, the glottal area

waveform is not derived for 5 ms time steps of the vocal utterance and parsed together.

Instead, the glottal area and air flow signals for a complete vocal utterance are generated via

the extended BCM by providing a time series of muscle activations and subglottal pressure

and simulating VF dynamics and thereby a glottal airflow waveform for the total utterance.
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