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Abstract: Abstract: ObjectiveThis article describes a first attempt to generate a standardized and
safe selective surface electrostimulation (SES) protocol, including detailed instructions on electrode
placement and stimulation parameter choice to obtain a selective stimulation of the denervated
zygomaticus muscle (ZYG), without unwanted simultaneous activation of other ipsilateral or con-
tralateral facial muscles. Methods: Single pulse stimulation with biphasic triangular and rectangular
waveforms and pulse widths (PW) of 1000, 500, 250, 100, 50, 25, 15, 10, 5, 2, 1 ms, at increasing
amplitudes between 0.1 and 20 mA was performed. Stimulations delivered in trains were assessed at
a PW of 50 ms only. The stimulation was considered successful exclusively if it drew the ipsilateral
corner of the mouth upwards and outwards, without the simultaneous activation of other ipsilateral
or contralateral facial muscles. I/t curves, accommodation quotient, rheobase, and chronaxie were
regularly assessed over 1-year follow-up. Results: 5 facial paralysis patients were assessed. Selective
ZYG response in absence of discomfort and unselective contraction of other facial muscle was re-
producibly obtained for all the assessed patients. The most effective results with single pulses were
observed with PW ≥ 50 ms. The required amplitude was remarkably lower (≤5 mA vs. up to 15 mA)
in freshly diagnosed (≤3 months) than in long-term facial paralysis patients (>5 years). Triangular
was more effective than rectangular waveform, mostly because of the lower discomfort threshold of
the latter. Delivery of trains of stimulation showed similar results to the single pulse setting, though
lower amplitudes were necessary to achieve the selective ZYG response. Initial reinnervation signs
could be detected effectively by needle-electromyography (n-EMG). Conclusion: It is possible to
define stimulation parameters able to elicit an effective selective stimulation of a specific facial muscle,
in our case, of the ZYG, without causing discomfort to the patient and without causing unwanted
unspecific reactions of other ipsilateral and/or contralateral facial muscles. We observed that the SES
success is strongly conditioned by the correct electrode placement, which ideally should exclusively
interest the area of the target muscles and its immediate proximity.

Keywords: electrostimulation; surface electrodes; facial paralysis; facial palsy; zygomaticus muscle;
muscle atrophy; reinnervation

1. Introduction

Facial paralysis is a neurological condition in which the facial nerve (cranial nerve
VII) functionality is completely lost, i.e., the innervated facial muscles are completely
denervated, in contrast to facial paresis, a condition in which some motor activity can
still be detected. Facial palsy is a definition that does not describe the severity of the
nerve damage, thus can refer to either facial paralysis or paresis. Facial palsy can have
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an idiopathic origin or be caused by traumas, infections, tumors, surgical interventions,
or congenital syndromes [1–4]. Central lesions like intracranial tumors or strokes result
in central facial palsy, which only affect the second motor neuron indirectly. This article
focuses exclusively on the peripheral facial palsy, a form affecting the ipsilateral mimic
muscles, and, in particular, the eyelids, the forehead, and the mouth. It may associate with
sensory and autonomic disorders, depending on the exact location of the lesion. Since
facial palsy causes a noticeable deformity and severely impairs non-verbal communication,
it has a relevant emotional impact on the patients, and may lead to self-isolation and
reduced self-esteem [5,6]. In 2013 Hohman et al. [7] reported that in the 1810 patients they
assessed and who developed facial palsy between 2002 and 2012, 5.7% were diagnosed
with a iatrogenic origin. In their work, they confirmed that idiopathic facial palsy, better
known as Bell’s palsy, with an annual prevalence of about 25 cases per 100,000 [1], was the
most common cause (60%) of peripheral facial palsy [4]. While, in the majority of the cases,
idiopathic facial palsy tends to show a complete recovery within 3–9 weeks, this feature is
not shared by iatrogenic or traumatic forms. If facial palsy persists for longer than three
months, it is known as chronic facial palsy and often requires surgical treatment for effective
symptom mitigation, such as surgical reinnervation [8–14], even if surgical approaches are
almost never able to ensure a complete recovery [15]. For instance, surgical reinnervation
effectiveness is often reduced by the occurrence of misdirected axon regeneration causing
synkinesis and the consequent so called post-paralytic facial syndrome [16], or delayed by
the low rate of nerve grow (1 mm/d) in case of extended injuries [17,18].

