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Introduction

The capacity to effectively and safely swallow or eat is one of the most basic human needs and also can be a great pleasure.

Sustaining oneself nutritionally and maintaining adequate hydration while enjoying the process has become intertwined with

the activities of society. In fact, older adults look forward to more opportunities to share mealtimes and participate in social

interactions including holidays, family occasions and traditions centered on meals and specific foods. Therefore, the loss of

the capacity to safely swallow and enjoyably dine can have far reaching implications from sustaining life to quality of life. An

ultimate irony is that as we grow older, the ability to swallow, a function very much taken for granted, undergoes changes that

increase the risk for disordered swallowing. This occurs with increasing age and exposure to age-related diseases and

conditions. Indeed, the loss of the capacity to swallow can have devastating health implications, including nutrition and

hydration deficits, especially for older adults.

According to the US Census Bureau, as of July 1, 2005, there were an estimated 78.2 million American baby boomers (those

born between 1946 and 1964). In 2006, baby boomers began turning 60 at a rate of about 330 every hour. With the rapid and

dramatic growth in the U.S aging population, dysphagia is becoming a national health care burden and concern.

Dysphagia prevalence depends on the specific population sampled, with community dwelling and more independent

individuals having rates near 15 percent. Upward of 40 percent of people living in institutionalized settings such as assisted

living facilities and nursing homes are dysphagic . With the projected growth of individuals living in nursing homes, there is a

compelling need to address dysphagia not only in ambulatory and acute care settings but also in long-term care settings.

Presbyphagia versus Dysphagia

Although the anatomical, physiological, psychological and functional changes that occur in the dynamic process we refer to as

“aging” place older adults at risk for dysphagia; a healthy older adult’s swallow is not inherently impaired. Presbyphagia

refers to characteristic changes in the swallowing mechanism of otherwise healthy older adults . Clinicians are becoming

more aware of the need to distinguish among dysphagia, presbyphagia (an old, yet healthy, swallow) and other related

diagnoses in order to avoid over diagnosing and over treating dysphagia. With the increased threat of acute illness, multiple

medications, and any number of age-related conditions, older adults are more vulnerable and can cross the line from a healthy

older swallow to a person with dysphagia in association with certain perturbations including acute illness, surgery, chemo

radiation and other factors. Previous work has focused primarily on the anatomy and physiology of the oropharyngeal

swallowing mechanism. Age effects on the temporal evolution of isometric and swallowing pressure  indicate a progression

of change that, when combined with naturally diminished functional reserve (the resilient ability of the body to adapt to

physiological stress  make the older population more susceptible to dysphagia. We review age-related changes in peripheral

and central nervous system control of head and neck structures for swallowing in this paper. In addition, we briefly discuss

promising strategies for neurorehabilitation of dysphagia that are based upon the recognition that swallowing disruption may,

in part, be a manifestation of “sarcopenia”, the age-related loss of skeletal muscle mass, organization and strength  as well as

age-related changes in sensorimotor acuity and efficiency.

Healthy Swallowing Overview

Normal oro-pharyngeal swallowing involves closely integrated sensory and motor events that begin with the sight and smell

of approaching food until material has safely entered the esophagus. The tongue propels the bolus posteriorly into the pharynx

and numerous and varied sensory receptors are stimulated along the way, triggering the pharyngeal swallow . The oral cavity
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and pharynx contain some of the richest and most diverse sensory receptors of the body, represented by dense intricate nerve

supply to the oral cavity, pharynx and larynx. Thus, exact timing of the onset of the pharyngeal swallow is imperative and

highly sensory-reliant, such that even a one-second delay, or less, in initiation can result in airway invasion of ingested

material . Dysphagia and subsequent aspiration are often the manifestation of a break-down in one or more of the many

sensory-motor events that comprise normal swallowing.