Electrostimulation is a potential new therapeutic approach that has been increasingly
investigated in the last decades, with clinical implications for the ENT field in general,
and for the facial paralysis treatment in particular. For instance, some recent studies have
proposed to use facial electromyography (EMG) to detect the physiological activation of the
contralateral healthy facial muscles and use it to trigger functional electrical stimulation on
the ailing side with the goal to regain symmetry at rest and during facial movements [19].
Because of the obvious difficulties in designing an implantable system for the treatment of
facial palsy, and its potential drawbacks, such as invasiveness, the majority of the studies is
currently confined to animal models. On the contrary, non-invasive delivery of selective
surface electrostimulation (SES) may become a safer and more easily implementable solu-
tion for the near future [15,20]. In the majority of incomplete facial palsy cases, irrespective
of their etiology, the affected facial muscles remain functional, in spite of atrophy. On the
contrary, complete facial paralysis is expected to severely worsen the atrophy process in
a very short time after onset, and thus to reduce or even abolish the functionality of the
affected muscles. Previous studies on the therapeutic use of electrostimulation [21,22] have
provided initial evidence that SES can effectively counteract atrophy, suggesting that it has
the potentiality to slow down if not even to prevent the reduction of muscle volume and
functionality in patients suffering from facial paralysis [21–26]. A major issue against a
widespread use of SES in the treatment of facial paralysis is the difficulty to determine a
combination of parameters capable to generate a selective stimulation delivered by surface
electrodes. The possibility that electrostimulation of denervated muscles could prevent or
at least slow down reinnervation has been a matter of dispute in the last years. Another
issue preventing its use in standard therapy has been the potential risk of inducing synki-
netic rather than normal reinnervation in the targeted muscles, although recently, evidence
has been published against both the aforementioned concerns [20].

This article describes our first attempt to assess the most effective stimulation pa-
rameters for a safe SES that can be implemented as daily home training by the patients
suffering from facial paralysis. We chose the ZYG as target for our study because of its
size, position, and clearly discernable response to the stimulation. In addition, the elec-
trode placement could be easily corrected whenever an unspecific response of other facial
muscles is observed.
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2. Methods
2.1. Study Characteristics

The data presented in this article were generated between June 2018 and July 2019 in
the Facial Nerve Center of the ENT Department of the Jena University Hospital within a
longitudinal, open-label, prospective, monocentric, case-series-based, proof of principle
clinical investigation, approved by the ethics committee in 2018 (application number 5505-
03/18). Informed consent was obtained from all participants, in compliance with the
Declaration of Helsinki as amended in Fortaleza (2013). The study was registered in the
German Clinical Trials Register (Deutsches Register Klinischer Studien; DRKS).

2.2. Study Timeline

The study foresaw 12 visits, three of which (the 2nd, the 3rd and the 5th visit) were
conducted over the phone. 4/5 (80%) patients completed all of them (every 4 weeks).
Patient DFP0101001 left the study after the completion of the 8th follow-up because of
clinically relevant reinnervation.

2.3. Study Aims

The study had two separate aims: (a) to generate a standardized SES protocol, in-
cluding detailed instructions on the most effective electrode placement and stimulation
parameter choice in order to obtain a selective stimulation of the denervated ZYG, without
the simultaneous activation of other ipsi- and/or contralateral facial muscles, and not
causing discomfort to the patient; (b) to assess the effects of daily home SES using the
protocol defined as depicted above. This article exclusively focuses on the first aim. A
future publication is planned to depict the results concerning the second goal.

2.4. Population

Five adults (four females) were recruited, who were diagnosed with unilateral facial
paralysis confirmed by needle-EMG (n-EMG). Their average age was 43.0 ± 12.5 [range:
29–59 years]. Table 1 displays a detailed demographic and facial paralysis history analysis
of the recruited patients. While in 4/5 (80%) of the cases the denervation had an iatrogenic
origin and was characterized by a sudden onset, in 1/5 cases (20%), it was of tumorigenic
origin and progressive (patient DFP0101004). This latter patient was the only one having
performed 1-year electrostimulation at home before being enrolled in our study. In his case,
pre-study home-training included 30–50 min sessions twice per day with an amplitude up
to 22 mA, delivered with a PW of 150 ms and biphasic triangular impulses by means of
the stimulation device Paresestim (Krauth + Timmermann, Hamburg, Germany). Patient
DFP0101001 was withdrawn from the study at the 8th follow-up visit, following clinically
relevant ZYG reinnervation upon facial nerve reinnervation surgery. Patients DFP0101002
and −005 showed clinically relevant ZYG reinnervation with macroscopic voluntarily
contractions at the last follow-up visit, while no reinnervation could be detected for the
entire duration of the follow-up period in patient DFP0101003, suffering from chronic facial
paralysis for about 16 years. Single fiber activity, compatible with non-clinically relevant
reinnervation could be detected in patient DFP0101004, suffering from facial paralysis for
about 6 years after 8 m in the study.

2.5. Electrode Placement

With the patient in upright sitting position, two 60 × 40 mm oval surface electrodes
(Krauth+Timmermann, Hamburg, Germany) were placed in correspondence with the
paralyzed ZYG as close as possible to the mouth corner in order to prevent unspecific
stimulation of other facial muscles (Figure 1). STMIsola (BIOPAC Systems, Inc., Essen,
Germany) connected to the PowerLab (ADInstruments, Sydney, Australia) system was
used to deliver the stimulation. The upper electrode was always the cathode and the lower
the anode. The muscle was stimulated bipolarly, without the use of a reference electrode to
selectively limit the electrical field to the area of the ZYG.
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Table 1. Patients’ demographic data and facial paralysis history. FP = facial paralysis; F = female; M = male; SR-nEMG
time = time during the study follow-up when synkinetic reinnervation signs were detected by means of n-EMG; d = days;
m = months; y = years; R = right; L = Left; FNSAMG = Facial nerve suture with auricularis magnus nerve grafting;
HFJA = hypoglossus-facial nerve jump anastomosis.

Subject’s
Code Gender Age

FP
Dura-
tion

FP
Side FP Origin FP

Surgery
FP Surgery

Time
SR-nEMG

Time

DFP0101001 F 37 15 d R
FP after resection of a intraparotideal facial

nerve schwannoma treated with direct
nerve suture

FNSAMG 2 w before
study start 6m

DFP0101002 F 29 28 d R Postoperative FP after resection of a
vestibular schwannoma HFJA 8 m after

study start 12 m

DFP0101003 F 37 16 y 2
m R Postoperative FP after resection of multiple

meningiomas of the temporal bone None N/A N/A

DFP0101004 M 59 5 y 11
m L

Intramastoidal facial nerve schwannoma,
schwannoma resection and nerve suture

with interposition
HFJA 2 w before

study start

8 m
(single
fiber

activity)

DFP0101005 F 53 3 m
24 d L Postoperative FP after resection of a

vestibular schwannoma None N/A 12 m
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Figure 1. Example of how the electrode placement was conducted during the study (from the
patient’s diary specifically generated for the study).

2.6. Stimulation Parameters

At each session at the hospital, the patient underwent single pulse stimulation to
determine the “stimulation threshold”. Biphasic triangular and rectangular waveforms
were tested, with a PW of 1000, 500, 250, 100, 50, 25, 15, 10, 5, 2, 1 ms, at increasing
amplitudes between 0.1 and 20 mA (Figure 2). The amplitude was increased stepwise
by 0.5 mA until a visually detectable movement of the mouth corner was observed. The
“stimulation threshold” was recorded based on the independent observation of the ZYG
response to the stimulation by two investigators. In addition to single pulse stimulation,
biphasic triangular waveform trains of 20 pulses each, with a PW of 50 ms, a frequency of
7 Hz, and a pause of 50 ms, and biphasic rectangular waveform trains with a PW of 50 ms
and a frequency of 7 Hz were delivered. The average duration of each session was 30 min.
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Figure 2. Biphasic single pulse stimulation pattern with a PW of 1000, 500 and 100 ms,
delivered with triangular (above) or rectangular waveform (below). ms = milliseconds;
mA = milliampere.