Peripheral sensory-motor swallowing

Age-related changes in specific physiologic parameters

Sensory-motor function becomes increasingly dampened with senescence throughout the body  and rate and extent depend

on personal habits (e.g. smoking, alcohol, may increase physiologic change). Structures of the head and neck that are

important for normal swallowing also are prone to age-related changes in the peripheral nervous system. These changes have

been defined by measures of specific physiologic parameters such as muscle activity, motor-unit density, or assessments of

somatosensory perception. Physiologic parameters (i.e reduced pharyngeal pressure) are the basis or cause of age-related

changes in general function in swallowing behavior (i.e. slow swallow) between healthy young and old individuals.

Anatomical differences in the old include a smaller cross-sectional area of masticatory muscles (masseter and medial

pterygoid), increased lingual atrophy and fatty infiltration and decreased lingual muscle fiber diameter , and atrophied type

1 (slow twitch) fibers in the thyroarytenoid muscle . Beyond anatomical measures, functional changes in muscle activity

between young and old include longer muscle activity (twitch prolongation) of the masseter , obicularis oris, supra- and

infra-hyoid muscles  and the thyroarytenoid muscle  as well as slower waveforms of the pharyngeal constrictors and lower

resting tone of the upper esophageal sphincter . Age-related diminishment in strength, mobility and endurance is also

evident in the tongue  and lips . Sensory function, which is understudied in the swallowing literature, despite its

influence on the pharyngeal swallow response, also changes with age and is influenced by declining perception of spatial

tactile recognition on the lip and tongue , diminished perception of viscosity in the oral cavity , poorer oral

stereognosis , and reductions in taste perception  with increasing age. Although physiological parameters are typically

measured at rest, postmortem, or during non-swallowing tasks and may not show immediate or direct clinical relevance to

general swallowing function, they can be extrapolated or inferred to age-related changes in swallowing behavior and enhance

the global understanding of swallowing abnormalities.

Age-related changes in general sensory-motor swallowing function

It is generally accepted in published studies that swallowing, as in sensory-motor physiology throughout the body, becomes

slower with increasing age  beginning in middle age . As well, the pharyngeal swallow response often initiates later in

older adults .

In normal swallowing, the properties of a bolus (i.e. volume, viscosity, temperature) are detected by oro-pharyngeal sensory

receptors and are used to guide motor function for swallowing. Increasing bolus volume and viscosity minimizes the delay in

pharyngeal swallow initiation  and increases laryngeal closure durations  in healthy adults. Taste stimuli have also

modified swallowing timing , contraction of muscles in the submental region (laryngeal movement) , and lingual

pressure  compared to a neutral stimulus. To date, much of swallowing research has examined either sensory or motor

components with little consideration for the complementary dynamic, despite the intimate synchrony of sensation and

movement. Furthermore, given the known multimodal deficiencies in oral-pharyngeal sensation, it is no surprise that the

swallowing motor response in older adults is less responsive to taste and somatosensory stimuli  compared to a younger

cohort. A recent study found that combining sensory stimuli (consistency and taste) minimizes the age differences in motor

responses to sensation , likely because older adults benefit from increased exogenous sensory input to drive motor responses.

Central swallowing control
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Dysphagia prevalence increases in advancing age due to more frequent neurological damage or disorders such as stroke ,

Alzheimer’s disease , and Parkinson’s disease . Therefore, it has become very important that peripheral differences be

investigated along-side central nervous system control. Recent advances in medical technology have facilitated functional

brain imaging studies of swallowing, incorporating techniques that include positron emission tomography (PET) ,

magnetoencephalography (MEG) , transcranial magnetic stimulation (TMS) , electroencephalography  (EEG),

and functional MRI (fMRI) . Functional MRI is among the fastest growing brain-imaging technologies because it is

minimally invasive compared to some other brain imaging systems and is becoming increasingly accessible for research

purposes.

In a systematic review of fMRI studies of healthy swallowing , the primary motor cortex was the most prevalent region of

activation, followed by the primary sensory cortex. Activation was also common in the insula and the anterior cingulate gyrus,

but fewer studies found activation in the prefrontal, parietal or temporal lobes consistently or across subjects. Other areas of

activation included motor planning areas (supplementary motor area, premotor area), other subcortical regions (internal

capsule, thalamus, basal ganglia, putamen, globus palidus) and the cerebellum. All but one of the studies included in this

review involved young adults (mean age 35 years). These pioneering fMRI studies of normal swallowing included primarily

younger individuals likely because of increased procedure tolerance, task compliance and reduced head movement.

Only one known neuroimaging study (fMRI) examined swallowing in healthy older women and reported similar patterns of

activity as in younger individuals in the bilateral sensory-motor cortices, insula/operculum, and cingulate cortex for saliva and

water swallows.  Although Martin et al (2006) did not include young adults for a prospective comparison, two separate

studies of young women  and old  healthy adults have both shown strong left-hemisphere lateralization for swallowing. An

interesting difference was that the older females recruited far more activity for water swallows , primarily in motor planning

areas (bilateral middle frontal gyrus and right superior frontal gyrus), while younger females showed more activation for

saliva swallows .

When a bolus is being manipulated in the oral cavity, afferent signals enter the brainstem and their representative cranial nerve

nuclei, synapsing in the thalamus, and then projecting to sensory specific areas of the cortex . Before the primary motor area

can execute movement, the primary sensory cortex sends information to higher-order association areas for a single sensory

modality (i.e. temperature, pressure) and for multi-modal processing for attention, motor planning, and memory . These data

suggest that the older women required more motor planning for safe swallowing than the young females did. Increased

activity in motor planning areas might be the result of reduced peripheral sensory abilities in the oral cavity, requiring motor

planning areas to become more active (or work harder) in the absence of adequate stimulation to guide motor movements.

Overall, Martin et al has provided the first look into the central control of swallowing in older adults. Future neuroimaging

studies should focus on normal aging and swallowing to enhance what is known about peripheral sensory-motor swallowing

across the age-span. Furthermore, the effects of increased oropharyngeal sensory stimuli on central control remain

uninvestigated. So far, there is only one known experiment where sensation was manipulated (anesthesia) to determine how

the brain responds during swallowing (decreased cortical activation in primary sensory-motor regions) .

Changes in skeletal muscle in limbs are similar to head and neck

Age-related sensory-motor changes have been more extensively studied in the limbs, with similar findings as those described

previously in the head and neck. Muscle loss in the limbs, which has been reviewed elsewhere , begins in middle age and

may be due to loss of muscle fibers , fewer motor units  and progressive denervation and changes in nerve

conduction . Sensory losses in the extremities with age involve declining ability to detect vibratory stimulation  and

spatial tactile discrimination (particularly in the hands and feet). These sensory-motor losses translate into gross functional

deficiencies in manual dexterity , limb strength  and walking speed .

Peripheral changes to limb anatomy and function occur along-side increased neural activation during limb movement in old

compared to young within certain brain regions . Heuninckx et al (2008) recently investigated whether the elaborate
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cortical responses in the old is related to compensation for increased task effort or dedifferentiation (age-related inability to

activate specialized neural mechanisms unrelated to task performance) using a complex interlimb coordination task. Results

showed that additional cortical recruitment (primary sensory-motor cortices and motor planning areas) was positively

correlated with increased motor success within older adults, but not in younger adults. Therefore, the over-activation in the old

for motor tasks compared to young is consistent with the compensation hypothesis, where task-related changes are positively

correlated with neural activation.

Although some discourage extrapolating limb muscle function to head and neck musculature , these reports of over-

activation in the brain relative to limb motor function may be useful leads toward hypotheses for swallowing studies of

neurophysiology in healthy aging. Future studies of the effects of age on swallowing neurophysiology should determine

whether age-related differences in peripheral movement (i.e. slower swallows in older individuals ) appear to occur along side

differences in neural control of swallowing. Furthermore, incorporating effortful swallowing might convey information about

increased neural activation with increased effort with a swallowing task in elders. Overall, knowledge of swallowing

neurophysiology in healthy aging is becoming more important as we approach the possibility of using neuroimaging

techniques for clinical purposes to understand dysphagia. Without age-matched controls, dysphagic patients with decreased

brain activation for swallowing might show “normal” activation compared to young healthy adults, who normally have less

activation than their older counterparts.