2.7. Outcome Measures

ZYG SES was considered successful only if it drew the ipsilateral mouth’s corner
upwards and outwards, without the simultaneous activation of other ipsi- or contralateral
facial muscles such as mentalis, depressor labii inferioris, depressor anguli oris, platysma,
or chewing muscles such as the Masseter. The ZYG response was videorecorded for “off-
line” reassessment. The I/t curve was generated in a logarithmic scale by plotting each
assessed PW on the X-axis and the respective “threshold amplitudes” on the Y-axis the [27].
Effects of facial paralysis duration, previous treatments, and etiology on the parameter
selection and stimulation performance were evaluated. To determine the safety of the
assessed electrostimulation protocol, adverse events were collected and examined.

2.8. Parameter/Electrode Position Adjustment

The parameters and the electrode placement chosen during the first stimulation
session could be modified at any following visits, in order to maintain a safe and effective
ZYG stimulation.

2.9. Statistical Analysis

Data were analyzed using IBM SPSS statistics software (Version 25; IBM, New York,
NY, USA) for medical statistics. Descriptive statistics were used to report demographic data
(e.g., age, gender). Distribution of continuous data was described using mean values with
standard deviation. Qualitative data are presented in absolute and relative frequencies.

3. Results
3.1. ZYG Response to Triangular and Rectangular Wave Stimulation

The results obtained with triangular and rectangular waveform stimulation were
very similar, though with rectangular waveforms the selective ZYG response could be
elicited with lower amplitudes at all the assessed PW (Figures 3–6). We observed that the
duration of facial paralysis affects the excitability of the ZYG, in that patients suffering
from facial paralysis for years required higher amplitudes to elicit a specific ZYG response
(DFP0101003, −004) irrespectively of the applied PW compared to patients with a fresh
paralysis (less than 4 months, DFP0101001, −002, −005).

All the 5 assessed patients, irrespectively of the facial paralysis duration, showed a
selective ZYG response when triangular or rectangular stimulation was delivered with a
PW ≥ 50 ms (Figures 3 and 4). In patients DFP0101001, −002, and −005, suffering from
short-term denervation, the selective ZYG response was observed with amplitudes ≤ 6 mA
with triangular waveform and between 0.3 and 4 mA with rectangular waveform, while
the same results could be achieved with amplitudes between 5 and 15 mA (triangular) and
1.5 and 10 mA (rectangular) in the patients DFP0101003 and −004, suffering from long
term paralysis.
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Independently from the facial paralysis duration and applied wave form, the ampli-
tude required to elicit a selective ZYG response was found to be inversely proportional
to the applied PW (Figure 4). In addition, we found out that within the same patient, the
amplitude necessary to observe a selective ZYG response at the various PWs did not re-
markably change over time (Figure 6). For stimulations delivered with a PW < 25 ms, either
the discomfort threshold was reached, or unselective facial muscle response observed be-
fore an amplitude could be applied that triggered a selective ZYG response (unshown data).
When a PW of 25 ms was applied, all the patients apart from DFP0101003 (facial paralysis
since 16 years), showed a stable selective ZYG response after 6m of stimulation. Prior to this
check-point, the discomfort threshold was reached or unselective facial muscle response
observed before the selective ZYG response could be elicited (Figure 6). Differently from
the other assessed patients, DFP0101003 repeatedly reached the discomfort threshold or
showed unselective facial muscle response, before an amplitude could be applied that
triggered a selective ZYG response with PWs of 50 and 1000 ms (Figure 7). This effect was
more conspicuous with stimulations delivered with rectangular than triangular waveforms.

3.2. Use of Trains of Stimulation Bursts

The ZYG response to trains of stimulations was tested at 7 Hz with a PW of 50 ms.
Lower PWs were not used, since within single pulse stimulation, they mostly triggered
an unselective facial muscle response or caused discomfort to the patient. In general,
the threshold amplitude for the trains was lower than that observed for single pulse
stimulation and in most cases, it elicited a selective ZYG response only to the first burst,
while the subsequent ones did not trigger any ZYG contraction (data not shown). When
the threshold amplitude was increased of about 0.5–1 mA above the threshold, the ZYG
response was observed for each applied burst. In some cases, the ZYG contraction observed
with the first burst was kept through the entire train, suggesting a “tetanic contraction”
in response to the delivered train of stimulation. Only for two patients (DFP0101004
and −005), the stimulation delivered in trains was always or almost always effective
throughout the entire study follow-up (data not shown). As in the case of single pulse,
the train stimulation delivered with triangular was more successful than that delivered
with rectangular waveforms, because of the very low discomfort threshold showed by the
latter. Similarly, lower amplitudes were needed in patients freshly diagnosed with facial
paralysis than in patients suffering from it for years, in order to observe a selective ZYG
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response (data not shown). Interestingly, for the patient suffering from facial paralysis for
about 16 years (DFP0101003), the train stimulation resulted almost always ineffective at
either waveform because of the extremely low discomfort threshold showed by this patient
(data not shown).
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3.3. Strength/Duration Curves