Therapy

With advancing age, lean protein tissue diminishes, contributing to the loss of muscle protein mass, while adipose tissue

increases in skeletal muscle of the limbs . Many studies are showing increased rates of muscle protein synthesis with acute

resistance exercise and resistance exercise training programs in middle aged and frail older adults . Functional gains with

exercise include upper- and lower body strength and balance, agility and endurance .

In traditional swallowing, compensatory treatment strategies are used to alter the flow of material in the pharynx. Chin tuck

and head rotation decreased choking during swallowing immediately , reduced aspiration in 81% of patients , and

reduced aspiration in 25% of patients who used it for all volumes swallowed . Head rotation was 20–75% effective in

reducing aspiration , and increasing the duration of laryngeal elevation . A large multisite randomized clinical trial

recently indicated the need to better understand the relationship between material properties of thickened fluids often provided

to elders who aspirate thin fluids relative to changes in health status. The investigators conclude that the future need is to

examine efficacy of a combination of physiologically sound interventions relative to solely modifying diet (based on a cohort

of 512 research participants) , particularly in the older populations with dysphagia secondary to dementia or Parkinson

disease. Despite some success with compensatory maneuvers, and modifying food consistencies, these techniques offer

patients little in the way of rehabilitation for functional swallowing. Research to date primarily has focused on non-swallow

and enhanced swallowing (i.e. effortful swallowing ) motor exercises to increase muscle strength and range of motion in

oropharyngeal structures. Exercise has shown to be effective in increasing strength of the tongue and improving functional

swallowing in the healthy old  and in dysphagic individuals .

Sensory modalities have garnered little attention for long-term swallowing treatment, despite many reports of positive effects

of increased intra-oral stimulation (i.e. taste, texture, temperature, viscosity) on swallowing biomechanics and bolus flow

kinematics . In addition to intra-oral stimulation, electrical stimulation to the submental and neck regions at low

sensory threshold levels reduced aspiration frequency and residue amounts in individuals with chronic pharyngeal

dysphagia . Each of these sensory modalities is exogenous or externally-cued forms of stimulation to improve a motor

response. Endogenous or internally cued stimulation involves increased attention to a task, resulting in top-down initiation and

increased neural activation of motor planning and execution areas of the cortex during a motor task in healthy adults . All

forms of increased sensory stimulation or attention to a task should be incorporated into swallowing therapy, especially given

known diminishment in oropharyngeal sensation, attention and memory in older adults.
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Sensory-based swallowing therapies that aim to increase a motor response (i.e. sour or cold bolus), rather than modify bolus

flow (i.e. thickened liquids) might receive little attention because they are not routinely included in assessments of swallowing

function. Also, their usefulness has not been researched over the long-term, despite the likelihood that adaptation to a sensory

stimulus might gradually decrease the effect of stimulus on the motor response. Some studies have reported oral and tongue

sensory assessments ; these could be included in swallowing assessments. Also, older participants demonstrated more

difficulty with taste components of the sensory assessments compared to oral somatosensory measures . Sensory

assessments of the oropharynx for swallowing to understand healthy aging might be limited by the use of psychophysical

measures (relationship between physical stimuli and their subjective percepts), where the clinician relies heavily on subjective

reports of intensity for stimuli. Thus, cognitive differences may affect the accuracy of responses. In addition, assessing

sensory ability requires knowledge and expertise to create, conduct and interpret valid and reliable measures of oropharyngeal

sensation. Therefore, as in many clinical and research foci of swallowing, multidisciplinary collaborations will be necessary to

derive useful sensory assessments for swallowing.

As medical technology for neuroimaging becomes more useful and available, more neurorehabilitation treatments will be

examined for both peripheral and central changes in disordered populations as a means of determining effectiveness . With

impending changes, it is imperative that sensory-motor abilities in healthy older adults are thoroughly researched so that

correlations between the brain and swallowing biomechanics can be interpreted accurately for comparison to the dysphagic

population.
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