The I/t curves (Figure 5) generated with the results of the stimulations delivered be-
tween 1 and 1000 ms with triangular and rectangular waveforms were used to preliminary
assess the accommodation quotient (AQ), the rheobase, and the chronaxie (data not shown).
The results were mixed and due to the reduced sample size we assessed, no clinically
relevant conclusions could be drawn based on them.

3.4. Side-Effects

For the entire duration of the study, the surface stimulation protocol never associated
with the occurrence of serious adverse events. After the stimulation sessions, the skin of
the patients showed a transient, slight reddening at the electrode positions, suggested mild
irritation. However, burns or other injuries to the skin never occurred. As expected, the
electrostimulation did not prevent reinnervation in patients either before or during the
participation in this study, independently from the fact that they underwent a reinnervation
surgery or not.
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4. Discussion

In our first attempt to assess SES for the treatment of facial paralysis, we chose the
denervated ZYG as main target because of its position sufficiently distant from sensitive
spots, such as the skin around the eyes, and the easy detectability of its response by means
of mere visual inspection of the ipsilateral mouth corner rising. The unspecific responses
of other muscles proximal to the ZYG such as mouth, chin, and chewing muscles, was just
as easily noticeable, allowing a quick and effective correction of the stimulation parameters
and/or electrode placement during the test session. We chose to evaluate exclusively
patients suffering from complete facial paralysis in order to avoid result biases due to
reinnervation processes (e.g., ZYG activation due to eye closure in synkinetic reinnervated
patients independently from the stimulation), but this meant a rather slow recruitment due
to the fact that complete denervated facial paralysis patients are much more seldom than
patients suffering from incomplete types of facial palsies.

Single pulse stimulation with PWs ≥ 50 ms, either with triangular or rectangular
waveform, is able to induce the selective response of the ZYG, independently from the
duration of the stimulation and/or of the facial paralysis, although we noticed a direct
association between this latter factor and the amplitude value needed to elicit the selective
ZYG response, irrespectively of the applied waveform (Figures 3 and 6).

In particular, while in freshly diagnosed patients an average amplitude ≤ 4 mA
sufficed, up to three times this amplitude was required to elicit the selective ZYG response
in patients suffering from facial paralysis for more than five years (Figures 3 and 6).
This observation seems to confirm previously published results [21–26,28] with patients
suffering from spinal cord injuries and a complete conus or cauda equina syndrome. In
these works, the authors showed that in complete denervated muscles the muscle atrophy
progresses always and this reduction is clearly detectable by means of magnetic resonance
imaging (MRI). In agreement with these findings, our results suggest that with time patients
suffering from complete facial paralysis tend to undergo progressive degradation of the
ZYG muscle mass, and loss of contractile properties. This could explain why higher
amplitudes are needed to elicit a specific ZYG response in patients suffering from this
disease for years rather than months. The MRI pictures let expect that a complete loss
of contractible muscle tissue depending on the muscle size as well. Interestingly, while
Carraro et al. 2015 [25] described a complete degeneration of human limb muscles after
three to six years of denervation, we were able to elicit a contraction of the denervated ZYG
in a patient suffering from complete facial paralysis for 16 years. If this result depending
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on another degeneration pattern of facial compared to limb muscles or of other factors is
just speculation.

More intriguingly, in this patient (DFP0101003), triangular waveform stimulation was
effective only with a PW of 100 or 250 ms, while in patient DFP0101004 (facial paralysis for
6 years), all the PW ≥ 50 ms were found effective. Whether this difference is due to the
fact that DFP0101004 has already undergone SES for two years at the time of enrolment or
to the fact that DFP0101003 is suffering from facial paralysis for about thrice the time of
DFP0101004 is unclear. Only the recruitment of additional patients with a long history of
facial paralysis similar to that of these two patients, will be able to give an accurate answer
to these questions.

Our results suggest that the use of rectangular waveform, of PWs < 50 ms, and/or the
use of train rather than single pulse stimulation are all factors that may enhance the risk to
reach the discomfort threshold and/or cause unspecific activation of other facial muscles or
co-contractions before an amplitude could be applied that elicited a selective ZYG response.
All the aforementioned factors tend to shorten the stimulation delivery time and/or to
increase the applied energy to the target muscle fibers. For instance, the rise of triangular
pulses is flatter and the energy applied per pulse is about half of rectangular waveforms
(Figure 2), accounting for why stimulation delivered in triangular rather than rectangular
waveform is perceived by the patients as more tolerable (Figures 3, 6 and 7). The pulse
shape is also likely to explain the need of higher amplitudes we observed with triangular
rather than rectangular pulses in order to elicit a selective ZYG response. Despite the higher
amplitudes, the transmitted energy is lower for triangular pulses than for rectangular ones.
Due to the shortening of the PW, both pulse shapes require higher amplitudes to transfer
the same amount of energy to the muscle. The rise for triangular pulses is steeper due to the
shortening. Thus, shortening the PW below 50 ms means a faster and more focused transfer
of energy to the muscle tissue. Also, when train rather than single pulse stimulation is
chosen, a significantly greater amount of energy is transferred in a relatively short time.

A faster and more focused transfer of a greater amount of energy to the muscle
increases the electrical field and the recruitment of nerve fibers and innervated muscles, as
well as an excessive activation of sensory axons, which in turn decreases the discomfort
threshold and increases the likelihood of causing the unselective contraction of other
(innervated) facial muscles [29,30]. This can be explained by the different reactions of nerve
and muscle fiber membranes. Since nerve membranes can be depolarized by shorter pulses,
i.e., fast potential changes, whereas the membranes of denervated muscle fibers respond
to “slow” potential changes [31], we were able to stimulate denervated muscles without
co-activating sensory axons with PW ≥ 50 ms.

It shall be noted that according to our protocol, when a PW caused discomfort and/or
unspecific activation of other facial muscles, shorter PWs were not further tested, in order
to avoid extra-burden to the patients. Thus, we did not collect sufficient data for PWs
below 25 ms for analysis.

Ravara et al. 2018 and Albertin et al. 2018 [32,33] investigated skin histologic changes
upon repeated stimulations in patients suffering from spinal cord injuries and a complete
conus or cauda equina syndrome. The patients performed daily at home electrical stimula-
tion of limb muscles with large-area electrodes and amplitudes up to 250 mA for two years.
The authors found out that the skin of these patients undergoing repeated stimulation
showed increased thickness accompanied by epidermis growth and relevant atrophy re-
duction. They did not report skin damages following stimulation with the aforementioned
parameters. Similarly, we did not observe relevant adverse events caused by the ZYG
stimulation, apart from transient, mild reddening of the skin where the electrodes were
placed, indicating mild irritation. No burns or other side effects needing medical attention
were observed for the entire duration of the study following stimulation.

Finally, it is worth noticing that the SES conducted with our protocol did not associate
with delayed or misdirected reinnervation, or chronic pain, for the entire one-year follow-
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up period assessed in our study, strongly suggesting that SES could become a safe treatment
or co-treatment for facial paralysis patients.

5. Conclusions

Our preliminary results showed that it is possible to find stimulation parameters able
to elicit an effective selective stimulation of a specific facial muscle, in our case, of the
ZYG, without causing discomfort to the patient and without causing unwanted unspecific
reactions of other ipsi-and/or contralateral facial muscles. We observed that the SES
effectiveness is strongly conditioned by the correct electrode placement, which ideally
should exclusively interest the area of the target muscle and its immediate proximity. These
results suggest that SES could be implemented for facial paralysis therapy, but should be
limited to facial muscles the size and position of which would rule out the possibility to
place the electrodes off-target and thus elicit a non-specific response of more muscles at the
same time. Within these conditions, it is possible to place electrodes and select stimulation
parameters in order to obtain a selective, simultaneous or sequential stimulation of both
agonistic and antagonistic muscles with the same or different parameters in order to obtain
an improved facial mimic. At all events, it should be always considered that the placement
of surface electrodes, close to sensitive zones of the face, such as the thin skin around the
eyes, could associate with the occurrence of side effects such as reddening and/or burning.
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